• Margherita BerutoEmail author
  • Mario Rabaglio
  • Serena Viglione
  • Marie-Christine Van Labeke
  • Emmy Dhooghe
Part of the Handbook of Plant Breeding book series (HBPB, volume 11)


Ranunculus asiaticus L. is the only Ranunculus species cultivated for its ornamental value. Most often it is grown as a cut flower, but also as flowering potted plant it is gaining importance for gardening and landscape design. The commercial production is done either via seeds or through the underground storage organs (hereafter called tuberous roots) which are gathered at the end of the seedling cultivation period; these latter ones are flowering faster and more profusely, and for this reason the tuberous roots are mainly used in the commercial practice. Detailed plant morphological characteristics which are important for breeding and different factors influencing in vitro pollen germination are described in this chapter. Often no fertilization barriers are noticed in cross-pollinations and self-pollinations in intraspecific crosses, but some of the cultivars (e.g., ‘Alfa’) show self-incompatibility, and even an occurrence of apomixis is assumed. Breeding goals and perspectives in commercial breeding are discussed for both cut flower and pot plant production.


Breeding Cut flower Interspecific hybridization Intertribal cross In vitro Ranunculaceae 


  1. Baltisberger M, Widmer A (2005) Cytological investigations on some Ranunculus species from Crete. Candollea 60:335–344Google Scholar
  2. Benelli C, Ozudogru EA, Lambardi M, Dradi G (2012) In vitro conservation of ornamental plants by slow growth storage. Acta Hort 961:89–93CrossRefGoogle Scholar
  3. Beruto M (1997) Agar and gel characteristics with special reference to micropropagation systems of Ranunculus asiaticus L. PhD Thesis, Gent, Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen, University Gent, Belgium, pp 21–44, 125–184Google Scholar
  4. Beruto M (2010) In vitro propagation through axillary shoot culture of Ranunculus asiaticus L. In: Jain SM, Ochatt SJ (eds) Protocols for in vitro propagation of ornamental plants, methods in molecular biology, vol 589. Humana Press, New York, pp 29–37CrossRefGoogle Scholar
  5. Beruto M, Curir P (2006) Effects of agar and gel characteristics on micropropagation: Ranunculus asiaticus, a case study. In: Teixeira da Silva JA (ed) Floriculture, ornamental and plant biotechnology advances and topical issues, vol II. Global Science Books, Isleworth, pp 277–284Google Scholar
  6. Beruto M, Debergh P (2004) Micropropagation of Ranunculus asiaticus: a review and perspectives. Plant Cell Tiss Org 77:221–230CrossRefGoogle Scholar
  7. Beruto M, Portogallo C (2000) Factors affecting the growth of Ranunculus in vitro. Acta Hort 520:163–170CrossRefGoogle Scholar
  8. Beruto M, Rinino S (2009) Effetto del substrato sulla fioritura in vitro di piante di ranuncolo. Italus Hortus 16(2):32–34. (Abstract in English and figure captions in English)Google Scholar
  9. Beruto M, Cane G, Debergh P (1996) Field performance of tissue-cultured plants of Ranunculus asiaticus L. Sci Hortic 66:229–239CrossRefGoogle Scholar
  10. Beruto M, La Rosa C, Portogallo C (2001) Effects of agar impurities on in vitro propagation of Ranunculus asiaticus L. Acta Hort 560:399–402CrossRefGoogle Scholar
  11. Beruto M, Fibiani M, Rinino S, Lo Scalzo R, Curir P (2009) Plant development of Ranunculus asiaticus L. tuberous roots is affected by different temperature and oxygen conditions during storage period. Israel J Plant Sci 57:377–388CrossRefGoogle Scholar
  12. Beruto M, Rinino S, Bisignano A, Fibiani M (2011) Study of slow growth conditions of Ranunculus in vitro shoots. Acta Hort 908:391–403CrossRefGoogle Scholar
  13. Borriello R, Maccario D, Viglione S, Bianciotto V, Beruto M (2017) Arbuscular mycorrhizal fungi and micropropagation of Ranunculus asiaticus L.: a useful alliance? Acta Hort 1155:549–555CrossRefGoogle Scholar
  14. Cerveny CB, Miller WB (2011) Storage temperature and moisture content affect respiration and survival of Ranunculus asiaticus dry tuberous roots. Hortscience 46(11):1523–1527Google Scholar
  15. Cerveny CB, Miller WB (2012) Soaking temperature of dried tuberous roots influences hydration kinetics and growth of Ranunculus asiaticus (L.). Hortscience 47(2):212–216Google Scholar
  16. De Hertogh AA (1996) Holland bulb forcer’s guide, 5th edn. Alkemade Printing BV, LisseGoogle Scholar
  17. Dhooghe E (2009) Morphological and cytogenetic study of ornamental Ranunculaceae to obtain intergeneric crosses. PhD thesis, Ghent University, p 244Google Scholar
  18. Dhooghe E, Denis S, Eeckhaut T, Reheul D, Van Labeke MC (2009) In vitro induction of tetraploids in ornamental Ranunculus. Euphytica 168:33–40CrossRefGoogle Scholar
  19. Dhooghe E, Reheul D, Van Labeke MC (2012) Cytological and molecular characterization of intertribal hybrids between the geophytes Anemone coronaria L. and Ranunculus asiaticus L. (Ranunculaceae). Floriculture and Ornamental Biotechnology 6:104–107Google Scholar
  20. Emadzade K, Gehrke B, Linder HP, Hörandl E (2011) The biogeographical history of the cosmopolitan genus Ranunculus L. (Ranunculaceae) in the temperate to meridional zones. Mol Phylogenet Evol 58:4–21CrossRefPubMedGoogle Scholar
  21. Ferrero F, Duclos A, Ottenwaelder L, Thiebaut MJ, Jacob Y (2006) Use of homozygosity in the Ranunculus asiaticus breeding process. Acta Hort 714:119–128CrossRefGoogle Scholar
  22. Hassan HA, Agina EA, Koriesh EM, Mohamad SM (1985) Physiological studies on Anemone coronaria L and Ranunculus asiaticus L. 3. Effect of foliar nutrition and gibberellic acid. Ann Agr Sci- Moshtohor 22:593–615Google Scholar
  23. Kamenetsky R, Peterson RL, Melville LH, Machado CF, Bewley D (2005) Seasonal adaptations of the tuberous roots of Ranunculus asiaticus to desiccation and resurrection by changes in cell structure and protein content. New Phytol 166:193–204CrossRefPubMedGoogle Scholar
  24. Karlsson M (2003) Producing ravishing Ranunculus. Greenhouse Product News, January 2003: 44–48Google Scholar
  25. Kenza M, Umiel N, Borochov A (2000) The involvement of ethylene in the senescence of Ranunculus cut flowers. Postharvest Biol Technol 19(3):287–290CrossRefGoogle Scholar
  26. Koltunow AM, Grossniklaus U (2003) Apomixis: a developmental perspective. Annu Rev Plant Biol 54:547–574CrossRefPubMedGoogle Scholar
  27. Meynet J (1974) Research on Ranunculus hybrid varieties for growing under protection. Acta Hort 43:191–196CrossRefGoogle Scholar
  28. Meynet J (1993) Ranunculus. In: De Hertogh A, Le Nard M (eds) The physiology of flower bulbs. Elsevier Science Publishers, Amsterdam, pp 603–610Google Scholar
  29. Meynet J, Duclos A (1990) Culture in vitro de la renoncule des fleuristes (Ranunculus asiaticus L.). II. Production de plantes par culture d’anthères in vitro. Agronomie 10:213–218CrossRefGoogle Scholar
  30. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  31. Nogler GA (1984) Genetics of apospory in apomictic Ranunculus auricomus. V. Conclusion. Bot Helv 94:411–422Google Scholar
  32. Ohkawa K (1986) Growth and flowering of Ranunculus asiaticus. Acta Hort 177:165–177CrossRefGoogle Scholar
  33. Ronse Decraene LP, Smets EF (1995) Evolution of the androecium in the Ranunculiflorae. Plant Syst Evol 59:63–70Google Scholar
  34. Scariot V, Larcher F, Caser M, Costa E, Beruto M, Devecchi M (2009) Flower longevity in ten cultivars of cut Ranunculus asiaticus L. as affected by ethylene and ethylene inhibitors. Europ J Hort Sci 74(3):137–142Google Scholar
  35. Shahri W, Tahir I (2011) Flower development and senescence in Ranunculus asiaticus L. J Fruit Ornamental Plant Res 19(2):123–131Google Scholar
  36. Smith JB, Bennett MD (1975) DNA variation in the genus Ranunculus. Heredity 35:231–239CrossRefGoogle Scholar
  37. Tamura M (1995a) Systematic part. In: Engler A, Prantl K (eds) Die Natürlichen Pflanzenfamilien. Bd. 17 a IV Angiospermae. Ordnung Ranunculales. Fam. Ranunculaceae, 2nd edn. Duncker & Humblot, Berlin, pp 220–519Google Scholar
  38. Tamura M (1995b) Reproductive structures. In: Engler A, Prantl K (eds) Die Natürlichen Pflanzenfamilien. Bd. 17 a IV Angiospermae. Ordnung Ranunculales. Fam. Ranunculaceae, 2nd edn. Duncker & Humblot, Berlin, pp 41–76Google Scholar
  39. Tian HQ, Russell SD (1997) Micromanipulation of male and female gametes of Nicotiana tabacum .1. Isolation of gametes. Plant Cell Rep 16:555–560Google Scholar
  40. Turina M, Ciuffo M, Lenzi R, Rostagno L, Mela L, Derin E, Palmano S (2006) Characterization of four viral species belonging to the family Potyviridae isolated from Ranunculus asiaticus. Phytopathology 96:560–566CrossRefPubMedGoogle Scholar
  41. Umiel N & Hagiladi A (1999) Preparation of Ranunculus corms for early flowering in 8 easy steps. Dept Orn Hort Agr Res Org, Bet-Dagan, IsraelGoogle Scholar
  42. Valdez-Aguilar L, Grieve CM, Poss J (2009) Hypersensitivity of Ranunculus asiaticus to salinity and alkaline pH in irrigation water in sand cultures. Hortscience 44(1):138–144Google Scholar
  43. Yuan Q, Yang Q (2006) Tribal relationships of Beesia, Eranthis and seven other genera of Ranunculaceae: evidence from cytological characters. Bot J Linn Soc 150:267–289CrossRefGoogle Scholar
  44. Zonneveld BJM, Leitch IJ, Bennett MD (2005) First nuclear DNA amounts in more than 300 angiosperms. Ann Bot 96:229–244CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Margherita Beruto
    • 1
    Email author
  • Mario Rabaglio
    • 2
  • Serena Viglione
    • 1
  • Marie-Christine Van Labeke
    • 3
  • Emmy Dhooghe
    • 4
  1. 1.Regional Institute for Floriculture (IRF)Sanremo (IM)Italy
  2. 2.Biancheri CreationsCamporosso (IM)Italy
  3. 3.Ghent University, Department Plants and CropsGhentBelgium
  4. 4.Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Applied Genetics and BreedingMelleBelgium

Personalised recommendations