Advertisement

Azalea

  • Jan De Riek
  • Ellen De Keyser
  • Evelien Calsyn
  • Tom Eeckhaut
  • Johan Van Huylenbroeck
  • Nobuo Kobayashi
Chapter
Part of the Handbook of Plant Breeding book series (HBPB, volume 11)

Abstract

Belgian pot azaleas are presumed to have been created from a relatively narrow genetic basis of collector’s material introduced into botanical gardens and private collections from Eastern Asia. Both Japanese and Chinese traditional varieties, some of them with a cultivation history of more than 400 years, were at the basis. The history of Belgian pot azalea started about 200 or more years ago; the first Belgium-bred and commercially released cultivar ‘Madame Van der Cruyssen’ was introduced in 1867. Historical research supported by phylogenetic and molecular marker studies revealed a genetic continuum must be accepted which spans many species of the Tsutsusi subgenus. This continuum has been exploited in the past by both Asian and European breeders and still proves to be a good source for genetic variation and interesting forms. Until today, major improvements have been obtained by conventional crossbreeding and selection of spontaneous bud sports. Some of the historically major breakthroughs in breeding of pot azalea are (1) cultivars that could easily grow on their own roots, eliminating the need for grafting; (2) early (fall) flowering cultivars, particularly ‘Hellmut Vogel’; and (3) longer shelf life. Breeding goals have traditionally been driven by mass production aims and consumer wishes. From small to large double flowers and from colored to white flowers, the consumers are always in for something new, and their desires can change very quickly. Today, flower characteristics are still the most important criteria for selection. In addition, leaf shape and color, shininess of leaf surface, presence or absence of hairs, growth vigor, plant architecture, earliness of flowering, and postproduction quality (longevity of flowering, absence of brown bud scales) are other important traits for breeding. More recently, breeding for biotic resistance gained attention. Especially resistance against some fungal diseases has become a major selection criterion. Furthermore, candidate cultivars in an early stage are already being tested under commercial growing conditions to evaluate their reaction to specific culture practices as pinching, application of plant growth regulators, and reaction time during forcing.

Keywords

Rhododendron simsii Pot azalea Breeding Classification Biotic stress Flower color Plant architecture Genetic relationships 

References

  1. Bean WJ (1980) Trees and shrubs, hardy in the British Isles, vol. III. John Murray, LondonGoogle Scholar
  2. Bowers C (1936) Rhododendrons and azaleas. The MacMillan Company, New York. 525ppGoogle Scholar
  3. Brown CL, McAlpine RG, Kormanik PP (1967) Apical dominance and form in woody plants: a reappraisal. Am J Bot 54:153–162CrossRefGoogle Scholar
  4. Chamberlain DF, Rae SJ (1990) A revision of Rhododendron IV subgenus Tsutsusi. Edinb J Bot 47:89–200CrossRefGoogle Scholar
  5. Chamberlain DF, Hyam G, Argent G, Fairweather G, Walter K (1996) The genus Rhododendron. Its classification & synonymy. Royal Botanical Garden, EdinburghGoogle Scholar
  6. Cheon KS, Nakatsuka A, Kobayashi N (2016) Mutant PI/GLO homolog confers the hose-in-hose flower phenotype in Kurume azaleas. Hort J 85:380–387CrossRefGoogle Scholar
  7. Cheon KS, Nakatsuka A, Tasaki K, Kobayashi N (2017a) Floral morphology and MADS gene expression in double-flowered Japanese Evergreen azalea. Hort J 86:269–276CrossRefGoogle Scholar
  8. Cheon KS, Nakatsuka A, Gobara Y, Kobayashi N (2017b) Mutant RoPI-1 allele-based marker development for selection of the hose-in-hose flower phenotype in Rhododendron obtusum cultivars Euphytica. Hort J 213:1–8. https://doi.org/10.1007/s10681-016-1808-x CrossRefGoogle Scholar
  9. Christiaens A (2014) Factors affecting flower development and quality in Rhododendron simsii. PhD thesis, Ghent University, Ghent, Belgium, 145ppGoogle Scholar
  10. Cline MG (1991) Apical dominance. Bot Rev 57:318–358CrossRefGoogle Scholar
  11. Cox PA, Cox KNE (1995) Encyclopedia of Rhododendron hybrids. Batsford Ltd, LondonGoogle Scholar
  12. Cox PA, Cox KNE (1997) Encyclopedia of Rhododendron species. Glendoick Publishing, PerthGoogle Scholar
  13. Cullen J (1991) The logic of Rhododendron classification. Rhododendrons (1992). R Hortic Soc Lond 44:14–19Google Scholar
  14. De Keyser E, Pauwels E, Heungens K, De Riek J (2008) Development of supporting techniques for pot azalea (Rhododendron simsii hybrids) breeding focused on plant quality, disease resistance and enlargement of the assortment. Acta Hortic 766:361–366CrossRefGoogle Scholar
  15. De Keyser E, Shu QY, Van Bockstaele E, De Riek J (2010) Multipoint-likelihood maximization mapping on 4 segregating populations to achieve an integrated framework map for QTL analysis in pot azalea (Rhododendron simsii hybrids). BMC Mol Biol 11:1CrossRefPubMedPubMedCentralGoogle Scholar
  16. De Keyser E, Desmet L, Van Bockstaele E, De Riek J (2013a) How to perform RT-qPCR accurately in plant species? A case study on flower color gene expression in an azalea (Rhododendron simsii hybrids) mapping population. BMC Mol Biol 14:13CrossRefPubMedPubMedCentralGoogle Scholar
  17. De Keyser E, Lootens P, Van Bockstaele E, De Riek J (2013b) Image analysis for QTL mapping of flower color and leaf characteristics in pot azalea (Rhododendron simsii hybrids). Euphytica 189:445–460CrossRefGoogle Scholar
  18. De Loose R (1969) The flower pigments of the Belgian hybrids of Rhododendron simsii and other species and varieties from Rhododendron subseries obtusum. Phytochemistry 88:253–259CrossRefGoogle Scholar
  19. De Loose R (1979) Characterisation of Rhododendron simsii planch. Cultivars by flavonoid and isozyme markers. Sci Hortic 11:175–182CrossRefGoogle Scholar
  20. De Riek J, Dendauw J, Mertens M, De Loose M, Heursel J, Van Bockstaele E (1999) Validation of criteria for the selection of AFLP markers to assess the genetic variation of a breeders’ collection of evergreen azaleas. Theor Appl Genet 99:1155–1165CrossRefGoogle Scholar
  21. De Riek J, Scariot V, Eeckhaut T, De Keyser E, Kobayashi N, Handa T (2008) The potential of molecular analysis and interspecific hybridization for azalea phylogenetic research. In: Sharma AK, Sharma A (eds) Plant genome: biodiversity and evolution, vol. 1, part E: phanerogams – angiosperm. Science Publishers, Enfield, NHGoogle Scholar
  22. De Schepper S, Debergh P, Van Bockstaele E, De Loose M (2001a) Molecular characterisation of flower color genes in azalea sports (Rhododendron simsii hybrids). Acta Hortic 552:143–150CrossRefGoogle Scholar
  23. De Schepper S, Leus L, Mertens M, Debergh P, Van Bockstaele E, De Loose M (2001b) Somatic polyploidy and its consequences for flower coloration and flower morphology in azalea. Plant Cell Rep 20:583–590CrossRefGoogle Scholar
  24. De Schepper S, Debergh P, Van Bockstaele E, De Loose M, Gerats A, Depicker A (2003) Genetic and epigenetic aspects of somaclonal variation: flower color bud sports in azalea, a case study. S Afr J Bot 69:117–128CrossRefGoogle Scholar
  25. De Schepper S, Leus L, Eeckhaut T, Van Bockstaele E, Debergh P, De Loose M (2004) Somatic polyploid petals: regeneration offers new roads for breeding Belgian pot azaleas. Plant Cell Tissue Org Cult 76:183–188CrossRefGoogle Scholar
  26. Demasi S (2015) Iron deficiency tolerance in evergreen azaleas (Rhododendron spp.). PhD thesis, University Torino, Italy, 121ppGoogle Scholar
  27. Eeckhaut T (2003) Ploidy breeding and interspecific hybridization in Spathiphyllum and woody ornamentals. PhD thesis, Ghent University, Ghent, Belgium, 126ppGoogle Scholar
  28. Eeckhaut T, Van Huylenbroeck J, De Schepper S, Van Labeke MC (2006) Breeding for polyploidy in Belgian azalea (Rhododendron simsii hybrids). Acta Hortic 714:113–118CrossRefGoogle Scholar
  29. Galle F (1987) Azaleas. Timber Press, Portland, OregonGoogle Scholar
  30. Goetsch L, Eckert AJ, Hall BD, Hoot SB (2005) The molecular systematics of Rhododendron (Ericaceae): a phylogeny based upon RPB2 gene sequences. Syst Bot 30(3):616–626CrossRefGoogle Scholar
  31. Handa T, Eto J, Kita K, Kobayashi N (2002) Genetic diversity of Japanese wild evergreen azaleas in Kyusyu (south main island of Japan) characterized by AFLP. Acta Hortic 572:159–162CrossRefGoogle Scholar
  32. Heursel J (1999) Azalea’s: oorsprong, veredeling en cultivars. Tielt, LannooGoogle Scholar
  33. Heursel J, Horn W (1977) A hypothesis on the inheritance of flower colors and flavonoids in Rhododendron simsii planch. Zeitschrift für Pflanzenzüchtung 79:238–249Google Scholar
  34. Heursel J, Volckaert E (1980) Azaleateelt. Ministerie van Landbouw, Brussel, Belgium, 160pGoogle Scholar
  35. Heyting J (1970) Hybrids between elepidote and lepidote rhododendrons. Q Bull Am Rhodod Soc 24:97–98Google Scholar
  36. Horn W (2002) Breeding methods and breeding research. In: Vainstein A (ed) Breeding for ornamentals: classical and molecular approaches. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 47–84CrossRefGoogle Scholar
  37. Huang MR, Qiang HL (1984) Rhododendron. China Forestry Publishing House, Beijing, ChinaGoogle Scholar
  38. Irving E, Hebda R (1993) Concerning the origin and distribution of rhododendrons. J Am Rhodod Soc 47(3):139–162Google Scholar
  39. Ito I, Creech JL (1984) A brocade pillow: azaleas of old Japan. Weatherhill, New York and TokyoGoogle Scholar
  40. Kobayashi N (2013) Evaluation and application of evergreen azalea resources of Japan. Acta Hortic 990:213–219CrossRefGoogle Scholar
  41. Kobayashi N, Handa T, Yoshimura K, Tsumura Y, Arisumi K, Takayanagi K (2000) Evidence for introgressive hybridization based on chloroplast DNA polymorphisms and morphological variation in wild evergreen azalea populations in the Kirishima Mountains, Japan. Edinb J Bot 57:209–219CrossRefGoogle Scholar
  42. Kobayashi N, Handa T, Miyajima I, Arisumi K, Takayanagi K (2007) Introgressive hybridization between Rhododendron kiusianum and R. kaempferi (Ericaceae) in Kyushu, Japan based on chloroplast DNA markers. Edinb J Bot 64:283–293CrossRefGoogle Scholar
  43. Kobayashi N, Mizuta D, Nakatsuka A, Akabane M (2008) Attaining intersubgeneric hybrids in fragrant azalea breeding and the inheritance of organelle DNA. Euphytica 159:67–72CrossRefGoogle Scholar
  44. Kobayashi N, Ishihara M, Ohtani M, Cheon KS, Mizuta D, Tasaki K, Nakatsuka A (2010) Evaluation and application of the long-lasting flower trait (misome-sho) of azalea cultivars. Acta Hortic 855:165–168CrossRefGoogle Scholar
  45. Kron KA (1993) A revision of Rhododendron section Pentanthera. Edinb J Bot 50:249–363CrossRefGoogle Scholar
  46. Kron KA (1997) Phylogenetic relationships of Rhododendroideae (Ericaceae). Am J Bot 84:973–980CrossRefPubMedGoogle Scholar
  47. Kron K (2000) Evolutionary relationships of azaleas and rhododendrons. In: Jacobs R (ed) Jaarboek van de Belgische Dendrologische vereniging, Belgische Dendrologie Belge BDB, Bonheiden, Belgium, pp 30–40Google Scholar
  48. Kron KA (2002) Phylogenetic relationships and major clades of Rhododendron (Rhodoreae, Ericoideae, Ericaceae). In: Argent G, McFarlane M (eds) Rhododendrons in horticulture and science. Royal Botanic Garden, Edinburgh, pp 79–85Google Scholar
  49. Kron KA, Powell E (2009) Molecular systematics of Rhododendron subgenus Tsutsusi (Rhodoreae, Ericoideae, Ericaceae). Edinb J Bot 66(1):81–95CrossRefGoogle Scholar
  50. Kurashige Y, Mine M, Kobayashi N, Handa T, Takayanagi K, Yukawa T (1998) Investigation of sectional relationships in the genus Rhododendron (Ericaceae) based on matK sequences. J Jpn Bot 73:143–154Google Scholar
  51. Leach D (1961) Rhododendrons of the world. Charles Scribner’s Sons, New YorkGoogle Scholar
  52. Lee FP (1958) The azalea book. Van Nostrand Company Inc., Princeton, NJ. American Horticultural SocietyGoogle Scholar
  53. Li Y, Yan HF, Ge XJ (2012) Phylogeographic analysis and environmental niche modeling of widespread shrub Rhododendron simsii in China reveals multiple glacial refugia during the last glacial maximum. J Syst Evol 50:362–373CrossRefGoogle Scholar
  54. Luypaert G (2015) The broad mite, Polyphagotarsonemus latus, and its interactions with pot azalea, Rhododendron simsii hybrid. PhD thesis, Ghent University, Ghent, Belgium, 191ppGoogle Scholar
  55. Luypaert G, Van Huylenbroeck J, De Riek J, De Clercq P (2014) Screening for broad mite susceptibility in Rhododendron simsii. J Plant Dis Prot 121:260–269CrossRefGoogle Scholar
  56. Luypaert G, Van Huylenbroeck J, De Riek J, Mechant E, Pauwels E, De Clercq P (2015) Opportunities to breed for broad mite resistance in Rhododendron simsii hybrids. Acta Hortic 1087:479–484CrossRefGoogle Scholar
  57. Mertens M, Heursel J, Van Bockstaele E, De Loose M (2000) Inheritance of foreign genes in transgenic azalea plants generated by Agrobacterium-mediated transformation. Acta Hortic 521:127–132CrossRefGoogle Scholar
  58. Mizuta D, Nakatsuka A, Kobayashi N (2008) Development of multiplex PCR markers to distinguish evergreen and deciduous azaleas. Plant Breed 127:533–535CrossRefGoogle Scholar
  59. Mizuta D, Ban T, Miyajima I, Nakatsuka A, Kobayashi N (2009) Comparison of flower color with anthocyanin composition patterns in evergreen azalea. Sci Hortic 122:594–602CrossRefGoogle Scholar
  60. Mizuta D, Nakatsuka A, Miyajima I, Ban T, Kobayashi N (2010) Pigment composition patterns and expression analysis of flavonoid biosynthesis genes in the petals of evergreen azalea ‘Oomurasaki’ and its red flower sport. Plant Breed 129:558–562CrossRefGoogle Scholar
  61. Nakatsuka A, Mizuta D, Kii Y, Miyajima I, Kobayashi N (2008) Isolation and expression analysis of flavonoid biosynthesis genes in evergreen azalea. Sci Hortic 118:314–320CrossRefGoogle Scholar
  62. Pratt C (1980) Somatic selection & chimeras. In: Moore JN, Janick J (eds) Methods in fruit breeding. Purdue University Press, West Lafayette, IN, pp 172–185Google Scholar
  63. Preil W, Ebbinghaus R (1985) Bastardierungen von Topfazaleen (Rhododendron simsii) mit anderen Rhododendron-Arten. Rhododendron und immergrüne Laubgehölze, Jahrbuch, pp 85–92Google Scholar
  64. Rouse J (1993) Inter- and intraspecific pollinations involving Rhododendron species. J Am Rhodod Soc 47:23–45Google Scholar
  65. Samyn G, De Schepper S, Van Bockstaele E (2002) Adventitious shoot regeneration and appearance of sports in several azalea cultivars. Plant Cell Tissue Org Cult 70:223–227CrossRefGoogle Scholar
  66. Scariot V (2006) The DNA-typing of ornamental plants: Evergreen azaleas (Rhododendron spp.) and old garden roses (Rosa spp.). PhD thesis, University of Torino, Turin, ItalyGoogle Scholar
  67. Scariot V, Handa T, De Riek J (2007) A contribution to the classification of evergreen azalea cultivars located in the Lake Maggiore area (Italy) by means of AFLP markers. Euphytica 158:47–66CrossRefGoogle Scholar
  68. Scheerlinck H, Delbeke V, Hendriks WJ et al (1938) Tuinbouw encyclopedie. De Sikkel, Antwerpen, BelgiumGoogle Scholar
  69. Schmitz G, Theres K (2005) Shoot and inflorescence branching. Curr Opin Plant Biol 8:506–511CrossRefPubMedGoogle Scholar
  70. Spethmann W (1987) A new infrageneric classification and phylogenetic trends in the genus Rhododendron (Ericaceae). Plant Syst Evol 157:9–31CrossRefGoogle Scholar
  71. Salley H, Greer H (1992) Rhododendron hybrids, 2nd edn. Timber Press, Portland, Oregon. 344ppGoogle Scholar
  72. Tasaki K, Nakatsuka A, Cheon KS, Kobayashi N (2014) Expression of MADS-box genes in narrow-petaled cultivars of Rhododendron macrosepalum Maxim. J Jpn Soc Hortic Sci 83(1):52–58CrossRefGoogle Scholar
  73. Tasaki K, Nakatsuka A, Cheon K, Kobayashi N (2015) Inheritance of the narrow leaf mutation in traditional Japanese evergreen azaleas. Euphytica 206(3):649–656CrossRefGoogle Scholar
  74. Ureshino K, Miyajima I, Akabane M (1998) Effectiveness of three-way crossing for the breeding of yellow-flowered evergreen azalea. Euphytica 104:113–118CrossRefGoogle Scholar
  75. Van Huylenbroeck J, Calsyn E (2011) Cryopreservation of an azalea germplasm collection. Acta Hortic 908:489–493CrossRefGoogle Scholar
  76. Van Huylenbroeck J, Calsyn E, De Keyser E, Luypaert G (2015) Breeding for biotic stress resistance in Rhododendron simsii. Acta Hortic 1104:375–380CrossRefGoogle Scholar
  77. Van Huylenbroeck J, Calsyn E, De Keyser E, Eeckhaut T, De Riek J (2018) Use of genetic resources to develop new commercial Rhododendron simsii hybrids. Acta Hortic. (in press)Google Scholar
  78. Van Trier H (2012) Gentse azalea. Stichting Kunstboek, OostkampGoogle Scholar
  79. Verleysen H, Van Bockstaele E, Debergh P (2005) An encapsulation–dehydration protocol for cryopreservation of the azalea cultivar ‘Nordlicht’ (Rhododendron simsii Planch.). Sci Hortic 106:402–414CrossRefGoogle Scholar
  80. Voss D (2001) What is an azalea? J Am Rhodod Soc 55:188–192Google Scholar
  81. Xu JJ, Zhao B, Shen HF, Huang WM, Yuan LX (2016) Assessment of genetic relationship among Rhododendron cultivars using amplified fragment length polymorphism and inter-simple sequence repeat markers. Genet Mol Res 15(3). https://doi.org/10.4238/gmr.15038467
  82. Yamazaki T (1996) A revision of the genus Rhododendron in Japan, Taiwan, Korea, and Sakhalin. Tsumura Laboratory, TokyoGoogle Scholar
  83. Zhou H, Liao J, Xia YP, Tang YW (2013) Determination of genetic relationships between evergreen azalea cultivars in China using AFLP markers. J Zhejiang Univ Sci 14(4):299–308CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jan De Riek
    • 1
  • Ellen De Keyser
    • 1
  • Evelien Calsyn
    • 1
  • Tom Eeckhaut
    • 1
  • Johan Van Huylenbroeck
    • 1
  • Nobuo Kobayashi
    • 2
  1. 1.Flanders Research Institute for Agriculture, Fisheries and Food (ILVO)Plant Sciences Unit, Applied Genetics and BreedingMelleBelgium
  2. 2.Faculty of Life and Environmental ScienceShimane UniversityMatsueJapan

Personalised recommendations