Modeling Schizophrenia with Human Stem Cells

  • Juliana Minardi NascimentoEmail author
  • Veronica M. Saia-Cereda
  • Giuliana S. Zuccoli
  • Danielle Gouvêa-Junqueira
  • Daniel Martins-de-Souza


The complexity of psychiatric disorders is a challenge still to overcome, and schizophrenia has been the most prevalent yet little understood. Several studies have used knowledge from postmortem brain tissue and other models, to address difficult questions regarding diagnostic and treatment. An improvement in the translational capacity of molecular profiling studies of psychiatric disorders was achieved with the development of human-induced pluripotent stem cells (iPSCs), through provision of human neuronal-like tissue. The finding that iPSCs can recapitulate the phenotype of the donor also affords the possibility of using this approach to study both the disease and control states in a given medical area.


Brain iPSC Neural cell Neurodevelopment Psychiatric disorders 



JMN, VMSC, GSZ, and DMS are supported by the São Paulo Research Foundation (FAPESP) grants 14/21035-0, 16/07332-7, 16/04912-2, 13/08711-3, and 14/10068-4.


  1. 1.
    Abazyan S, Yang EJ, Abazyan B et al (2014) Mutant disrupted-in-schizophrenia 1 in astrocytes: focus on glutamate metabolism. J Neurosci Res 92:1659–1668. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Abud EM, Ramirez RN, Martinez ES et al (2017) iPSC-derived human microglia-like cells to study neurological diseases. Neuron 94:278–293.e9. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Banigan MG, Kao PF, Kozubek JA et al (2013) Differential expression of exosomal microRNAs in prefrontal cortices of schizophrenia and bipolar disorder patients. PLoS One 8:e48814. EP –. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bernstein H-G, Steiner J, Guest PC et al (2015) Glial cells as key players in schizophrenia pathology: recent insights and concepts of therapy. Schizophr Res 161:4–18. CrossRefPubMedGoogle Scholar
  5. 5.
    Beumer W, Gibney SM, Drexhage RC et al (2012) The immune theory of psychiatric diseases: a key role for activated microglia and circulating monocytes. J Leukoc Biol 92:959–975. CrossRefPubMedGoogle Scholar
  6. 6.
    Bigdeli TB, Ripke S, Bacanu S-A et al (2015) Genome-wide association study reveals greater polygenic loading for schizophrenia in cases with a family history of illness. Am J Med Genet 171:276–289. CrossRefGoogle Scholar
  7. 7.
    Brennand K, Savas JN, Kim Y et al (2014) Phenotypic differences in hiPSC NPCs derived from patients with schizophrenia. Mol Psychiatry 20:361–368. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Brennand KJ, Marchetto MC, Benvenisty N et al (2015) Creating patient-specific neural cells for the in vitro study of brain disorders. Stem Cell Reports 5:933–945. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Brennand KJ, Simone A, Jou J et al (2011) Modelling schizophrenia using human induced pluripotent stem cells. Nature 473:221–225. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Chiang C-H, Su Y, Wen Z et al (2011) Integration-free induced pluripotent stem cells derived from schizophrenia patients with a DISC1 mutation. Mol Psychiatry 16:358–360. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Committee TPGCS (2008) A framework for interpreting genome-wide association studies of psychiatric disorders. Mol Psychiatry 14:10–17. CrossRefGoogle Scholar
  12. 12.
    Consortium CASWGOTPG (2016) Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. Nat Genet 49:27–35. CrossRefGoogle Scholar
  13. 13.
    Consortium SWGOTPG (2014) Biological insights from 108 schizophrenia-associated genetic loci. Nature 511:421–427. CrossRefGoogle Scholar
  14. 14.
    Consortium TSPG-WASG (2011) Genome-wide association study identifies five new schizophrenia loci. Nat Genet 43:969–976. CrossRefGoogle Scholar
  15. 15.
    Consortium TSPG-WASG, Ripke S, Sanders AR et al (2011) Genome-wide association study identifies five new schizophrenia loci. Nat Genet 43:969. CrossRefGoogle Scholar
  16. 16.
    Deleidi M, Yu C (2016) Genome editing in pluripotent stem cells: research and therapeutic applications. Biochem Biophys Res Commun 473:665–674. CrossRefPubMedGoogle Scholar
  17. 17.
    Dezonne RS, Sartore RC, Nascimento JM et al (2017) Derivation of functional human astrocytes from cerebral organoids. Sci Rep:1–14.
  18. 18.
    Douvaras P, Sun B, Wang M et al (2017) Directed differentiation of human pluripotent stem cells to microglia. Stem Cell Reports 8:1516–1524. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Flaherty E, Deranieh RM, Artimovich E et al (2017) Patient-derived hiPSC neurons with heterozygous CNTNAP2 deletions display altered neuronal gene expression and network activity. npj Schizophrenia 3:35. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Freedman R (2003) Schizophrenia. N Engl J Med 349:1738–1749. CrossRefPubMedGoogle Scholar
  21. 21.
    Fromer M, Pocklington AJ, Kavanagh DH et al (2014) De novo mutations in schizophrenia implicate synaptic networks. Nature 506:179–184. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Frühbeis C, Fröhlich D, Krämer-Albers E-M (2012) Emerging roles of exosomes in neuron–glia communication. Front Physiol.
  23. 23.
    Frühbeis C, Fröhlich D, Kuo WP et al (2013) Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte–neuron communication. PLoS Biol 11:e1001604. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Gonzalez-Pinto A, Gutierrez M, Mosquera F et al (1998) First episode in bipolar disorder: misdiagnosis and psychotic symptoms. J Affect Disord 50:41–44. CrossRefPubMedGoogle Scholar
  25. 25.
    Hakak Y, Walker JR, Li C et al (2001) Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Natl Acad Sci U S A 98:4746. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Hauberg ME, Fullard J, Giambartolomei C et al (2017) Cell-type specific open chromatin profiling in human postmortem brain infers functional roles for non-coding schizophrenia LOCI. Eur Neuropsychopharmacol 27:S428–S429. CrossRefGoogle Scholar
  27. 27.
    Ho S-M, Hartley BJ, Flaherty E et al (2017) Evaluating synthetic activation and repression of neuropsychiatric-related genes in hiPSC-derived NPCs, neurons, and astrocytes. Stem Cell Reports.
  28. 28.
    Hook V, Brennand KJ, Kim Y et al (2014) Human iPSC neurons display activity-dependent neurotransmitter secretion: aberrant catecholamine levels in schizophrenia neurons. Stem Cell Reports 3:531–538. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821. CrossRefPubMedGoogle Scholar
  30. 30.
    Karayiorgou M, Simon TJ, Gogos JA (2010) 22q11.2 microdeletions: linking DNA structural variation to brain dysfunction and schizophrenia. Nat Rev Neurosci 11:402–416. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Kimelberg HK (2010) Functions of mature mammalian astrocytes: a current view. Neuroscientist 16:79–106. CrossRefPubMedGoogle Scholar
  32. 32.
    Kohane IS, Masys DR, Altman RB (2006) The Incidentalome: a threat to genomic medicine. JAMA 296:212–215. CrossRefPubMedGoogle Scholar
  33. 33.
    Koyama Y (2015) Functional alterations of astrocytes in mental disorders: pharmacological significance as a drug target. Front Cell Neurosci.
  34. 34.
    Lee IS, Carvalho CMB, Douvaras P et al (2015) Characterization of molecular and cellular phenotypes associated with a heterozygous CNTNAP2 deletion using patient-derived hiPSC neural cells. npj Schizophrenia 1:171. CrossRefGoogle Scholar
  35. 35.
    Lee IS, Carvalho CMB, Douvaras P et al (2015) Characterization of molecular and cellular phenotypes associated with a heterozygous CNTNAP2 deletion using patient-derived hiPSC neural cells. npj Schizophrenia 1:15019. CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Lin M, Pedrosa E, Hrabovsky A et al (2016) Integrative transcriptome network analysis of iPSC-derived neurons from schizophrenia and schizoaffective disorder patients with 22q11.2 deletion. BMC Syst Biol 10:105. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Ma TM, Abazyan S, Abazyan B et al (2013) Pathogenic disruption of DISC1-serine racemase binding elicits schizophrenia-like behavior via D-serine depletion. Mol Psychiatry 18:557–567. CrossRefPubMedGoogle Scholar
  38. 38.
    Mandegar MA, Huebsch N, Frolov EB et al (2016) CRISPR interference efficiently induces specific and reversible gene silencing in human iPSCs. Stem Cell 18:541–553. CrossRefGoogle Scholar
  39. 39.
    Martins-de-Souza D, Maccarrone G, Wobrock T et al (2010) Proteome analysis of the thalamus and cerebrospinal fluid reveals glycolysis dysfunction and potential biomarkers candidates for schizophrenia. J Psychiatr Res 44:1176–1189. CrossRefPubMedGoogle Scholar
  40. 40.
    Muffat J, Li Y, Omer A et al (2017) A possible role of microglia in Zika virus infection of the fetal human brain. bioRxiv.
  41. 41.
    Muffat J, Li Y, Yuan B et al (2016) Efficient derivation of microglia-like cells from human pluripotent stem cells. Nat Med 22:1358–1367. CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Nascimento JM, Martins-de-Souza D (2015) The proteome of schizophrenia. npj Schizophrenia 1:14003. EP –. CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Novikova SI, He F, Cutrufello NJ, Lidow MS (2006) Identification of protein biomarkers for schizophrenia and bipolar disorder in the postmortem prefrontal cortex using SELDI-TOF-MS ProteinChip profiling combined with MALDI-TOF-PSD-MS analysis. Neurobiol Dis 23:61–76. CrossRefPubMedGoogle Scholar
  44. 44.
    Paşca AM, Sloan SA, Clarke LE et al (2015) Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat Methods 12:671–678. CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Paulsen BDS, Maciel R d M, Galina A et al (2012) Altered oxygen metabolism associated to neurogenesis of induced pluripotent stem cells derived from a schizophrenic patient. Cell Transplant 21:1547–1559. CrossRefGoogle Scholar
  46. 46.
    Paulsen BS, Souza CS, Chicaybam L et al (2011) Agathisflavone enhances retinoic acid-induced neurogenesis and its receptors α and β in pluripotent stem cells. Stem Cells Dev 20:1711–1721. CrossRefPubMedGoogle Scholar
  47. 47.
    Pedrosa E, Sandler V, Shah A et al (2011) Development of patient-specific neurons in schizophrenia using induced pluripotent stem cells. J Neurogenet 25:88–103. CrossRefPubMedGoogle Scholar
  48. 48.
    Piao J, Major T, Auyeung G et al (2015) Human embryonic stem cell-derived oligodendrocyte progenitors remyelinate the brain and rescue behavioral deficits following radiation. Stem Cell 16:198–210. CrossRefGoogle Scholar
  49. 49.
    Purcell SM, Moran JL, Fromer M et al (2014) A polygenic burden of rare disruptive mutations in schizophrenia. Nature 506:185–190. CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Ripke S, O’Dushlaine C, Chambert K et al (2013) Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat Genet 45:1150–1159. CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Robicsek O, Karry R, Petit I et al (2013) Abnormal neuronal differentiation and mitochondrial dysfunction in hair follicle-derived induced pluripotent stem cells of schizophrenia patients. Mol Psychiatry 18:1067–1076. CrossRefPubMedGoogle Scholar
  52. 52.
    Schmidt MJ, Mirnics K (2015) Neurodevelopment, GABA system dysfunction, and schizophrenia. Neuropsychopharmacology 40:190–206. CrossRefPubMedGoogle Scholar
  53. 53.
    Schmitt A, Martins-de-Souza D, Akbarian S et al (2016) Consensus paper of the WFSBP Task Force on Biological Markers: criteria for biomarkers and endophenotypes of schizophrenia, part III: molecular mechanisms. World J Biol Psychiatry:1–27.
  54. 54.
    Schreiber M, Dorschner M, Tsuang D (2013) Next-generation sequencing in schizophrenia and other neuropsychiatric disorders. Am J Med Genet B Neuropsychiatr Genet 162B:671–678. CrossRefPubMedGoogle Scholar
  55. 55.
    Shaltouki A, Peng J, Liu Q et al (2013) Efficient generation of astrocytes from human pluripotent stem cells in defined conditions. Stem Cells 31:941–952. CrossRefPubMedGoogle Scholar
  56. 56.
    Silber J, Lim DA, Petritsch C et al (2008) miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med 6:1. 6:14. CrossRefGoogle Scholar
  57. 57.
    Sloan SA, Darmanis S, Huber N et al (2017) Human astrocyte maturation captured in 3D cerebral cortical spheroids derived from pluripotent stem cells. Neuron 95:779–790.e6. CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Srikanth P, Han K, Callahan DG et al (2015) Genomic DISC1 disruption in hiPSCs alters Wnt signaling and neural cell fate. Cell Rep 12:1414–1429. CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Sullivan PF, Daly MJ, O’Donovan M (2012) Genetic architectures of psychiatric disorders: the emerging picture and its implications. Nat Rev Genet 13:537–551. CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Tcw J, Wang M, Pimenova AA et al (2017) An efficient platform for astrocyte differentiation from human induced pluripotent stem cells. Stem Cell Reports 9:600–614. CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Topol A, Zhu S, Hartley BJ et al (2016) Dysregulation of miRNA-9 in a subset of schizophrenia patient-derived neural progenitor cells. Cell Rep 15:1024–1036. CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Topol A, Zhu S, Tran N et al (2015) Correspondence. Biol Psychiatry:1–6.
  63. 63.
    Torres-Ruiz R, Rodriguez-Perales S (2017) CRISPR-Cas9 technology: applications and human disease modelling. Brief Funct Genomics 16:4–12. CrossRefPubMedGoogle Scholar
  64. 64.
    Uranova N, Orlovskaya D, Vikhreva O et al (2001) Electron microscopy of oligodendroglia in severe mental illness. Brain Res Bull 55:597–610. CrossRefPubMedGoogle Scholar
  65. 65.
    Wang S, Bates J, Li X et al (2013) Human iPSC-derived oligodendrocyte progenitor cells can myelinate and rescue a mouse model of congenital hypomyelination. Cell Stem Cell 12:252–264. CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Wen Z, Nguyen HN, Guo Z et al (2014) Synaptic dysregulation in a human iPS cell model of mental disorders. Nature. epub ahead of print.,
  67. 67.
    Wong AHC, Van Tol HHM (2003) Schizophrenia: from phenomenology to neurobiology. Neurosci Biobehav Rev 27:269–306. CrossRefPubMedGoogle Scholar
  68. 68.
    World Health Organization (2008) The global burden of disease. World Health Organization, GenevaGoogle Scholar
  69. 69.
    Wright C, Turner JA, Calhoun VD, Perrone-Bizzozero N (2013) Potential impact of miR-137 and its targets in schizophrenia. Front Genet 4:58. CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Xia M, Zhu S, Shevelkin A et al (2016) DISC1, astrocytes and neuronal maturation: a possible mechanistic link with implications for mental disorders. J Neurochem 138:518–524. CrossRefPubMedGoogle Scholar
  71. 71.
    Ye F, Kang E, Yu C et al (2017) DISC1 regulates neurogenesis via modulating kinetochore attachment of Ndel1/Nde1 during mitosis. Neuron 96:1041–1054.e5. CrossRefPubMedGoogle Scholar
  72. 72.
    Yin J, Lin J, Luo X et al (2014) miR-137: a new player in schizophrenia. Int J Mol Sci 15:3262–3271. CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Yoon K-J, Nguyen HN, Ursini G et al (2014) Modeling a genetic risk for schizophrenia in iPSCs and mice reveals neural stem cell deficits associated with Adherens junctions and polarity. Stem Cell 15:79–91. CrossRefGoogle Scholar
  74. 74.
    Yu DX, Di Giorgio FP, Yao J et al (2014) Modeling hippocampal neurogenesis using human pluripotent stem cells. Stem Cell Reports 2:295–310. CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Zhao D, Lin M, Chen J et al (2015) MicroRNA profiling of neurons generated using induced pluripotent stem cells derived from patients with schizophrenia and schizoaffective disorder, and 22q11.2 del. PLoS One 10:e0132387. EP –. CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Zuccoli GS, Martins-de-Souza D, Guest PC et al (2017) Combining patient-reprogrammed neural cells and proteomics as a model to study psychiatric disorders. In: Guest PC (ed) Proteomic methods in neuropsychiatric research. Springer International Publishing, Cham, pp 279–287CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Juliana Minardi Nascimento
    • 1
    • 2
    Email author
  • Veronica M. Saia-Cereda
    • 1
  • Giuliana S. Zuccoli
    • 1
  • Danielle Gouvêa-Junqueira
    • 1
  • Daniel Martins-de-Souza
    • 1
    • 4
    • 3
  1. 1.Lab of Neuroproteomics, Department of Biochemistry and Tissue BiologyInstitute of Biology, University of Campinas (UNICAMP)CampinasBrazil
  2. 2.D’Or Institute for Research and Education (IDOR)Rio de JaneiroBrazil
  3. 3.Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION) Conselho Nacional de Desenvolvimento Cientifico e TecnologicoSão PauloBrazil
  4. 4.UNICAMP’s Neurobiology CenterCampinasBrazil

Personalised recommendations