Cell-Based Therapy for Retinal Degenerative Disease

  • Marco A. Zarbin


The availability of non-invasive high-resolution imaging technology, the immune suppressive nature of the subretinal space, and the existence of surgical techniques that permit transplantation surgery to be a safe procedure all render the eye an ideal organ in which to begin cell-based therapy in the central nervous system. A number of early stage clinical trials are underway to assess the safety and feasibility of cell-based therapy for retinal blindness. Cell-based therapy using embryonic stem cell derived differentiated cells (e.g., retinal pigment epithelium (RPE)), neural progenitor cells, photoreceptor precursors, and bone marrow-derived hematopoietic stem/progenitor cells all have demonstrated successful rescue and/or replacement in preclinical models of human retinal degenerative disease. Additional research is needed to identify the mechanisms that control synapse formation/disjunction (to improve photoreceptor transplant efficacy), to identify factors that limit RPE survival in areas of geographic atrophy (to improve RPE transplant efficacy in eyes with age-related macular degeneration), and to identify factors that regulate immune surveillance of the subretinal space (to improve long-term photoreceptor and RPE transplant survival).


Stem Cells Retina Transplantation Retinitis Pigmentosa Macular Degeneration Blindness 


  1. 1.
    Maguire AM, Simonelli F, Pierce EA et al (2008) Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med 358(21):2240–2248PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Cideciyan AV, Hauswirth WW, Aleman TS et al (2009) Human RPE65 gene therapy for Leber congenital amaurosis: persistence of early visual improvements and safety at 1 year. Hum Gene Ther 20(9):999–1004PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Bainbridge JW, Smith AJ, Barker SS et al (2008) Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med 358(21):2231–2239PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Rakoczy EP, Lai CM, Magno AL et al (2015) Gene therapy with recombinant adeno-associated vectors for neovascular age-related macular degeneration: 1 year follow-up of a phase 1 randomised clinical trial. Lancet 386(10011):2395–2403PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Van Gelder RN (2015) Photochemical approaches to vision restoration. Vis Res 111(Pt B):134–141PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Francis PJ, Mansfield B, Rose S (2013) Proceedings of the first international optogenetic therapies for vision symposium. Transl Vis Sci Technol. 2(7):4PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Lund RD, Adamson P, Sauve Y et al (2001) Subretinal transplantation of genetically modified human cell lines attenuates loss of visual function in dystrophic rats. Proc Natl Acad Sci U S A 98(17):9942–9947PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Zarbin M (2016) Cell-based therapy for degenerative retinal disease. Trends Mol Med 22(2):115–134PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Friedman DS, O’Colmain BJ, Munoz B et al (2004) Prevalence of age-related macular degeneration in the United States. Arch Ophthalmol 122(4):564–572PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Parmeggiani F (2011) Clinics, epidemiology and genetics of retinitis pigmentosa. Curr Genomics 12(4):236–237PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Genead MA, Fishman GA, Stone EM, Allikmets R (2009) The natural history of stargardt disease with specific sequence mutation in the ABCA4 gene. Invest Ophthalmol Vis Sci 50(12):5867–5871PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Wong TY, Loon SC, Saw SM (2006) The epidemiology of age related eye diseases in Asia. Br J Ophthalmol 90(4):506–511PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Rosenfeld PJ, Brown DM, Heier JS et al (2006) Ranibizumab for neovascular age-related macular degeneration. N Engl J Med 355(14):1419–1431PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Brown DM, Kaiser PK, Michels M et al (2006) Ranibizumab versus verteporfin for neovascular age-related macular degeneration. N Engl J Med 355(14):1432–1444PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Heier JS, Brown DM, Chong V et al (2012) Intravitreal aflibercept (VEGF trap-eye) in wet age-related macular degeneration. Ophthalmology 119(12):2537–2548PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Zarbin MA, Rosenfeld PJ (2010) Pathway-based therapies for age-related macular degeneration: an integrated survey of emerging treatment alternatives. Retina 30(9):1350–1367PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Ashtari M, Zhang H, Cook PA et al (2015) Plasticity of the human visual system after retinal gene therapy in patients with Leber’s congenital amaurosis. Sci Transl Med 7(296):296ra110PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Jacobson SG, Cideciyan AV, Roman AJ et al (2015) Improvement and decline in vision with gene therapy in childhood blindness. N Engl J Med 372(20):1920–1926PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Koenekoop RK, Sui R, Sallum J et al (2014) Oral 9-cis retinoid for childhood blindness due to Leber congenital amaurosis caused by RPE65 or LRAT mutations: an open-label phase 1b trial. Lancet 384(9953):1513–1520PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Schwartz SD, Tan G, Hosseini H, Nagiel A (2016) Subretinal transplantation of embryonic stem cell-derived retinal pigment epithelium for the treatment of macular degeneration: an assessment at 4 years. Invest Ophthalmol Vis Sci 57(5):ORSFc1–ORSFc9PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Klassen H (2016) Stem cells in clinical trials for treatment of retinal degeneration. Expert Opin Biol Ther 16(1):7–14PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Binley K, Widdowson P, Loader J et al (2013) Transduction of photoreceptors with equine infectious anemia virus lentiviral vectors: safety and biodistribution of StarGen for Stargardt disease. Invest Ophthalmol Vis Sci 54(6):4061–4071PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Sung CH, Chuang JZ (2010) The cell biology of vision. J Cell Biol 190(6):953–963PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Ramsden CM, Powner MB, Carr AJ, Smart MJ, da Cruz L, Coffey PJ (2014) Neural retinal regeneration with pluripotent stem cells. Dev Ophthalmol 53:97–110PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Binder S, Stanzel BV, Krebs I, Glittenberg C (2007) Transplantation of the RPE in AMD. Prog Retin Eye Res 26(5):516–554PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Streilein JW (2003) Ocular immune privilege: the eye takes a dim but practical view of immunity and inflammation. J Leukoc Biol 74(2):179–185PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Geller AM, Sieving PA (1993) How many cones are required to “see?”: lessons from Stargardt’s macular dystrophy and from modeling with degenerate photoreceptor arrays. In: Hollyfield JG, Anderson RE, La Vail MM (eds) Retinal degeneration. Plenum Press, New York, pp 25–34CrossRefGoogle Scholar
  28. 28.
    Zarbin MA, Casaroli-Marano RP, Rosenfeld PJ (2014) Age-related macular degeneration: clinical findings, histopathology, imaging techniques. In: Casaroli-Marano RP, Zarbin MA (eds) Cell-based therapy for retinal degenerative disease. Karger Medical and Scientific Publishers, Basel, pp 1–32Google Scholar
  29. 29.
    Menghini M, Duncan JL (2014) Diagnosis and complementary examinations. Dev Ophthalmol 53:53–69PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Scoles D, Flatter JA, Cooper RF et al (2016) Assessing photoreceptor structure associated with ellipsoid zone disruptions visualized with optical coherence tomography. Retina 36(1): 91–103PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Zayit-Soudry S, Duncan JL, Syed R, Menghini M, Roorda AJ (2013) Cone structure imaged with adaptive optics scanning laser ophthalmoscopy in eyes with nonneovascular age-related macular degeneration. Invest Ophthalmol Vis Sci 54(12):7498–7509PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Pearson RA, Barber AC, Rizzi M et al (2012) Restoration of vision after transplantation of photoreceptors. Nature 485(7396):99–103PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Sheu J, Klassen H, Bauer G (2014) Cellular manufacturing for clinical applications. Dev Ophthalmol 53:178–188PubMedCrossRefGoogle Scholar
  34. 34.
    Zhong X, Gutierrez C, Xue T et al (2014) Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs. Nat Commun 5:4047PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Phillips MJ, Wallace KA, Dickerson SJ et al (2012) Blood-derived human iPS cells generate optic vesicle-like structures with the capacity to form retinal laminae and develop synapses. Invest Ophthalmol Vis Sci 53(4):2007–2019PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Klimanskaya I, Hipp J, Rezai KA, West M, Atala A, Lanza R (2004) Derivation and comparative assessment of retinal pigment epithelium from human embryonic stem cells using transcriptomics. Cloning Stem Cells 6(3):217–245PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Osakada F, Ikeda H, Sasai Y, Takahashi M (2009) Stepwise differentiation of pluripotent stem cells into retinal cells. Nat Protoc 4(6):811–824PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Reichman S, Terray A, Slembrouck A et al (2014) From confluent human iPS cells to self-forming neural retina and retinal pigmented epithelium. Proc Natl Acad Sci U S A 111(23):8518–8523PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Lamba DA, McUsic A, Hirata RK, Wang PR, Russell D, Reh TA (2010) Generation, purification and transplantation of photoreceptors derived from human induced pluripotent stem cells. PLoS One 5(1):e8763PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Ohlemacher SK, Iglesias CL, Sridhar A, Gamm DM, Meyer JS (2015) Generation of highly enriched populations of optic vesicle-like retinal cells from human pluripotent stem cells. Curr Protoc Stem Cell Biol 32:1H 8 1–1H 8 20CrossRefGoogle Scholar
  41. 41.
    Tucker BA, Anfinson KR, Mullins RF, Stone EM, Young MJ (2013) Use of a synthetic xeno-free culture substrate for induced pluripotent stem cell induction and retinal differentiation. Stem Cells Transl Med 2(1):16–24PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Karl MO, Reh TA (2010) Regenerative medicine for retinal diseases: activating endogenous repair mechanisms. Trends Mol Med 16(4):193–202PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Pollak J, Wilken MS, Ueki Y et al (2013) ASCL1 reprograms mouse Muller glia into neurogenic retinal progenitors. Development (Cambridge, England) 140(12):2619–2631PubMedCentralCrossRefGoogle Scholar
  44. 44.
    Del Debbio CB, Balasubramanian S, Parameswaran S, Chaudhuri A, Qiu F, Ahmad I (2010) Notch and Wnt signaling mediated rod photoreceptor regeneration by Muller cells in adult mammalian retina. PLoS One 5(8):e12425PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Jayaram H, Jones MF, Eastlake K et al (2014) Transplantation of photoreceptors derived from human Muller glia restore rod function in the P23H rat. Stem Cells Transl Med 3(3):323–333PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Salero E, Blenkinsop TA, Corneo B et al (2012) Adult human RPE can be activated into a multipotent stem cell that produces mesenchymal derivatives. Cell Stem Cell 10(1):88–95PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Blenkinsop TA, Salero E, Stern JH, Temple S (2013) The culture and maintenance of functional retinal pigment epithelial monolayers from adult human eye. Methods Mol Biol 945:45–65PubMedCrossRefGoogle Scholar
  48. 48.
    Sanges D, Simonte G, Di Vicino U et al (2016) Reprogramming Muller glia via in vivo cell fusion regenerates murine photoreceptors. J Clin Invest 126(8):3104–3116PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Chang B, Hawes NL, Pardue MT et al (2007) Two mouse retinal degenerations caused by missense mutations in the beta-subunit of rod cGMP phosphodiesterase gene. Vis Res 47(5):624–633PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Ogle BM, Cascalho M, Platt JL (2005) Biological implications of cell fusion. Nat Rev Mol Cell Biol 6(7):567–575PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Clevers H, Nusse R (2012) Wnt/beta-catenin signaling and disease. Cell 149(6):1192–1205PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Mizumoto H, Mizumoto K, Whiteley SJ, Shatos M, Klassen H, Young MJ (2001) Transplantation of human neural progenitor cells to the vitreous cavity of the Royal College of Surgeons rat. Cell Transplant 10(2):223–233PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Gullapalli VK, Sugino IK, Van Patten Y, Shah S, Zarbin MA (2005) Impaired RPE survival on aged submacular human Bruch’s membrane. Exp Eye Res 80(2):235–248PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Wenkel H, Streilein JW (1998) Analysis of immune deviation elicited by antigens injected into the subretinal space. Invest Ophthalmol Vis Sci 39(10):1823–1834PubMedPubMedCentralGoogle Scholar
  55. 55.
    Zhang X, Bok D (1998) Transplantation of retinal pigment epithelial cells and immune response in the subretinal space. Invest Ophthalmol Vis Sci 39(6):1021–1027PubMedGoogle Scholar
  56. 56.
    Lu B, Tai YC, Humayun MS (2014) Microdevice-based cell therapy for age-related macular degeneration. Dev Ophthalmol 53:155–166PubMedCrossRefGoogle Scholar
  57. 57.
    Kaplan HJ, Tezel TH, Berger AS, Wolf ML, Del Priore LV (1997) Human photoreceptor transplantation in retinitis pigmentosa. A safety study. Arch Ophthalmol 115(9):1168–1172PubMedCrossRefGoogle Scholar
  58. 58.
    Tezel TH, Del Priore LV, Berger AS, Kaplan HJ (2007) Adult retinal pigment epithelial transplantation in exudative age-related macular degeneration. Am J Ophthalmol 143(4):584–595PubMedCrossRefGoogle Scholar
  59. 59.
    Mandai M, Watanabe A, Kurimoto Y et al (2017) Autologous induced stem-cell-derived retinal cells for macular degeneration. N Engl J Med 376(11):1038–1046PubMedCrossRefGoogle Scholar
  60. 60.
    Huang JC, Ishida M, Hersh P, Sugino IK, Zarbin MA (1998) Preparation and transplantation of photoreceptor sheets. Curr Eye Res 17(6):573–585PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Seiler MJ, Aramant RB, Thomas BB, Peng Q, Sadda SR, Keirstead HS (2010) Visual restoration and transplant connectivity in degenerate rats implanted with retinal progenitor sheets. Eur J Neurosci 31(3):508–520PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Assawachananont J, Mandai M, Okamoto S et al (2014) Transplantation of embryonic and induced pluripotent stem cell-derived 3D retinal sheets into retinal degenerative mice. Stem Cell Reports 2(5):662–674PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Seiler MJ, Lin RE, McLelland BT et al (2017) Vision recovery and connectivity by fetal retinal sheet transplantation in an immunodeficient retinal degenerate rat model. Invest Ophthalmol Vis Sci 58(1):614–630PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Mandai M, Fujii M, Hashiguchi T et al (2017) iPSC-derived retina transplants improve vision in rd1 end-stage retinal-degeneration mice. Stem Cell Reports 8(1):69–83PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Radtke ND, Aramant RB, Petry HM, Green PT, Pidwell DJ, Seiler MJ (2008) Vision improvement in retinal degeneration patients by implantation of retina together with retinal pigment epithelium. Am J Ophthalmol 146(2):172–182PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Xian B, Huang B (2015) The immune response of stem cells in subretinal transplantation. Stem Cell Res Ther 6:161PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    West EL, Pearson RA, Barker SE et al (2010) Long-term survival of photoreceptors transplanted into the adult murine neural retina requires immune modulation. Stem Cells 28(11):1997–2007PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Tena A, Sachs DH (2014) Stem cells: immunology and immunomodulation. Dev Ophthalmol 53:122–132PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Kohen L, Enzmann V, Faude F, Wiedemann P (1997) Mechanisms of graft rejection in the transplantation of retinal pigment epithelial cells. Ophthalmic Res 29:298–304PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Kaplan HJ, Leibole MA, Tezel T, Ferguson TA (1999) Fas ligand (CD95 ligand) controls angiogenesis beneath the retina. Nat Med 5(3):292–297PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Schwartz SD, Regillo CD, Lam BL et al (2015) Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet 385(9967):509–516PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Boyd AS, Wood KJ (2009) Variation in MHC expression between undifferentiated mouse ES cells and ES cell-derived insulin-producing cell clusters. Transplantation 87(9):1300–1304PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Tian L, Catt JW, O’Neill C, King NJ (1997) Expression of immunoglobulin superfamily cell adhesion molecules on murine embryonic stem cells. Biol Reprod 57(3):561–568PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Wakayama T, Tabar V, Rodriguez I, Perry AC, Studer L, Mombaerts P (2001) Differentiation of embryonic stem cell lines generated from adult somatic cells by nuclear transfer. Science 292(5517):740–743PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Fairchild PJ, Nolan KF, Cartland S, Waldmann H (2005) Embryonic stem cells: a novel source of dendritic cells for clinical applications. Int Immunopharmacol 5(1):13–21PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Robertson NJ, Brook FA, Gardner RL, Cobbold SP, Waldmann H, Fairchild PJ (2007) Embryonic stem cell-derived tissues are immunogenic but their inherent immune privilege promotes the induction of tolerance. Proc Natl Acad Sci U S A 104(52):20920–20925PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Fairchild PJ (2010) The challenge of immunogenicity in the quest for induced pluripotency. Nat Rev Immunol 10(12):868–875PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Boyd AS, Fairchild PJ (2010) Approaches for immunological tolerance induction to stem cell-derived cell replacement therapies. Expert Rev Clin Immunol 6(3):435–448PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Nakatsuji N, Nakajima F, Tokunaga K (2008) HLA-haplotype banking and iPS cells. Nat Biotechnol 26(7):739–740PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Zimmermann A, Preynat-Seauve O, Tiercy JM, Krause KH, Villard J (2012) Haplotype-based banking of human pluripotent stem cells for transplantation: potential and limitations. Stem Cells Dev 21(13):2364–2373PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Taylor CJ, Peacock S, Chaudhry AN, Bradley JA, Bolton EM (2012) Generating an iPSC bank for HLA-matched tissue transplantation based on known donor and recipient HLA types. Cell Stem Cell 11(2):147–152PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Turner M, Leslie S, Martin NG et al (2013) Toward the development of a global induced pluripotent stem cell library. Cell Stem Cell 13(4):382–384PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Wang J, Zarbin M, Sugino I, Whitehead I, Townes-Anderson E (2016) RhoA signaling and synaptic damage occur within hours in a live pig model of CNS injury, retinal detachment. Invest Ophthalmol Vis Sci 57(8):3892–3906PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Fontainhas AM, Townes-Anderson E (2011) RhoA inactivation prevents photoreceptor axon retraction in an in vitro model of acute retinal detachment. Invest Ophthalmol Vis Sci 52(1):579–587PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Townes-Anderson E, Wang J, Halasz E et al (2017) Fasudil, a clinically used ROCK inhibitor, stabilizes rod photoreceptor synapses after retinal detachment. Transl Vis Sci Technol 6(3):22PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Townes-Anderson E, Sugino I, Zarbin M (2017) Using Rho kinase inhibitors for retinal detachment. JAMA Ophthalmol 135(8):895PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Arnhold S, Klein H, Semkova I, Addicks K, Schraermeyer U (2004) Neurally selected embryonic stem cells induce tumor formation after long-term survival following engraftment into the subretinal space. Invest Ophthalmol Vis Sci 45(12):4251–4255PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448(7151):313–317PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Yamanaka S (2007) Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell 1(1):39–49PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Nakagawa M, Koyanagi M, Tanabe K et al (2008) Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26(1):101–106PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Li W, Zhou H, Abujarour R et al (2009) Generation of human-induced pluripotent stem cells in the absence of exogenous Sox2. Stem Cells 27(12):2992–3000PubMedPubMedCentralGoogle Scholar
  92. 92.
    Zhu S, Li W, Zhou H et al (2010) Reprogramming of human primary somatic cells by OCT4 and chemical compounds. Cell Stem Cell 7(6):651–655PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Kolomeyer AM, Zarbin MA (2014) Trophic factors in the pathogenesis and therapy for retinal degenerative diseases. Surv Ophthalmol 59(2):134–165PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Huangfu D, Osafune K, Maehr R et al (2008) Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol 26(11):1269–1275PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Shi Y, Desponts C, Do JT, Hahm HS, Scholer HR, Ding S (2008) Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell 3(5):568–574PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S (2008) Generation of mouse induced pluripotent stem cells without viral vectors. Science 322(5903):949–953PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Yu J, Hu K, Smuga-Otto K et al (2009) Human induced pluripotent stem cells free of vector and transgene sequences. Science 324(5928):797–801PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Kaji K, Norrby K, Paca A, Mileikovsky M, Mohseni P, Woltjen K (2009) Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 458(7239):771–775PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Warren L, Manos PD, Ahfeldt T et al (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7(5):618–630PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Zhou H, Wu S, Joo JY et al (2009) Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4(5):381–384PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Kim D, Kim CH, Moon JI et al (2009) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4(6):472–476PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Balasubramanian S, Babai N, Chaudhuri A et al (2009) Non cell-autonomous reprogramming of adult ocular progenitors: generation of pluripotent stem cells without exogenous transcription factors. Stem Cells 27(12):3053–3062PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Marco A. Zarbin
    • 1
  1. 1.Institute of Ophthalmology and Visual Science, Rutgers-New Jersey Medical School, Rutgers UniversityNewarkUSA

Personalised recommendations