• Jaap Spaargaren
  • Geert van GeestEmail author
Part of the Handbook of Plant Breeding book series (HBPB, volume 11)


Cultivated chrysanthemums are complex hybrids with different backgrounds. They originate from multiple crosses between varying wild species, occurring in East Asia. Inheritance is hexasomic according to SNP analysis which stimulates variability. The first protomums emerged some 1600 years ago in the primary gene center, situated in China. They have spread into other Asian countries in the following centuries, only from 1789 on into Western countries. After rose, chrysanthemum occupies the second place in flower trade.

Wild species represent precious resources for breeding; many of them are discussed in this article. Linnaeus possessed as first in Europe, two Herbarium specimens of C. indicum. In 1999 the International Botanical Congress sanctioned the proposal to conserve the generic name Chrysanthemum L. for the group of cultivated chrysanthemums, with Chrysanthemum indicum L. of the Linnaean Herbarium, as lectotype. The combination Chrysanthemum and the specific epithet morifolium for cultivated types was proposed as first by De Ramatuelle in 1792 and is according to the rules of the International Code of Nomenclature of algae, fungi, and plants (ICN) the preferred legitimate choice. Several wild Chrysanthemum species are resources for resistances to pests and fungi and special chemical compounds and tolerances to cold, warmth, salt, and drought. Various successful experiments have been performed and are discussed. Some species however are also host plants for white rust.

Techniques for breeding and selection are discussed, including the development of DNA markers associated with traits of interest, like the use of SNPs and CRISPR/Cas9. Ultimately, this will lead to integrated linkage maps, required to identify loci associated with a trait of interest.


Chrysanthemum Breeding DNA markers Polyploidy Lectotypification Anthemideae Hexasomic inheritance Intergeneric Interspecific Infraspecific Postharvest Strigolactone Mutation Disease resistance Postharvest 


  1. Abd El-Twab MH, Kondo K (2001a) Molecular cytogenetic identification of the parental genomes in the intergeneric hybrid between Leucanthemella linearis and Nipponanthemum nipponicum during meiosis and mitosis. Caryologia 54:109–114CrossRefGoogle Scholar
  2. Abd El-Twab MH, Kondo K (2001b) Genome territories of Dendranthema horaimontana in mitotic nuclei of F1 hybrid between Dendranthema horaimontana and Tanacetum parthenium. Chromosome Sci 5:63–71Google Scholar
  3. Abd El-Twab MH, Kondo K (2006) Fluorescence in situ hybridization and genomic in situ hybridization to identify the parental genomes in the intergeneric hybrid between Chrysanthemum japonicum and Nipponanthemum nipponicum. Chromosome Bot 1:7–11CrossRefGoogle Scholar
  4. Abd El-Twab MH, Kondo K (2007a) FISH physical mapping of 5 s rDNA and telomere sequence repeats identified a peculiar chromosome mapping and mutation in Leuchanthemella linearis and Nipponanthemum nipponicum in Chrysanthemum sensu lato. Chromosome Bot 2:11–17CrossRefGoogle Scholar
  5. Abd El-Twab MH, Kondo K (2007b) Identification of parental chromosomes, intra-chromosomal changes and relationship of the artificial intergeneric hybrid between Chrysanthemum horaimontanum and Tanacetum vulgare by single color and simultaneous bicolor of FISH and GISH. Chromosome Bot 2:113–119CrossRefGoogle Scholar
  6. AIPH (2014) International statistics flowers and plants 2014, Reading, UKGoogle Scholar
  7. Anderson NO (2006) Chrysanthemum. Dendranthema grandiflora Tzvelev. In: Anderson NO (ed) Flower breeding and genetics: issues, challenges, and opportunities for the 21st century. Springer, Dordrecht, pp 389–437CrossRefGoogle Scholar
  8. Anderson NO (ed) (2007) Flower breeding and genetics. Springer, Dordrecht. With chapter on chrysanthemum by AndersonGoogle Scholar
  9. Anderson NO, Ascher PD (2001) Selection of day-neutral, heat-delay-insensitive Dendranthema x grandiflora genotypes. J Am Soc Hortic Sci 126(6):710–721Google Scholar
  10. Anderson NO, Ascher PD, Gesick E (2008) Winter-hardy Mammoth series garden chrysanthemums ‘Red Daisy’, ‘White Daisy’, and ‘Coral Daisy’ sporting a shrub plant habit. Hortscience 43(3):648–654Google Scholar
  11. Bino RJ, van Tuyl JM, de Vries JN (1990) Flow cytometric determination of relative nuclear DNA contents in bicellulate and tricellulate pollen. Ann Bot 65:3–8CrossRefGoogle Scholar
  12. Chen J-Y (2004) Ornamental plants. Webarticle on bio-diversity and resources of National CBD and Biosafety Office, ChinaGoogle Scholar
  13. Chen F, Chen P, Li H (1996) Genome analysis and their phylogenetic relationships of several wild species of Dendranthema in China. Acta Hortic Sin 23:67–72Google Scholar
  14. Chen J-Y, Wang CY, Zhao HE, Zhou J (2012) The origin of garden Chrysanthemum, BeijingGoogle Scholar
  15. Cheng X, Chen S, Chen F, Fang W, She L (2009) Interspecific hybrids between Dendranthema morifolium (Ramat.) Kitamura and D. nankingense (Nakai) Tzvel. achieved using ovary rescue and their cold tolerance characteristics. Euphytica 172:101–108CrossRefGoogle Scholar
  16. Chong X, Zhang F, Wu Y, Yang X, Zhao N, Wang H, Guan Z, Fang W, Chen F (2016) A SNP-enabled assessment of genetic diversity, evolutionary relationships and the identification of candidate genes in Chrysanthemum. Genome Biol Evol 8(12):3661–3671PubMedPubMedCentralGoogle Scholar
  17. Courtney-Gutterson N, Napoli C, Lemieux C, Morgan A, Firoozabady E, Robinson KE (1994) Modification of flower color in florist’s chrysanthemum: production of a white-flowering variety through molecular genetics. Biotechnology 12(3):268–271PubMedCrossRefPubMedCentralGoogle Scholar
  18. Cumming A (1939) Hardy chrysanthemums. Whittlesey House, New YorkGoogle Scholar
  19. Dai SL, Zhong Y, Zhang XY (1995) Study on numerical taxonomy of some Chinese species of Dendranthema (DC) Des Moul. J Beijing For Univ 17(4):9-14–9-15Google Scholar
  20. Dai SL, Chen J-Y, Li W-B (1998) Application of RAPD analysis in the study on the origin of Chinese cultivated chrysanthemum. Acta Bot Sin 11:1053–1059Google Scholar
  21. Dai SL, Wang WK, Xu YX (2005) Phylogenetic relationship of Dendranthema (DC.) Des Moul. revealed by fluorescent in situ hybridization. J Integr Plant Biol 7:783–e791CrossRefGoogle Scholar
  22. De Backer M (2012) Characterization and detection of Puccinia horiana on chrysanthemum for resistance breeding and sustainable control. Thesis, Ghent UniversityGoogle Scholar
  23. De Backer M, Alaei H, Van Bockstaele E, Roldan-Ruiz I, Van der Lee T, Maes M, Heungens K (2011) Identification and characterization of pathotypes in Puccinia horiana, a rust pathogen of Chrysanthemum x morifolium. Eur J Plant Pathol 130:325–338CrossRefGoogle Scholar
  24. De Backer M, Bonants P, Pedley K, Maes M, Roldán-Ruiz I, Van Bockstaele E, Van der Lee T, Heungens K (2013) Genetic relationships in an international collection of Puccinia horiana isolates based on newly identified molecular markers and demonstration of recombination. Phytopathology 103(11):1169–1179PubMedCrossRefPubMedCentralGoogle Scholar
  25. De Jager CM, Butôt RPT, Klinkhamer PGL, van der Meyden E (1996) The role of primary and secondary metabolites in chrysanthemum resistance to Franklienella occidentalis. J Chem Ecol 22:1987–1999PubMedCrossRefPubMedCentralGoogle Scholar
  26. De Jong J (1984) Genetic analysis in Chrysanthemum morifolium. I. Flowering time and flower number at low and optimum temperature. Euphytica 33:455–463CrossRefGoogle Scholar
  27. De Jong J, Rademaker W (1986) The reaction of Chrysanthemum cultivars to Puccinia horiana and the inheritance of resistance. Euphytica 35:945–952CrossRefGoogle Scholar
  28. De Jong J, Rademaker W (1989) Interspecific hybrids between two Chrysanthemum species. Hortscience 24(2):370–372Google Scholar
  29. De Jong J, Rademaker W (1991) Life history studies of the leafminer Liriomyza trifolii on susceptible and resistent cultivars of Dendranthema grandiflora. Euphytica 56:47–53CrossRefGoogle Scholar
  30. De Jong J, van de Vrie M (1987) Components of resistance to Liriomyza trifolii in Chrysanthemum morifolium and Chrysanthemum pacificum. Euphytica 36:719–724CrossRefGoogle Scholar
  31. Deng Y, Chen S, Chen F, Cheng X, Zhang F (2010a) The embryo rescue derived intergeneric hybrid between chrysanthemum and Ajania przewalskii shows enhanced cold tolerance. Plant Cell Rep 30(12):2177–2186CrossRefGoogle Scholar
  32. Deng Y, Chen S, Lu A, Chen F, Jang F, Guan Z, Teng N (2010b) Production and characterisation of the intergeneric hybrids between Chrysanthemum morifolium and Artemisia vulgaris exhibiting enhanced resistance to Chrysanthemum aphid (Macrosiphoniella sanbourni). Planta 231:693–703PubMedCrossRefPubMedCentralGoogle Scholar
  33. Deng Y, Chen S, Chen F, Cheng X, Zhang F (2011) The embryo rescue derived intergeneric hybrid between chrysanthemum and Ajania przewalskii shows enhanced cold tolerance. Plant Cell Rep 30:2177–2186PubMedCrossRefPubMedCentralGoogle Scholar
  34. Deng YM, Jiang JF, Chen S, Teng N, Song A, Guan Z, Fang W, Chen F (2012) Combination of multiple resistance traits from wild relative species in Chrysanthemum via trigeneric hybridization. PLoS One 7(8):e44337PubMedPubMedCentralCrossRefGoogle Scholar
  35. Douzono M, Ikeda H (1998) All year round productivity of F1 and BC1 progenies between Dendranthema grandiflorum and D. shiwogiku. Acta Hortic 454:303–310CrossRefGoogle Scholar
  36. Dowrick GJ (1952) The chromosomes of Chrysanthemum, I: the species. Heredity 6:365–375CrossRefGoogle Scholar
  37. Dowrick GJ (1953) The chromosomes of Chrysanthemum, II:garden varieties. Heredity 7:59–72CrossRefGoogle Scholar
  38. Dowrick GJ, El-Bayoumi A (1966) The induction of mutations in Chrysanthemum using X- and gamma radiation. Euphytica 15:204–210CrossRefGoogle Scholar
  39. Drewlow LW, Ascher PD, Widmer RE (1973) Genetic studies of self incompatibility in the garden chrysanthemum, Chrysanthemum morifolium Ramat. Theor Appl Genet 43:1–5PubMedCrossRefGoogle Scholar
  40. Endo M, Inada I (1992) On the karyotypes of garden chrysanthemums, Chrysanthemum morifolium Ramat. J Jpn Soc Hortic Sci 61:413–420CrossRefGoogle Scholar
  41. Fan Q, Song A, Jiang J, Zhang T, Sun H, Wang Y et al (2016) CmWRKY1 enhances the dehydration tolerance of chrysanthemum through the regulation of ABA-associated genes. PLoS One 11:e015057210.1371Google Scholar
  42. Fournier J (1910) Les voyages de P. Blancard. Bulletin de la Société de Géographie de Marseille:72–88, 205–225Google Scholar
  43. Fukai S (2003) Dendranthema species as Chrysanthemum genetic resources. Acta Hortic 620:223–230CrossRefGoogle Scholar
  44. Fukai S, Zhang W, Goi M (2000) Cross compatibility between Chrysanthemum (Dendranthema grandiflorum) and Dendranthema species native to Japan. Acta Hortic 508:337–340CrossRefGoogle Scholar
  45. Furuta H, Shinoyama H, Nomura Y, Maeda M, Makara K (2004) Production of intergeneric somatic hybrids of chrysanthemum (Dendranthema grandiflorum Ramat.) and wormwood (Artemisia sieversiana J. F. Ehrh. ex. Willd) with rust ( Puccinia horiana Henning) resistance by electrofusion of protoplasts. Plant Sci 166(3):695–702CrossRefGoogle Scholar
  46. Genders R (1971) Pelham’s new gardening annual : new flowers, new vegetables, new ideas, The Gardening Book Club, Pelham, LondonGoogle Scholar
  47. Greger H (1977) Anthemideae, critical review. In: Heywood VH, Harborne JB (eds) The biology and chemistry of the compositae. Academic Press, LondonGoogle Scholar
  48. Gupta RC, Bala S, Sharma S, Kapoor M (2013) Cytomorphological studies in some species of Chrysanthemum L. (Asteraceae). Chromosome Bot 8(3):69–74CrossRefGoogle Scholar
  49. Hattori K (1992) Inheritance of Anthocyanin Pigmentation in Flower Color of Chrysanthemum. Japanese J Genet 67:253–258CrossRefGoogle Scholar
  50. Hoffman MHA (2005) List of names of perennials. Applied Plant Research, NetherlandsGoogle Scholar
  51. Hong G, Wu X, Liu Y, Xie F (2015) Intergeneric hybridization between Hippolytia kaschgarica (Krascheninnikov) Poljakov and Nipponanthemum nipponicum (Franch. ex Maxim.) Kitam. Genet Resour Crop Evol 62(2):255–263CrossRefGoogle Scholar
  52. Huang KC (1999) The pharmacology of Chinese herbs, second edn. CRC Press LLC, FloridaGoogle Scholar
  53. Huang D, Li X, Sun M, Zhang T, Pan H, Cheng T, Wang J, Zhan Q (2016) Identification and characterization of CYC-like genes in regulation of ray floret development in Chrysanthemum morifolium. Front Plant Sci 7:1633PubMedPubMedCentralGoogle Scholar
  54. Humphries CJ (1993) Lectotypification of Chrysanthemum indicum. In: Jarvis CE, Barrie FR, Allan DM, Reveal JL (eds) A list of Linnaean generic names and their types, Regnum Vegetabile, Koeltz scientific books, Oberreifenberg, Germany vol 127, p 33Google Scholar
  55. Ichikawa S, Yamakawa KY, Sekiguchi F, Tatsuno T (1970) Variation in somatic chromosome number found in radiation-induced mutants of Chrysanthemum morifolium Hemsl. cv. Yellow Delaware and Delaware. Radiat Bot 10:557–562CrossRefGoogle Scholar
  56. Ito T, Tada S, Sato S (1990) Aroma constituents of edible chrysanthemum. J Fac Agric Iwate Univ 20:35–42Google Scholar
  57. Jaffar AM, Song A, Faheem M, Chen S, Jiang J, Liu C et al (2016) Involvement of CmWRKY10 in drought tolerance of chrysanthemum through the ABA-signaling pathway. Int J Mol Sci 17(5):693PubMedCentralCrossRefGoogle Scholar
  58. Jarvis CE, Barrie FR, Allan DM, Reveal JL (1993) A list of Linnaean generic names and their types. Regnum Veg 127:1–100Google Scholar
  59. Jiang WZ, Henry IM, Lynagh PG, Comai L, Cahoon EB, Weeks DP (2017) Significant enhancement of fatty acid composition in seeds of the allohexaploid, Camelina sativa, using CRISPR/Cas9 gene editing. Plant Biotechnol J 15:648–657PubMedPubMedCentralCrossRefGoogle Scholar
  60. Kadereit JW, Jeffrey C (2007) The families and genera of vascular plants. In: Kubitzki K (ed) Flowering Plants Eudicots, Asterales, vol VIII. Springer, Berlin/Heidelberg/New YorkCrossRefGoogle Scholar
  61. Kielkiewicz M, van de Vrie M (1990) Within-leaf differences in nutritive value and defence mechanism in chrysanthemum to the two-spotted spider mite (Tetranychus urticae). Exp Appl Acarol 10:33–43CrossRefGoogle Scholar
  62. Kim JS, Oginuma K, Tobe H (2009) Syncyte formation in the microsporangium of Chrysanthemum (Asteraceae):a pathway to infraspecific polyploidy. J Plant Res 122:439–444PubMedCrossRefGoogle Scholar
  63. Kishi-Kaboshi M, Aida R, Sasaki K (2017) Generation of gene-edited Chrysanthemum morifolium using multicopy transgenes as targets and markers. Plant Cell Physiol 58(1):216–226PubMedPubMedCentralGoogle Scholar
  64. Kitamura S (1937) Compositae Japonicae. Memoirs of the College of Science, Kyoto Imperial University, Series B, Vol. XV, No. 3, Art 9:1–350Google Scholar
  65. Klie M, Menz I, Linde M, Debener T (2013) Lack of structure in the gene pool of the highly polyploid ornamental chrysanthemum. Mol Breed 32:339–348CrossRefGoogle Scholar
  66. Klie M, Schie S, Linde M, Debener T (2014) The type of ploidy of chrysanthemum is not black or white:a comparison of a molecular approach to published cytological methods. Front Plant Sci 5, 479:1–8Google Scholar
  67. Klie M, Menz I, Linde M, Debener T (2016) Strigolactone pathway genes and plant architecture: association analysis and QTL detection for horticultural traits in chrysanthemum. Mol Gen Genomics 291:957–969CrossRefGoogle Scholar
  68. Kondo K, Tanaka R, Hizume M, Kokubugata G, Hong D, Ge S, Yang Q (1998) Cytogenetic studies on wild Chrysanthemum sensu lato in China VI. Karyomorphological characters of five species of Ajania and each one species of Brachanthemum, Dendranthema, Elachanthemum, Phaeostigma and Tanacetum in highlands of Gansu, Qinghai and Sichuan Province. J Jpn Bot 73:128–136Google Scholar
  69. Kondo K, Abd El-Twab MH, Tanaka R (1999) Fluorescence in situ hybridization identifies reciprocal translocation of somatic chromosomes and origin of extra chromosome by an artificial, intergeneric hybrid between Chrysanthemum japonica × Tanacetum vulgare. Chromosome Sci 3:15–19Google Scholar
  70. Kondo K, Abd El-Twab MH, Idesawa R, Kimura S, Tanaka R (2003) Genome phylogenetics in Chrysanthemum sensu lato. In: Sharma AK, Sharma A (eds) Plant genome: biodiversity and evolution, Phanerogams, vol 1A. Science Publisher, Plymouth, pp 117–200Google Scholar
  71. Kos SP, Klinkhamer PGL, Leiss KA (2014) Cross-resistance of chrysanthemum to western flower thrips, celery leafminer, and two-spotted spider mite. Entomol Exp Appl 151(3):198–208CrossRefGoogle Scholar
  72. Langton FA (1980) Chimerical structure and carotenoid inheritance in Chrysanthemum morifolium Ramat. Euphytica 29:807–812CrossRefGoogle Scholar
  73. Langton FA (1989) Inheritance in Chrysanthemum morifolium Ramat. Heredity 62:419–423CrossRefGoogle Scholar
  74. Lawal OA, Ogunwande IA, Olorunloba OF, Opoku AR (2014) The essential oils of Chrysanthemum morifolium Ramat. from Nigeria. Am J Essent Oil Nat Prod 2(1):63–66Google Scholar
  75. Leiss K, Maltese F, Choi YH, Verpoorte R, Klinkhamer PGL (2009) Identification of Chlorogenic acid as a resistance factor for Thrips in Chrysanthemum. Plant Physiol 150:1567–1575PubMedPubMedCentralCrossRefGoogle Scholar
  76. Li J, Teng N, Chen F, Chen S, Sun C, Fang W (2009) Reproductive characteristics of Opisthopappus taihangensis (Y. Ling) C. Shih, an endangered Asteraceae species endemic to China. Sci Hortic 121:474–479CrossRefGoogle Scholar
  77. Li H, Chen S, Song A, Wang H, Fang W, Guan Z, Jiang J, Chen F (2014) RNA-Seq. derived identification of differential transcription in the chrysanthemum leaf following inoculation with Alternaria tenuissima. BMC Genomics 15:9–23PubMedPubMedCentralCrossRefGoogle Scholar
  78. Li P, Zhang F, Chen S, Jiang J, Wang H, Su J, Fang W, Guan Z, Chen F (2016) Genetic diversity, population structure and association analysis in cut chrysanthemum (Chrysanthemum morifolium Ramat.). Mol Gen Genomics 291(3):1117–1125CrossRefGoogle Scholar
  79. Liang J, Zhao L, Challis R, Leyser O (2010) Strigolactone regulation of shoot branching in chrysanthemum (Dendranthema grandiflorum). J Exp Bot 61:3069–3078PubMedPubMedCentralCrossRefGoogle Scholar
  80. Liang Z, Chen K, Li T, Zhang Y, Wang Y, Zhao Q, Liu J, Zhang H, Liu C, Ran Y, Gao C (2017) Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat Commun 8:14261PubMedPubMedCentralCrossRefGoogle Scholar
  81. Ling R, Shih Z (1983) Anthemideae, Flora Republicae Popularis Sinicae, vol 76 (1). Science Press, Beijing:73–74, 97–98Google Scholar
  82. Liu H, Sun M, Du D, Pan H, Cheng T, Wang J, Zhang Q, Gao Y (2016) Whole-transcriptome analysis of differentially expressed genes in the ray florets and disc florets of Chrysanthemum morifolium. BMC Genomics 17:389PubMedPubMedCentralCrossRefGoogle Scholar
  83. Ma YP, Chen MM, Wei JX, Zhao L, Liu PL, Dai SL, Wen J (2016) Origin of Chrysanthemum cultivars, evidence from nuclear low-copy LFY gene sequences. Biochem Syst Ecol 65:129–136CrossRefGoogle Scholar
  84. Miyake K, Imai Y (1935) A chimerical strain with variegated flowers in Chrysanthemum sinense. Zeitschr f ind Abst- u Vererbgsl 68:300–302Google Scholar
  85. Morineau C, Bellec Y, Tellier F, Gissot L, Kelemen Z, Nogué F, Faure J-D (2017) Selective gene dosage by CRISPR-Cas9 genome editing in hexaploid Camelina sativa. Plant Biotechnol J 15:729–739PubMedPubMedCentralCrossRefGoogle Scholar
  86. Needham J (1986) Science and civilisation in China. Botany, Vol. VI.1. Cambridge University Press, Cambridge, UKGoogle Scholar
  87. Nicolson DH (1999) Report of the General Committee:8. Proposal 1172 of 1998 accepted to conserve Chrysanthemum with a conserved type. This proposal by Trehane (1995) was accepted by the Committee for Spermatophyta in 1998, according to report 46 by Brummitt in Taxon 47:443–444Google Scholar
  88. Oberprieler C, Vogt R, Watson LE (2006) Tribe Anthemideae Cass. In: Kadereit JW, Jeffrey C (eds) The families and genera of vascular plants 8. Springer, Berlin, pp 342–374Google Scholar
  89. Ohashi H, Yonekura K (2004) New combinations in Chrysanthemum (Compositae-anthemideae) of Asia with a list of Japanese species. J Jpn Bot 79:186–195Google Scholar
  90. Ohmiya A, Kishimoto S, Aida R, Yoshioka S, Sumitomo K (2006) Carotenoid cleavage dioxygenase (CmCCD4a) contributes to white color formation in chrysanthemum petals. Plant Physiol 142:1193–1201PubMedPubMedCentralCrossRefGoogle Scholar
  91. Ohtsuka H, Inaba Z (2008) Intergeneric hybridization of marguerite (Argyranthemum frutescens) with annual chrysanthemum (Glebionis carinatum) and crown daisy (G. coronaria) using ovule culture. Plant Biotechnol 25:535–539CrossRefGoogle Scholar
  92. Park NY, Kwon JH (1997) Chemical composition of petals of Chrysanthemum spp. J Food Sci Nutr 2(4):304–309Google Scholar
  93. Park SK, Arens P, Esselink D, Lim JH, Shin HK (2015) Analysis of inheritance mode in chrysanthemum using EST-derived SSR markers. Sci Hortic 192:80–88CrossRefGoogle Scholar
  94. Punithalingam E (1968) Puccinia horiana. C MI Descriptions of Pathogenic Fungi and Bacteria No. 176. CAB International, Wallingford, UKGoogle Scholar
  95. Roxas NJL, Tashiro Y, Miyazaki S, Isshiki S, Takeshita A (1995) Meiosis and pollen fertility in Higo chrysanthemum (Dendranthema × grandiflorum (Ramat.) Kitam). J Jpn Soc Hortic Sci 64(1):161–168CrossRefGoogle Scholar
  96. Sasaki K, Mitsuda N, Nashima K, Kishimoto K, Katayose Y, Kanamori H, Ohmiya A (2017) Generation of expressed sequence tags for discovery of genes responsible for floral traits of Chrysanthemum morifolium by next-generation sequencing technology. BMC Genomics 18:683–696PubMedPubMedCentralCrossRefGoogle Scholar
  97. Shibata M, Amano M, Kawata J, Uda M (1988a) Breeding process and characteristics of Summer Queen, a spray chrysanthemum for summer production. Bull Nat Res Inst Veg Orn Plants Tea Ser A 2:245–255Google Scholar
  98. Shibata M, Kawata J, Amano M, Kameno T, Yamagashi M, Toyoda T, Yamaguchi T, Okimura M, Uda M (1988b) Breeding process and characteristics of Moonlight, an interspecific hybrid between Chrysanthemum morifolium and C. pacificum. Bull Nat Res Inst Veg Orn Plants Tea Ser A 2:257–277Google Scholar
  99. Shimotomai N (1933) Zur karyogenetik der Gattung Chrysanthemum. J.Sci. (Hiroshima Univ.) Ser.B. Div. 2. 2:1–98Google Scholar
  100. Shunying Z, Yang Y, Huaidong Y, Yue Y, Guolin Z (2005) Chemical composition and antimicrobial activity of the essential oils of Chrysanthemum indicum. J Ethnopharmacol 96(1–2):151–158PubMedCrossRefPubMedCentralGoogle Scholar
  101. Spaargaren JJ (2001) Supplemental lighting for greenhouse crops. Hortilux Schréder, P.L. Light SystemsGoogle Scholar
  102. Spaargaren JJ (2015) Origin and spreading of the cultivated chrysanthemum, Aalsmeer. ISBN:978-90-803929-2-2Google Scholar
  103. Storer JR, Elmore JS, van Embden HF (1993) Airborne volatiles from the foliage of three cultivars of autumn flowering Chrysanthemum. Phytochemistry 34(6):1489–1492CrossRefGoogle Scholar
  104. Su J, Zhang F, Li P, Guan Z, Fang W, Chen F (2016) Genetic variation and association mapping of waterlogging tolerance in chrysanthemum. Planta 244:1241–1252PubMedCrossRefPubMedCentralGoogle Scholar
  105. Sun CQ, Chen FD, Fang WM, Liu ZL, Teng NJ (2010) Advances in research on distant hybridization of Chrysanthemum. Sci Agric Sin 43(12):2508–2517Google Scholar
  106. Sun H, Zhang F, Chen S, Guan Z, Jiang J, Fang W, Chen F (2015) Effects of aphid herbivory on volatile organic compounds of Artemisia annua and Chrysanthemum morifolium. Biochem Syst Ecol 60:225–233CrossRefGoogle Scholar
  107. Tanaka R (1959a) On the speciation and karyotype in diploid and tetraploid species of Chrysanthemum. II. Karyotype in Chrysanthemum makinoi (2n=18). J Sc Hiroshima Univ Series B Div 2 (Botany) 9:17–30Google Scholar
  108. Tanaka R (1959b) On the speciation and karyotype in diploid and tetraploid species of Chrysanthemum. IV. Karyotype in Chrysanthemum wakasaense (2n=36). J Sc Hiroshima Univ Series B Div 2 (Botany) 9:41–57Google Scholar
  109. Tanaka R, Shimotomai N (1961) Cytogenetic studies on the F1 hybrid of Chrysanthemum lineare × Ch. Nipponicum. Zeitschrift fűr Vererbungslehre 92:190–196Google Scholar
  110. Tanaka R, Shimotomai N (1968) A cytogenetic study on the F1 hybrid of Chrysanthemum makinoi × Ch. vulgare (now Tanacetum vulgare). Cytologia 33:241–245CrossRefGoogle Scholar
  111. Tang F, Chen F, Chen S, Teng N, Fang W (2009) Intergeneric hybridization and relationship of genera within the tribe Anthemideae Cass. (I. Dendranthema crassum (Kitam.) Kitam. x Crossostephium chinense (L.) Makino). Euphytica 169(1):133–140CrossRefGoogle Scholar
  112. Tang FP, Chen SM, Deng YM, Chen FD (2010) Intergeneric hybridization between Dendranthema crassum and Ajania myriantha. Acta Hortic 855:267–272CrossRefGoogle Scholar
  113. Tatarenko E, Kondo K, Smirnov SV, Kucev M, Yang Q, Hong D, Ge S, Zhang D, Zhou S, Damdinsuren O, Abd El-Twab MH, Hizume M, Cao R, Vallès J, Motohashi T, Masuda Y (2011) Chromosome relationships among the Chrysanthemum fruticulosum complex. Chromosome Bot 6(3):61–66CrossRefGoogle Scholar
  114. Teixeira da Silva JA (2004) Mining the essential oils of the Anthemideae. Afr J Biotechnol 3(12):706–720Google Scholar
  115. Trehane P (1995) Proposal to conserve Chrysanthemum L. with a conserved type (Compositae). Taxon 44:439–441CrossRefGoogle Scholar
  116. Tsao R, Attygalle AB, Schroeder FC, Marvin CH, McGarvey BD (2003) Isobutylamides of unsaturated fatty acids from Chrysanthemum morifolium associated with host-plant resistance against the western flower thrips. J Nat Prod 66(9):1229–1231PubMedCrossRefPubMedCentralGoogle Scholar
  117. Tsao R, Marvin CH et al (2005) Evidence for an isobutylamide associated with host plant resistance to western flower thrips, Frankliniella occidentalis, in chrysanthemum. J Chem Ecol 31(1):103–110PubMedCrossRefPubMedCentralGoogle Scholar
  118. Uchio Y, Tomosue K, Nakayama M, Yamammura A, Waki T (1981) Constituents of the essential oil from three tetraploid species of chrysanthemum. Phytochemistry 20(12):2691–2693CrossRefGoogle Scholar
  119. van Geest G (2017) Disentangling hexaploid genetics. Towards DNA-informed breeding for postharvest performance in chrysanthemum. Thesis, WUR, WageningenGoogle Scholar
  120. van Geest G, Bourke PM, Voorrips RE et al (2017a) An ultra-dense integrated linkage map for hexaploid chrysanthemum enables multi-allelic QTL analysis. Theor Appl Genet 130:2527PubMedPubMedCentralCrossRefGoogle Scholar
  121. van Geest G, Post A, Arens P, Visser RGF, van Meeteren U (2017b) Breeding for postharvest performance in chrysanthemum by selection against storage-induced degreening of disk florets. Postharvest Biol Technol 124:45–53CrossRefGoogle Scholar
  122. van Geest G, Voorrips RE, Esselink D, Post A, Visser RGF, Arens P (2017c) Conclusive evidence for hexasomic inheritance in chrysanthemum based on analysis of a 183 k SNP array. BMC Genomics 18(1):1471–2164Google Scholar
  123. Van Tuyl JM, Lim K-B (2003) Interspecific hybridisation and polyploidisation as tools in ornamental plant breeding. Acta Hort. 612. ISHS 2003:13–22Google Scholar
  124. Veilleux RE (1985) Diploid and polyploidy gametes in crop plants:mechanisms of formation and utilization in plant breeding. Plant Breed Rev 3:253–288Google Scholar
  125. Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35(4):753–759PubMedCrossRefPubMedCentralGoogle Scholar
  126. Wang C (2005) Chrysanthemum genetic diversity of germplasm evaluation and molecular genetic evolution of CDS on molecular markers. Doctoral dissertation of Beijing Forestry University, ChinaGoogle Scholar
  127. Wang J, Zhu F, Zhou XM, Niu CY, Lei CL (2006) Repellent and fumigant activity oil from Artemisia vulgaris to Tribolium casteum (Herbst) (Coleoptera:Tenebrionidae). J Stores Products Res 42(3):339–347CrossRefGoogle Scholar
  128. Wang H, Jiang J, Chen S, Fang W, Guan Z, Liao Y, Chen F (2013) Rapid genomic and transcriptomic alterations induced by wide hybridization: Chrysanthemum nankingense × Tanacetum vulgare and C. crassum × Crossostephium chinense (Asteraceae). BMC Genomics 14:902PubMedPubMedCentralCrossRefGoogle Scholar
  129. Wang C, Zhang F, Guan Z, Chen S, Jiang J, Fang W, Chen F (2014a) Inheritance and molecular markers for aphid (Macrosiphoniella sanborni) resistance in chrysanthemum (Chrysanthemum morifolium Ramat.). Sci Hortic 180:220–226CrossRefGoogle Scholar
  130. Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu J (2014b) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32:947–951PubMedCrossRefPubMedCentralGoogle Scholar
  131. Wang K, Wu YH, Tian XQ, Bai ZY, Liang QY, Liu QL, Pan YZ, Zhang L, Jiang BB (2017) Overexpression of DgWRKY4 enhances salt tolerance in Chrysanthemum seedlings. Front Plant Sci 13.
  132. Widmer RE (1978) Chrysanthemum named Minngopher. U.S. Plant Patent, No. 4,327. U.S. Patent Office, Washington, DCGoogle Scholar
  133. Wu X, Hong G, Liu Y, Xie F, Liu Z, Liu W, Zhao H (2015) Possible intergeneric hybridization between Cancrinia maximowiczii C. Winkl. and Chrysanthemum naktongense (Nakai) Tzvel. × C. ×morifolium Ramat. ‘Aifen’. Genet Resour Crop Evol 62(2):293–301CrossRefGoogle Scholar
  134. Xu Y, Gao S, Yang Y, Huang M, Cheng L, Wei Q, Fei Z, Gao J, Hong B (2013) Transcriptome sequencing and whole genome expression profiling of chrysanthemum under dehydration stress. BMC Genomics 14(1):1–15CrossRefGoogle Scholar
  135. Yamaguchi H, Shimizu A, Degi K, Morishita T (2008) Effects of dose and dose rate of gamma ray irradiation on mutation induction and nuclear DNA content in chrysanthemum. Breed Sci 58:331–335CrossRefGoogle Scholar
  136. Yang W, Glover BJ, Rao GY, Yang J (2006) Molecular evidence for multiple polyploidization and lineage recombination in the Chrysanthemum indicum polyploid complex (Asteraceae). New Phytol 171(4):875–886PubMedCrossRefGoogle Scholar
  137. Yang D, Hu X, Liu Z, Zhao H (2010) Intergeneric hybridizations between Opisthopappus taihangensis and Chrysanthemum lavandulifolium. Sci Hortic 125:718–723CrossRefGoogle Scholar
  138. Yoshioka S, Aida R, Yamamizo C et al (2012) The carotenoid cleavage dioxygenase4 (CmCCD4a) gene family encodes a key regulator of petal color mutation in chrysanthemum. Euphytica 184:377CrossRefGoogle Scholar
  139. Zeven AC, Zhukovsky PM (1975) Dictionary of cultivated plants and their centres of diversity. Excluding ornamentals, forest trees and lower plants. Pudoc, WageningenGoogle Scholar
  140. Zhang F, Chen S, Chen F, Fang W, Li F (2010) A preliminary genetic linkage map of chrysanthemum (Chrysanthemum morifolium) cultivars using RAPD, ISSR and AFLP markers. Sci Hortic 125:422–428CrossRefGoogle Scholar
  141. Zhang F, Chen S, Chen F, Fang W, Chen Y, Li F (2011a) SRAP-based mapping and QTL detection for inflorescence-related traits in chrysanthemum (Dendranthema morifolium). Mol Breed 27:11–23CrossRefGoogle Scholar
  142. Zhang F, Chen S, Chen F, Fang W, Deng Y, Chang Q, Liu P (2011b) Genetic analysis and associated SRAP markers for flowering traits of chrysanthemum (Chrysanthemum morifolium). Euphytica 177:15–24CrossRefGoogle Scholar
  143. Zhang F, Jiang J, Chen S, Chen F, Fang W (2012a) Detection of quantitative trait loci for leaf traits in chrysanthemum. J Hortic Sci Biotechnol 87:613–618CrossRefGoogle Scholar
  144. Zhang F, Jiang J, Chen S, Chen F, Fang W (2012b) Mapping single-locus and epistatic quantitative trait loci for plant architectural traits in chrysanthemum. Mol Breed 30:1027–1036CrossRefGoogle Scholar
  145. Zhang F, Chen SM, Jiang JF, Guan ZY, Fang WM, Chen FD (2013a) Genetic mapping of quantitative trait loci underlying flowering time in chrysanthemum (Chrysanthemum morifolium). PLoS One 8(12):e83023PubMedPubMedCentralCrossRefGoogle Scholar
  146. Zhang Y, Wang C, Ma HZ, Dai SL (2013b) Assessing the genetic diversity of chrysanthemum cultivars with microsatellites. J Am Soc Hortic Sci 138(6):479–486Google Scholar
  147. Zhang Y, Zhu M, Dai S (2013c) Analysis of karyotype diversity of 40 Chinese chrysanthemum cultivars. J Syst Evol 51:335–352CrossRefGoogle Scholar
  148. Zhao HE, Liu ZH, Hu X, Yin JL, Li W, Rao GY, Zhang XH, Huang CL, Anderson N, Zhang QX, Chen JY (2009) Chrysanthemum genetic resources and related genera of Chrysanthemum collected in China. Genet Resour Crop Evol 56:937CrossRefGoogle Scholar
  149. Zhao HB, Chen F, Chen S, Wu G, Guo W (2010) Molecular phylogeny of Chrysanthemum, Ajania and its allies (Anthemideae, Asteraceae) as inferred from nuclear ribosomal ITS and chloroplast trnL-F IGS sequences. Plant Syst Evol 284:153–169CrossRefGoogle Scholar
  150. Zhao HB, Chen F, Tang F, Jiang J, Li C, Miao H, Chen F, Fang W, Guo W (2012) Morphological characteristics and chromosome behaviour in F1, F2 and BC1 progenies between Chrysanthemum × morifolium and Ajania pacifica. Russ J Genet 48(8):808–818CrossRefGoogle Scholar
  151. Zheng Y, Shen J, An YM, Zhang JQ, Rao GY (2013) Intergeneric hybridization between Elachanthemum intricatum (Franch.) Ling et Ling and Opisthopappus taihangensis (Y. Ling) C. Shih. Genet Resour Crop Evol 60(2):473–482CrossRefGoogle Scholar
  152. Zhu WY, Zhang ZF, Chen SM, Xu L, Wang L, Wang H, Qi X, Li H, Chen F (2014) Intergeneric hybrids between Chrysanthemum morifolium ‘Nannongxiaoli’ and Artemisia vulgaris ‘Variegata’ show enhanced resistance against both aphids and Alternaria leaf spot. Euphytica 197(3):399–408CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.IngenieursbureauAalsmeerThe Netherlands
  2. 2.Deliflor Chrysanten B.VMaasdijkThe Netherlands

Personalised recommendations