Advertisement

Dianthus

  • Takashi Onozaki
Chapter
Part of the Handbook of Plant Breeding book series (HBPB, volume 11)

Abstract

Carnation (Dianthus caryophyllus L.) is one of the world’s main floricultural crops. The genus Dianthus is a member of the Caryophyllaceae and includes more than 300 species of annuals and evergreen perennials. A very complex hybridization lies behind modern carnation cultivars owing to the species’ long history of breeding. In this chapter, the breeding history and transition of preferences for carnation cultivars (standard, spray, and dwarf types) are summarized. The chapter focuses on recent progress in carnation breeding research for flower color, mutations, flower type, disease resistance, vase life, interspecific hybridization, fragrance, and polyploidy. It also highlights the genetics of flower color and pigment composition in white cultivars, progress of breeding for resistance to bacterial wilt and for long vase life, and interspecific hybridization between carnation lines with long vase life and D. superbus var. longicalycinus, a wild species native to Japan, during the last 30 years of work by my research group. It also summarizes genomic analysis of carnation, including large-scale transcriptome sequencing using next-generation sequencing technology. It concludes by describing construction of a genetic linkage map, quantitative trait locus (QTL) analyses, and genome sequencing research.

Keywords

Dianthus caryophyllus Carnation Breeding disease resistance Genetic linkage map Interspecific hybridization Marker-assisted selection Mutation breeding Vase life 

Notes

Acknowledgments

I sincerely thank Elsevier for the rights to reproduce Fig. 15.1 from Onozaki et al. (1999c) Scientia Horticulturae 82: 103–111, Springer Nature for Figs. 15.3 and 15.4 from Onozaki et al. (2004b) Euphytica 138: 255–262, and the Japanese Society for Horticultural Science (JSHS) for Fig. 15.2 from Onozaki et al. (2002) Horticultural Research (Japan) 1: 13–16; Fig. 15.8 from Onozaki et al. (2011b) Journal of Japanese Society for Horticultural Science 80: 486–498; Fig. 15.9 from Onozaki et al. (2015) The Horticulture Journal 84: 58–68; Fig. 15.10 from Onozaki et al. (2018) The Horticulture Journal 87: 106–114; and Fig. 15.11 from Onozaki et al. (2011a) Horticultural Research (Japan) 10: 161–172.

References

  1. Abe Y, Tera M, Sasaki N, Okamura M, Umemoto N, Momose M, Kawahara N, Kamakura H, Goda Y, Nagasawa K, Ozeki Y (2008) Detection of 1-O-malylglucose: pelargonidin 3-O-glucose-6′′-O-malyltransferase activity in carnation (Dianthus caryophyllus). Biochem Biophys Res Commun 373:473–477PubMedCrossRefGoogle Scholar
  2. Agulló-Antón MA, Olmos E, Pérez-Pérez JM, Acosta M (2013) Evaluation of ploidy level and endoreduplication in carnation (Dianthus spp.). Plant Sci 201–202:1–11PubMedCrossRefGoogle Scholar
  3. Andersson-Kotto I, Gairdner AE (1931) Interspecific crosses in the genus Dianthus. Genetica 13:77–112CrossRefGoogle Scholar
  4. Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Report 9:208–218CrossRefGoogle Scholar
  5. Baayen RP, Sparaaij LD, Jansen J, Niemann GJ (1991) Inheritance of resistance in carnation against Fusarium oxysporum f. sp. dianthi races 1 and 2, in relation to resistance components. Neth J Plant Pathol 97:73–86CrossRefGoogle Scholar
  6. Baayen RP, van Dreven F, Krijger MC, Waalwijk C (1997) Genetic diversity in Fusarium oxysporum f. sp. dianthi and Fusarium redolens f. sp. dianthi. Eur J Plant Pathol 103:395–408CrossRefGoogle Scholar
  7. Balao F, Casimiro-Soriguer R, Talavera M, Herrera J, Talavera S (2009) Distribution and diversity of cytotypes in Dianthus broteri as evidenced by genome size variations. Ann Bot 104:965–973PubMedPubMedCentralCrossRefGoogle Scholar
  8. Balao F, Valente LM, Vargas P, Herrera J, Talavera S (2010) Radiative evolution of polyploid races of the Iberian carnation Dianthus broteri (Caryophyllaceae). New Phytol 187:542–551PubMedCrossRefGoogle Scholar
  9. Bloor SJ (1998) A macrocyclic anthocyanin from red/mauve carnation flowers. Phytochemistry 49:225–228CrossRefGoogle Scholar
  10. Britsch L, Dedio J, Saedler H, Forkmann G (1993) Molecular characterization of flavanone 3β-hydroxylases. Consensus sequence, comparison with related enzymes and the role of conserved histidine residues. Eur J Biochem 217:745–754PubMedCrossRefPubMedCentralGoogle Scholar
  11. Carolin RC (1957) Cytological and hybridization studies in the genus Dianthus. New Phytol 56:81–97CrossRefGoogle Scholar
  12. Chandler S (2007) Practical lessons in the commercialization of genetically modified plants –long vase-life carnation. Acta Hortic 764:71–81CrossRefGoogle Scholar
  13. Clery RA, Owen NE, Chambers SF (1999) An investigation into the scent of carnations. J Essent Oil Res 11:355–359CrossRefGoogle Scholar
  14. Demmink JF, Baayen RP, Sparnaaij LD (1989) Evaluation of the virulence of races 1, 2 and 4 of Fusarium oxysporum f. sp. dianthi in carnation. Euphytica 42:55–63CrossRefGoogle Scholar
  15. Figueira A, Janick J, Goldsbrough P (1992) Genome size and DNA polymorphism in Theobroma cacao. J Am Soc Hortic Sci 117:673–677Google Scholar
  16. Forkmann G, Dangelmayr B (1980) Genetic control of chalcone isomerase activity in flowers of Dianthus caryophyllus. Biochem Genet 18:519–527PubMedCrossRefPubMedCentralGoogle Scholar
  17. Fu XP, Zhang JJ, Li F, Zhan PT, Bao MZ (2011) Effects of genotype and stigma development stage on seed set following intra- and inter-specific hybridization of Dianthus spp. Sci Hortic 128:490–498CrossRefGoogle Scholar
  18. Fukui Y, Tanaka Y, Kusumi T, Iwashita T, Nomoto K (2003) A rationale for the shift in colour towards blue in transgenic carnation flowers expressing the flavonoid 3′,5′-hydroxylase gene. Phytochemistry 63:15–23PubMedCrossRefPubMedCentralGoogle Scholar
  19. Galbally J, Galbally E (1997) Carnation and pinks for garden and greenhouse. Timber Press, Portland, OregonGoogle Scholar
  20. Garibaldi A, Gullino ML (1987) Fusarium wilt of carnation: present situation, problems and perspectives. Acta Hortic 216:45–54CrossRefGoogle Scholar
  21. Garibaldi A, Gullino ML (2012) Fusarium wilt of carnation. In: Gullino ML, Katan J, Garibaldi A (eds) Fusarium wilts of greenhouse vegetable and ornamental crops. APS Press, St. Paul, MN, pp 191–198Google Scholar
  22. Gatt MK, Hammett KRW, Markham KR, Murray BG (1998) Yellow pinks: interspecific hybridization between Dianthus plumarius and related species with yellow flowers. Sci Hortic 77:207–218CrossRefGoogle Scholar
  23. Geissman TA, Mehlquist GAL (1947) Inheritance in the carnation, Dianthus caryophyllus. IV. The chemistry of flower color variation, I. Genetics 32:410–433PubMedPubMedCentralGoogle Scholar
  24. Halevy AH, Mayak S (1981) Senescence and postharvest physiology of cut flowers, part 2. Hortic Rev 3:59–143Google Scholar
  25. Halmagyi A, Lambardi M (2006) Cryopreservation of carnation (Dianthus caryophyllus L.). In: Teixeira da Silva JA (ed) Floriculture, ornamental and plant biotechnology. Advances and topical issues, vol 2. Global Science Books, Isleworth, pp 415–423Google Scholar
  26. Hamilton RFL, Walters SM (1989) Dianthus Linnaeus. In: Walters SM, Alexander JCM, Brady A, Brickell CD, Cullen J, Green PS, Heywood VH, Matthews VA, Robson NKB, Yeo PF, Knees SG (eds) The European garden flora, vol 3. Cambridge University Press, Cambridge, pp 185–191Google Scholar
  27. Holley WD, Baker R (1963) Carnation production. Wm.C. Brown Co-Inc, Dubuque, IAGoogle Scholar
  28. Hotta M, Hattori H, Hirano T, Kume T, Okumura Y, Inubushi K, Inayoshi Y, Ninura M, Matsuno J, Onozaki T, Yagi M, Yamaguchi H, Yamaguchi N (2016) Breeding and characteristics of spray-type carnation ‘‘Kane Ainou 1 go’’ with long vase life. Res Bull Aichi Agric Res Ctr 48:63–71. (In Japanese with English abstract)Google Scholar
  29. Hudak KA, Thompson JE (1997) Subcellular localization of secondary lipid metabolites including fragrance volatiles in carnation petals. Plant Physiol 114:705–713PubMedPubMedCentralCrossRefGoogle Scholar
  30. Itoh A, Takeda Y, Tsukamoto Y, Tomino K (1989) Dianthus L. In: Tsukamoto Y (ed) The grand dictionary of horticulture, vol 3. Shogakukan, Tokyo, pp 455–462. (In Japanese)Google Scholar
  31. Itoh Y, Higeta D, Suzuki A, Yoshida H, Ozeki Y (2002) Excision of transposable elements from the chalcone isomerase and dihydroflavonol 4-reductase genes may contribute to the variegation of the yellow-flowered carnation (Dianthus caryophyllus). Plant Cell Physiol 43:578–585PubMedCrossRefGoogle Scholar
  32. Iwashina T, Yamaguchi M, Nakayama M, Onozaki T, Yoshida H, Kawanobu S, Ono H, Okamura M (2010) Kaempferol glycosides in the flowers of carnation and their contribution to the creamy white flower color. Nat Prod Commun 5:1903–1906PubMedGoogle Scholar
  33. Jones LK (1941) Bacterial wilt of carnations. Phytopathology 31:199Google Scholar
  34. Jürgens A, Witt T, Gottsberger G (2003) Flower scent composition in Dianthus and Saponaria species (Caryophyllaceae) and its relevance for pollination biology and taxonomy. Biochem Syst Ecol 31:345–357CrossRefGoogle Scholar
  35. Kanda M (1992) Ovule culture for hybridization between carnation and the genus Dianthus. J Jpn Soc Hortic Sci 61(Suppl. 2):464–465. (In Japanese)Google Scholar
  36. Kanda M, Horikawa T, Nakamura Y, Motoori S, Kotake H (1998) Breeding of carnation cultivars ‘‘Aqua Red’’ and ‘‘Aqua Yellow’’ through the interspecific hybridization between Dianthus caryophyllus and D. superbus. J Jpn Soc Hortic Sci 67(Suppl. 1):247Google Scholar
  37. Kingman R (1983) The carnation industry in the United States. Acta Hortic 141:249–252CrossRefGoogle Scholar
  38. Kishimoto K, Nakayama M, Yagi M, Onozaki T, Oyama-Okubo N (2011) Evaluation of wild Dianthus species as genetic resources for fragrant carnation breeding based on their floral scent composition. J Jpn Soc Hortic Sci 80:175–181CrossRefGoogle Scholar
  39. Kishimoto K, Yagi M, Onozaki T, Yamaguchi H, Nakayama M, Oyama-Okubo N (2013) Analysis of scents emitted from flowers of interspecific hybrids between carnation and fragrant wild Dianthus species. J Jpn Soc Hortic Sci 82:145–153CrossRefGoogle Scholar
  40. Klee HJ, Clark DG (2004) Ethylene signal transduction in fruits and flowers. In: Davies PJ (ed) Plant hormones: biosynthesis, signal transduction, action, 3rd edn. Kluwer Academic Publishers, Dordrecht, pp 369–390Google Scholar
  41. Mato M, Onozaki T, Ozeki Y, Higeta D, Itoh Y, Yoshimoto Y, Ikeda H, Yoshida H, Shibata M (2000) Flavonoid biosynthesis in white-flowered Sim carnations (Dianthus caryophyllus). Sci Hortic 84:333–347CrossRefGoogle Scholar
  42. Mato M, Onozaki T, Ozeki Y, Higeta D, Itoh Y, Hisamatsu T, Yoshida H, Shibata M (2001) Flavonoid biosynthesis in pink-flowered cultivars derived from ‘‘William Sim’’ carnation (Dianthus caryophyllus). J Jpn Soc Hortic Sci 70:315–319CrossRefGoogle Scholar
  43. Matsuba Y, Sasaki N, Tera M, Okamura M, Abe Y, Okamoto E, Nakamura H, Funabashi H, Takatsu M, Saito M, Matsuoka H, Nagasawa K, Ozeki Y (2010) A novel glucosylation reaction on anthocyanins catalyzed by acyl-glucose-dependent glucosyltransferase in the petals of carnation and delphinium. Plant Cell 22:3374–3389PubMedPubMedCentralCrossRefGoogle Scholar
  44. Mayak S, Tirosh T (1993) Unusual ethylene-related behavior in senescing flowers of the carnation Sandrosa. Physiol Plant 88:420–426CrossRefGoogle Scholar
  45. Mehlquist GAL, Geissman TA (1947) Inheritance in the carnation, Dianthus caryophyllus III Inheritance of flower colour. Ann Mo Bot Gard 34:39–75CrossRefGoogle Scholar
  46. Mizuno H (1993) Race differentiation of Fusarium oxysporum f. sp. dianthi collected from carnation growing areas in Japan. Proc Kanto-Tosan Plant Prot Soc 40:157–159. (In Japanese with English abstract)Google Scholar
  47. Momose M, Nakayama M, Itoh Y, Umemoto N, Toguri T, Ozeki Y (2013) An active hAT transposable element causing bud mutation of carnation by insertion into the flavonoid 3′-hydroxylase gene. Mol Gen Genomics 288:175–184CrossRefGoogle Scholar
  48. Moyal-Ben Zvi M, Vainstein A (2007) Carnation. In: Pua EC, Davey MR (eds) Biotechnology in agriculture and forestry. Transgenic crops VI, vol 61. Springer, Berlin, pp 241–252Google Scholar
  49. Nakano M, Mii M (1993a) Somatic hybridization between Dianthus chinensis and D. barbatus through protoplast fusion. Theor Appl Genet 86:1–5PubMedCrossRefGoogle Scholar
  50. Nakano M, Mii M (1993b) Interspecific somatic hybridization in Dianthus: selection of hybrids by the use of iodoacetamide inactivation and regeneration ability. Plant Sci 88:203–208CrossRefGoogle Scholar
  51. Nakayama M, Koshioka M, Yoshida H, Kan Y, Fukui Y, Koike A, Yamaguchi M (2000) Cyclic malyl anthocyanins in Dianthus caryophyllus. Phytochemistry 55:937–939PubMedCrossRefGoogle Scholar
  52. Nelson PE, Dickey RS (1963) Reaction of twenty-one commercial carnation varieties to Pseudomonas caryophylli. Phytopathology 53:320–324Google Scholar
  53. Nimura M, Kato J, Mii M, Morioka K (2003) Unilateral compatibility and genotypic difference in crossability in interspecific hybridization between Dianthus caryophyllus L. and Dianthus japonicus Thunb. Theor Appl Genet 106:1164–1170PubMedCrossRefGoogle Scholar
  54. Nimura M, Kato J, Mii M, Katoh T (2006a) Amphidiploids produced by natural chromosome-doubling in interspecific hybrids between Dianthus × isensis Hirahata et Kitam. and D. japonicus Thunb. J Hortic Sci Biotechnol 81:72–77CrossRefGoogle Scholar
  55. Nimura M, Kato J, Horaguchi H, Mii M, Sakai K, Katoh T (2006b) Induction of fertile amphidiploids induction by artificial chromosome-doubling in interspecific hybrid between Dianthus caryophyllus L. and D. japonicus Thunb. Breed Sci 56:303–310CrossRefGoogle Scholar
  56. Nimura M, Kato J, Mii M (2008a) Carnation improvement: Interspecific hybridization and polyploidization in carnation breeding. In: Teixeira da Silva JA (ed) Floriculture, ornamental and plant biotechnology. Advances and topical issues, vol 5. Global Science Books, Isleworth, pp 105–121Google Scholar
  57. Nimura M, Kato J, Mii M, Ohishi K (2008b) Cross-compatibility and the polyploidy of progenies in reciprocal backcrosses between diploid carnation (Dianthus caryophyllus L.) and its amphidiploid with Dianthus japonicus Thunb. Sci Hortic 115:183–189CrossRefGoogle Scholar
  58. Ogata J, Itoh Y, Ishida M, Yoshida H, Ozeki Y (2004) Cloning and heterologous expression of cDNAs encoding flavonoid glucosyltransferases from Dianthus caryophyllus. Plant Biotechnol 21:367–375CrossRefGoogle Scholar
  59. Ohtsuka H, Horiuchi M, Inaba Z, Wakasawa H, Fukushima T (1995) Interspecific hybrids between carnation and Dianthus species by using embryo culture and their characteristics. Bull Shizuoka Agric Exp Stn 40:27–38. (in Japanese)Google Scholar
  60. Okamura M, Yasuno N, Ohtsuka M, Tanaka A, Shikazono N, Hase Y (2003) Wide variety of flower-color and -shape mutants regenerated from leaf cultures irradiated with ion beams. Nucl Instrum Methods Phys Res B 206:574–578CrossRefGoogle Scholar
  61. Okamura M, Tanaka A, Momose M, Umemoto N, Teixeira da Silva JA, Toguri T (2006) Advances of mutagenesis in flowers and their industrialization. In: Teixeira da Silva JA (ed) Floriculture, ornamental and plant biotechnology. Advances and topical issues, vol 1. Global Science Books, Isleworth, pp 619–628Google Scholar
  62. Okamura M, Nakayama M, Umemoto N, Cano EA, Hase Y, Nishizaki Y, Sasaki N, Ozeki Y (2013) Crossbreeding of a metallic color carnation and diversification of the peculiar coloration by ion-beam irradiation. Euphytica 191:45–56CrossRefGoogle Scholar
  63. Onozaki T (2001) Exploration and collection of Dianthus superbus var. longicalycinus and D. superbus in Mie prefecture and Hokkaido. Annu Rep Explor Introd Plant Genet Resour 17:49–54. (In Japanese with English abstract)Google Scholar
  64. Onozaki T (2006) Carnation. In: JSHS (ed) Horticulture in Japan 2006. Shoukadoh Publication, Kyoto, pp 223–230Google Scholar
  65. Onozaki T (2008) Improvement of flower vase life using cross-breeding techniques in carnation (Dianthus caryophyllus L.). JARQ 42:137–144CrossRefGoogle Scholar
  66. Onozaki T (2016) Carnation. In: Shibata M (ed) Japanese history on flower breeding. Yushokan, Tokyo, pp 31–62. (In Japanese)Google Scholar
  67. Onozaki T, Ikeda H, Yamaguchi T, Himeno M (1998) Introduction of bacterial wilt (Pseudomonas caryophylli) resistance in Dianthus wild species to carnation. Acta Hortic 454:127–132CrossRefGoogle Scholar
  68. Onozaki T, Yamaguchi T, Himeno M, Ikeda H (1999a) Evaluation of 277 carnation cultivars for resistance to bacterial wilt (Pseudomonas caryophylli). J Jpn Soc Hortic Sci 68:546–550CrossRefGoogle Scholar
  69. Onozaki T, Yamaguchi T, Himeno M, Ikeda H (1999b) Evaluation of wild Dianthus accessions for resistance to bacterial wilt (Pseudomonas caryophylli). J Jpn Soc Hortic Sci 68:974–978CrossRefGoogle Scholar
  70. Onozaki T, Mato M, Shibata M, Ikeda H (1999c) Differences in flower color and pigment composition among white carnation (Dianthus caryophyllus L.) cultivars. Sci Hortic 82:103–111CrossRefGoogle Scholar
  71. Onozaki T, Ikeda H, Yamaguchi T (2001) Genetic improvement of vase life of carnation flowers by crossing and selection. Sci Hortic 87:107–120CrossRefGoogle Scholar
  72. Onozaki T, Ikeda H, Yamaguchi T, Himeno M, Amano M, Shibata M (2002) ‘‘Carnation Nou No.1’’, a carnation breeding line resistant to bacterial wilt (Burkholderia caryophylli). Hortic Res (Japan) 1:13–16. (In Japanese with English abstract)CrossRefGoogle Scholar
  73. Onozaki T, Kudo K, Funayama T, Ikeda H, Tanikawa N, Shibata M (2003) Identification of random amplified polymorphic DNA markers linked to bacterial wilt resistance in carnations. Acta Hortic 612:95–103CrossRefGoogle Scholar
  74. Onozaki T, Ikeda H, Shibata M (2004a) Video evaluation of ethylene sensitivity after anthesis in carnation (Dianthus caryophyllus L.) flowers. Sci Hortic 99:187–197CrossRefGoogle Scholar
  75. Onozaki T, Tanikawa N, Taneya M, Kudo K, Funayama T, Ikeda H, Shibata M (2004b) A RAPD-derived STS marker is linked to a bacterial wilt (Burkholderia caryophylli) resistance gene in carnation. Euphytica 138:255–262CrossRefGoogle Scholar
  76. Onozaki T, Ikeda H, Shibata M, Tanikawa N, Yagi M, Yamaguchi T, Amano M (2006a) Breeding process and characteristics of carnation Norin No. 1 ‘‘Miracle Rouge’’ and No. 2 ‘‘Miracle Symphony’’ with long vase life. Bull Natl Inst Flor Sci 5:1–16. (In Japanese with English abstract)Google Scholar
  77. Onozaki T, Tanikawa N, Yagi M, Ikeda H, Sumitomo K, Shibata M (2006b) Breeding of carnations (Dianthus caryophyllus L.) for long vase life and rapid decrease in ethylene sensitivity of flowers after anthesis. J Jpn Soc Hortic Sci 75:256–263CrossRefGoogle Scholar
  78. Onozaki T, Yoshinari T, Yoshimura T, Yagi M, Yoshioka S, Taneya M, Shibata M (2006c) DNA markers linked to a recessive gene controlling single flower type derived from wild species, Dianthus capitatus ssp. andrzejowskianus. Hortic Res (Japan) 5:363–367. (In Japanese with English abstract)CrossRefGoogle Scholar
  79. Onozaki T, Yagi M, Shibata M (2008) Selection of ethylene-resistant carnations (Dianthus caryophyllus L.) by video recording system and their response to ethylene. Sci Hortic 116:205–212CrossRefGoogle Scholar
  80. Onozaki T, Yagi M, Fujita Y, Tanase K (2011a) Characteristics of interspecific hybrids between carnation (Dianthus caryophyllus) lines with long vase life and D. superbus var. longicalycinus, and their backcrossing progenies. Hortic Res (Japan) 10:161–172. (In Japanese with English abstract)CrossRefGoogle Scholar
  81. Onozaki T, Yagi M, Tanase K, Shibata M (2011b) Crossings and selections for six generations based on flower vase life to create lines with ethylene resistance or ultra-long vase life in carnations (Dianthus caryophyllus L.). J Jpn Soc Hortic Sci 80:486–498CrossRefGoogle Scholar
  82. Onozaki T, Yagi M, Tanase K (2015) Selection of carnation line 806-46b with both ultra-long vase life and ethylene resistance. Hortic J 84:58–68CrossRefGoogle Scholar
  83. Onozaki T, Yamada M, Yagi M, Tanase K, Shibata M (2018) Effects of crossing and selection for seven generations based on flower vase life in carnations (Dianthus caryophyllus L.), and the relationship between ethylene production and flower vase life in the breeding lines. Hortic J 87:106–114CrossRefGoogle Scholar
  84. Ouellette GB, Baayen RP, Simard M, Rioux D (1999) Ultrastructural and cytochemical study of colonization of xylem vessel elements of susceptible and resistant Dianthus caryophyllus by Fusarium oxysporum f. sp. dianthi. Can J Bot 77:644–663Google Scholar
  85. Sato S, Katoh N, Yoshida H, Iwai S, Hagimori M (2000) Production of doubled haploid plants of carnation (Dianthus caryophyllus L.) by pseudofertilized ovule culture. Sci Hortic 83:301–310CrossRefGoogle Scholar
  86. Satoh S (2005) Induction of flower senescence by ethylene. In: Hashiba T (ed) Development in plant protection – bridging bioscience. SoftScience, Inc., Tokyo, pp 305–317. (In Japanese)Google Scholar
  87. Satoh S (2011) Ethylene production and petal wilting during senescence of cut carnation (Dianthus caryophyllus) flowers and prolonging their vase life by genetic transformation. J Jpn Soc Hortic Sci 80:127–135CrossRefGoogle Scholar
  88. Saunders ER (1917) Studies in the inheritance of doubleness in flowers, II. Meconopsis, Althaea and Dianthus. J Genet 6:165–184CrossRefGoogle Scholar
  89. Scariot V, Paradiso R, Rogers H, De Pascale S (2014) Ethylene control in cut flowers: classical and innovative approaches. Postharvest Biol Technol 97:83–92CrossRefGoogle Scholar
  90. Schade F, Legge RL, Thompson JE (2001) Fragrance volatiles of developing and senescing carnation flowers. Phytochemistry 56:703–710PubMedCrossRefPubMedCentralGoogle Scholar
  91. Scovel G, Ben-Meir H, Ovadis M, Itzhaki H, Vainstein A (1998) RAPD and RFLP markers tightly linked to the locus controlling carnation (Dianthus caryophyllus) flower type. Theor Appl Genet 96:117–122CrossRefGoogle Scholar
  92. Serek M, Sisler EC, Woltering EJ, Mibus H (2007) Chemical and molecular genetic strategies to block ethylene perception for increased flower life. Acta Hortic 755:163–169CrossRefGoogle Scholar
  93. Shibuya K, Yoshioka T, Hashiba T, Satoh S (2000) Role of the gynoecium in natural senescence of carnation (Dianthus caryophyllus) flowers. J Exp Bot 51:2067–2073PubMedCrossRefPubMedCentralGoogle Scholar
  94. Sparnaaij LD (1979) Polyploidy in flower breeding. HortScience 14:496–499Google Scholar
  95. Sparnaaij LD, Demmink JF (1983) Carnations of the future. Acta Hortic 141:17–22CrossRefGoogle Scholar
  96. Sparnaaij LD, Koehorst-van Putten HJJ (1990) Selection for early flowering in progenies of interspecific crosses of ten species in the genus Dianthus. Euphytica 50:211–220CrossRefGoogle Scholar
  97. Stich K, Eidenberger T, Wurst F, Forkmann G (1992) Enzymatic conversion of dihydroflavonols to flavan-3,4-diols using flower extracts of Dianthus caryophyllus L. (carnation). Planta 187:103–108PubMedCrossRefPubMedCentralGoogle Scholar
  98. Takeda Y (1989) Horticultural history of carnation. In: Tsukamoto Y (ed) The grand dictionary of horticulture, vol 1. Shogakukan, Tokyo, pp 485–491. (In Japanese)Google Scholar
  99. Tanaka Y, Tsuda S, Kusumi T (1998) Metabolic engineering to modify flower color. Plant Cell Physiol 39:1119–1226CrossRefGoogle Scholar
  100. Tanase K, Onozaki T, Satoh S, Shibata M, Ichimura K (2008) Differential expression levels of ethylene biosynthetic pathway genes during senescence of long-lived carnation cultivars. Postharvest Biol Technol 47:210–217CrossRefGoogle Scholar
  101. Tanase K, Nishitani C, Hirakawa H, Isobe S, Tabata S, Ohmiya A, Onozaki T (2012) Transcriptome analysis of carnation (Dianthus caryophyllus L.) based on next-generation sequencing technology. BMC Genomics 13:292PubMedPubMedCentralCrossRefGoogle Scholar
  102. Thomas WD Jr (1954) The reaction of several carnation varieties to bacterial wilt. Phytopathology 44:713–715Google Scholar
  103. Tsuchiya Y, Minakami T, Kagito T (1965) Bacterial wilt of carnation. Ann Phytopathol Soc Jpn 30(5):268. (In Japanese)Google Scholar
  104. Tutin TG (1964) Dianthus L. In: Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA (eds) Flora Europaea, vol 1. Cambridge University Press, Cambridge, pp 188–204Google Scholar
  105. Uematsu S, Hosoya M, Sekiyama K (1991) Reaction of 126 commercial carnation varieties to Pseudomonas caryophylli. Proc Kanto-Tosan Plant Prot Soc 38:107–110. (In Japanese with English abstract)Google Scholar
  106. Ushio A, Onozaki T, Shibata M (2002) Estimation of polyploidy levels in Dianthus germplasms by flow cytometry. Bull Natl Inst Flor Sci 2:21–26. (In Japanese with English abstract)Google Scholar
  107. Vainstein A, Hillel J, Lavi U, Tzuri G (1991) Assessment of genetic relatedness in carnation by DNA fingerprint analysis. Euphytica 56:225–229CrossRefGoogle Scholar
  108. Veen H (1979) Effects of silver on ethylene synthesis and action in cut carnations. Planta 145:467–470PubMedCrossRefPubMedCentralGoogle Scholar
  109. Woltering EJ, van Doorn WG (1988) Role of ethylene in senescence of petals  — morphological and taxonomical relationships. J Exp Bot 39:1605–1616CrossRefGoogle Scholar
  110. Yagi M, Onozaki T, Taneya M, Watanabe H, Yoshimura T, Yoshinari T, Ochiai Y, Shibata M (2006) Construction of a genetic linkage map for the carnation by using RAPD and SSR markers and mapping quantitative trait loci (QTL) for resistance to bacterial wilt caused by Burkholderia caryophylli. J Jpn Soc Hortic Sci 75:166–172CrossRefGoogle Scholar
  111. Yagi M, Fujita Y, Yoshimura T, Onozaki T (2007) Comprehensive estimation of polyploidy level in carnation cultivars by flow cytometry. Bull Natl Inst Flor Sci 7:9–16. (In Japanese with English abstract)Google Scholar
  112. Yagi M, Onozaki T, Ikeda H, Tanikawa N, Shibata M, Yamaguchi T, Tanase K, Sumitomo K, Amano M (2010) Breeding process and characteristics of carnation ‘‘Karen Rouge’’ with resistance to bacterial wilt. Bull Natl Inst Flor Sci 10:1–10. (In Japanese with English abstract)Google Scholar
  113. Yagi M, Kimura T, Yamamoto T, Isobe S, Tabata S, Onozaki T (2012a) QTL analysis for resistance to bacterial wilt (Burkholderia caryophylli) in carnation (Dianthus caryophyllus) using an SSR-based genetic linkage map. Mol Breed 30:495–509CrossRefGoogle Scholar
  114. Yagi M, Yamamoto T, Kimura T, Isobe S, Tabata S, Onozaki T (2012b) QTL analysis for flower vase life in carnation. In: Book of abstracts – 24th International Eucarpia Symposium – Section ornamentals 129Google Scholar
  115. Yagi M, Yamamoto T, Isobe S, Hirakawa H, Tabata S, Tanase K, Yamaguchi H, Onozaki T (2013) Construction of a reference genetic linkage map for carnation (Dianthus caryophyllus L.). BMC Genomics 14:734PubMedPubMedCentralCrossRefGoogle Scholar
  116. Yagi M, Kosugi S, Hirakawa H, Ohmiya A, Tanase K, Harada T, Kishimoto K, Nakayama M, Ichimura K, Onozaki T, Yamaguchi H, Sasaki N, Miyahara T, Nishizaki Y, Ozeki Y, Nakamura N, Suzuki T, Tanaka Y, Sato S, Shirasawa K, Isobe S, Miyamura Y, Watanabe A, Nakayama S, Kishida Y, Kohara M, Tabata S (2014a) Sequence analysis of the genome of carnation (Dianthus caryophyllus L.). DNA Res 21:231–241CrossRefPubMedGoogle Scholar
  117. Yagi M, Yamamoto T, Isobe S, Tabata S, Hirakawa H, Yamaguchi H, Tanase K, Onozaki T (2014b) Identification of tightly linked SSR markers for flower type in carnation (Dianthus caryophyllus L.). Euphytica 198:175–183CrossRefGoogle Scholar
  118. Yagi M, Shirasawa K, Waki T, Kume T, Isobe S, Tanase K, Yamaguchi H (2017a) Construction of an SSR and RAD marker-based genetic linkage map for carnation (Dianthus caryophyllus L.). Plant Mol Biol Rep 35:110–117CrossRefGoogle Scholar
  119. Yagi M, Shirasawa K, Isobe S, Tanase K, Yamaguchi H (2017b) QTL analysis for flower vase life in carnation breeding line 806-46b. Hortic Res (Japan) 16(Suppl. 2):531. (In Japanese)Google Scholar
  120. Yamaguchi T (1994) Carnation. In: Konishi K, Iwahori S, Kitagawa H, Yakuwa T (eds) Horticulture in Japan. Asakura Publishing Co. Ltd., Tokyo, pp 139–144Google Scholar
  121. Yamaguchi T, Himeno M, Onozaki T, Shibata M (1990) Exploration and collection of wild Dianthus species in the south-western region in Japan. Annu Rep Explor Introd Plant Genet Resour 6:73–82. (In Japanese with English abstract)Google Scholar
  122. Yoshida H, Akimoto H, Yamaguchi M, Shibata M, Habu Y, Iida S, Ozeki Y (2004) Alteration of methylation profiles in distinct cell lineages of the layers during vegetative propagation in carnation (Dianthus caryophyllus). Euphytica 135:247–253CrossRefGoogle Scholar
  123. Yoshimoto Y, Higeta D, Ito Y, Yoshida H, Hasebe M, Ozeki Y (2000) Isolation and characterization of a cDNA for phenylalanine ammonia-lyase (PAL) from Dianthus caryophyllus (carnation). Plant Biotechnol 17:325–329CrossRefGoogle Scholar
  124. Zhou X, Gui M, Zhao D, Chen M, Ju S, Li S, Lu Z, Mo X, Wang J (2013) Study on reproductive barriers in 4x-2x crosses in Dianthus caryophyllus L. Euphytica 189:471–483CrossRefGoogle Scholar
  125. Zhou X, Su Y, Yang X, Zhang Y, Li S, Gui M, Wang J (2017) The biological characters and polyploidy of progenies in hybridization in 4x-2x crosses in Dianthus caryophyllus. Euphytica 213:118CrossRefGoogle Scholar
  126. Zuker A, Tzfira T, Vainstein A (1998) Genetic engineering for cut-flower improvement. Biotechnol Adv 16:33–79PubMedCrossRefGoogle Scholar
  127. Zuker A, Tzfira T, Ben-Meir H, Ovadis M, Shklarman E, Itzhaki H, Forkmann G, Martens S, Neta-Sharir I, Weiss D, Vainstein A (2002) Modification of flower color and fragrance by antisense suppression of the flavanone 3-hydroxylase gene. Mol Breed 9:33–41CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Vegetable and Floriculture Science, NARO (NIVFS)TsukubaJapan

Personalised recommendations