Advertisement

From Bench to Bedside of Mesenchymal Stem Cells Use for Rheumatoid Arthritis Treatment

  • R. A. Contreras
  • N. Luque
  • F. Djouad
  • Roberto Elizondo-Vega
  • Patricia Luz-Crawford
Chapter

Abstract

Mesenchymal stem cells (MSCs) are multipotent stem cells with immunosuppressive properties able to control both the innate and the adaptive immune system. Based on this latter characteristic, MSC-based therapies have become a thriving area for autoimmune diseases such as rheumatoid arthritis (RA). RA is a chronic inflammatory disorder that involves an imbalance of both the innate and adaptive immune systems, which leads to cartilage and bone degradations, causing pain, stiffness, and synovitis. Several studies have reported the beneficial effects of MSCs in experimental models of arthritis. However, the complexity of RA as well as the controversy about the mechanisms and molecules involved in the immunosuppressive effect of MSCs, together with the low efficacy showed on clinical trials, have generated insecurity around its therapeutic use, and for this reason it is necessary to increase the number of investigations. In this context, enhancement of MSC immunosuppressive potential, in order to obtain a stable suppressive phenotype, offers a powerful tool to improve MSC-based therapies. Thus, the aim of this review is to discuss the cross talk between MSCs and the intricate pathogenesis of RA and the possible molecular targets that could lead to improve their therapeutic potential on RA progression.

Keywords

Mesenchymal stem cells Rheumatoid arthritis treatment Immunosuppressive potential 

References

  1. 1.
    Isaacs JD (2010) The changing face of rheumatoid arthritis: sustained remission for all? Nat Rev Immunol 10(8):605–611.  https://doi.org/10.1038/nri2804 CrossRefPubMedGoogle Scholar
  2. 2.
    McInnes IB, Schett G (2011) The pathogenesis of rheumatoid arthritis. N Engl J Med 365(23):2205–2219.  https://doi.org/10.1056/NEJMra1004965 CrossRefPubMedGoogle Scholar
  3. 3.
    Majithia V, Geraci SA (2007) Rheumatoid arthritis: diagnosis and management. Am J Med 120(11):936–939.  https://doi.org/10.1016/j.amjmed.2007.04.005 CrossRefPubMedGoogle Scholar
  4. 4.
    Smolen JS, Aletaha D, Redlich K (2012) The pathogenesis of rheumatoid arthritis: new insights from old clinical data? Nat Rev Rheumatol 8(4):235–243.  https://doi.org/10.1038/nrrheum.2012.23 CrossRefPubMedGoogle Scholar
  5. 5.
    Calabro A, Caterino AL, Elefante E, Valentini V, Vitale A, Talarico R, Cantarini L, Frediani B (2016) One year in review 2016: novelties in the treatment of rheumatoid arthritis. Clin Exp Rheumatol 34(3):357–372PubMedGoogle Scholar
  6. 6.
    Tanaka Y (2015) Human mesenchymal stem cells as a tool for joint repair in rheumatoid arthritis. Clin Exp Rheumatol 33(4 Suppl 92):S58–S62PubMedGoogle Scholar
  7. 7.
    Le Blanc K, Pittenger M (2005) Mesenchymal stem cells: progress toward promise. Cytotherapy 7(1):36–45.  https://doi.org/10.1080/14653240510018118 CrossRefPubMedGoogle Scholar
  8. 8.
    Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317.  https://doi.org/10.1080/14653240600855905 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Alcayaga-Miranda F, Cuenca J, Luz-Crawford P, Aguila-Diaz C, Fernandez A, Figueroa FE, Khoury M (2015) Characterization of menstrual stem cells: angiogenic effect, migration and hematopoietic stem cell support in comparison with bone marrow mesenchymal stem cells. Stem Cell Res Ther 6:32.  https://doi.org/10.1186/s13287-015-0013-5 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Gonzalez PL, Carvajal C, Cuenca J, Alcayaga-Miranda F, Figueroa FE, Bartolucci J, Salazar-Aravena L, Khoury M (2015) Chorion mesenchymal stem cells show superior differentiation, immunosuppressive, and angiogenic potentials in comparison with haploidentical maternal placental cells. Stem Cells Transl Med 4(10):1109–1121.  https://doi.org/10.5966/sctm.2015-0022 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Mitrano TI, Grob MS, Carrion F, Nova-Lamperti E, Luz PA, Fierro FS, Quintero A, Chaparro A, Sanz A (2010) Culture and characterization of mesenchymal stem cells from human gingival tissue. J Periodontol 81(6):917–925.  https://doi.org/10.1902/jop.2010.090566 CrossRefPubMedGoogle Scholar
  12. 12.
    Romanov YA, Darevskaya AN, Merzlikina NV, Buravkova LB (2005) Mesenchymal stem cells from human bone marrow and adipose tissue: isolation, characterization, and differentiation potentialities. Bull Exp Biol Med 140(1):138–143CrossRefPubMedGoogle Scholar
  13. 13.
    Crisostomo PR, Wang Y, Markel TA, Wang M, Lahm T, Meldrum DR (2008) Human mesenchymal stem cells stimulated by TNF-alpha, LPS, or hypoxia produce growth factors by an NF kappa B- but not JNK-dependent mechanism. Am J Physiol Cell Physiol 294(3):C675–C682.  https://doi.org/10.1152/ajpcell.00437.2007 CrossRefPubMedGoogle Scholar
  14. 14.
    Galderisi U, Giordano A (2014) The gap between the physiological and therapeutic roles of mesenchymal stem cells. Med Res Rev 34(5):1100–1126.  https://doi.org/10.1002/med.21322 CrossRefPubMedGoogle Scholar
  15. 15.
    Kyurkchiev D, Bochev I, Ivanova-Todorova E, Mourdjeva M, Oreshkova T, Belemezova K, Kyurkchiev S (2014) Secretion of immunoregulatory cytokines by mesenchymal stem cells. World J Stem Cells 6(5):552–570.  https://doi.org/10.4252/wjsc.v6.i5.552 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105(4):1815–1822.  https://doi.org/10.1182/blood-2004-04-1559 CrossRefPubMedGoogle Scholar
  17. 17.
    Luz-Crawford P, Djouad F, Toupet K, Bony C, Franquesa M, Hoogduijn MJ, Jorgensen C, Noel D (2016) Mesenchymal stem cell-derived interleukin 1 receptor antagonist promotes macrophage polarization and inhibits B cell differentiation. Stem Cells 34(2):483–492.  https://doi.org/10.1002/stem.2254 CrossRefPubMedGoogle Scholar
  18. 18.
    Luz-Crawford P, Kurte M, Bravo-Alegria J, Contreras R, Nova-Lamperti E, Tejedor G, Noel D, Jorgensen C, Figueroa F, Djouad F, Carrion F (2013) Mesenchymal stem cells generate a CD4+CD25+Foxp3+ regulatory T cell population during the differentiation process of Th1 and Th17 cells. Stem Cell Res Ther 4(3):65.  https://doi.org/10.1186/scrt216 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Spaggiari GM, Capobianco A, Abdelrazik H, Becchetti F, Mingari MC, Moretta L (2008) Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood 111(3):1327–1333.  https://doi.org/10.1182/blood-2007-02-074997 CrossRefPubMedGoogle Scholar
  20. 20.
    Bouffi C, Bony C, Courties G, Jorgensen C, Noel D (2010) IL-6-dependent PGE2 secretion by mesenchymal stem cells inhibits local inflammation in experimental arthritis. PLoS One 5(12):e14247.  https://doi.org/10.1371/journal.pone.0014247 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Chen M, Su W, Lin X, Guo Z, Wang J, Zhang Q, Brand D, Ryffel B, Huang J, Liu Z, He X, Le AD, Zheng SG (2013) Adoptive transfer of human gingiva-derived mesenchymal stem cells ameliorates collagen-induced arthritis via suppression of Th1 and Th17 cells and enhancement of regulatory T cell differentiation. Arthritis Rheum 65(5):1181–1193.  https://doi.org/10.1002/art.37894 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Ghannam S, Bouffi C, Djouad F, Jorgensen C, Noel D (2010) Immunosuppression by mesenchymal stem cells: mechanisms and clinical applications. Stem Cell Res Ther 1(1):2.  https://doi.org/10.1186/scrt2 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Gonzalez MA, Gonzalez-Rey E, Rico L, Buscher D, Delgado M (2009) Treatment of experimental arthritis by inducing immune tolerance with human adipose-derived mesenchymal stem cells. Arthritis Rheum 60(4):1006–1019.  https://doi.org/10.1002/art.24405 CrossRefPubMedGoogle Scholar
  24. 24.
    Ji S, Guo Q, Han Y, Tan G, Luo Y, Zeng F (2012) Mesenchymal stem cell transplantation inhibits abnormal activation of Akt/GSK3beta signaling pathway in T cells from systemic lupus erythematosus mice. Cell Physiol Biochem 29(5-6):705–712.  https://doi.org/10.1159/000178590 CrossRefPubMedGoogle Scholar
  25. 25.
    Ohshima M, Yamahara K, Ishikane S, Harada K, Tsuda H, Otani K, Taguchi A, Miyazato M, Katsuragi S, Yoshimatsu J, Kodama M, Kangawa K, Ikeda T (2012) Systemic transplantation of allogenic fetal membrane-derived mesenchymal stem cells suppresses Th1 and Th17 T cell responses in experimental autoimmune myocarditis. J Mol Cell Cardiol 53(3):420–428.  https://doi.org/10.1016/j.yjmcc.2012.06.020 CrossRefPubMedGoogle Scholar
  26. 26.
    Zappia E, Casazza S, Pedemonte E, Benvenuto F, Bonanni I, Gerdoni E, Giunti D, Ceravolo A, Cazzanti F, Frassoni F, Mancardi G, Uccelli A (2005) Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood 106(5):1755–1761.  https://doi.org/10.1182/blood-2005-04-1496 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Lee JM, Jung J, Lee HJ, Jeong SJ, Cho KJ, Hwang SG, Kim GJ (2012) Comparison of immunomodulatory effects of placenta mesenchymal stem cells with bone marrow and adipose mesenchymal stem cells. Int Immunopharmacol 13(2):219–224.  https://doi.org/10.1016/j.intimp.2012.03.024 CrossRefPubMedGoogle Scholar
  28. 28.
    Luz-Crawford P, Torres MJ, Noel D, Fernandez A, Toupet K, Alcayaga-Miranda F, Tejedor G, Jorgensen C, Illanes SE, Figueroa FE, Djouad F, Khoury M (2016) The immunosuppressive signature of menstrual blood mesenchymal stem cells entails opposite effects on experimental arthritis and graft versus host diseases. Stem Cells 34(2):456–469.  https://doi.org/10.1002/stem.2244 CrossRefPubMedGoogle Scholar
  29. 29.
    Sullivan C, Murphy JM, Griffin MD, Porter RM, Evans CH, O'Flatharta C, Shaw G, Barry F (2012) Genetic mismatch affects the immunosuppressive properties of mesenchymal stem cells in vitro and their ability to influence the course of collagen-induced arthritis. Arthritis Res Ther 14(4):R167.  https://doi.org/10.1186/ar3916 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Takasugi K, Hollingsworth JW (1967) Morphologic studies of mononuclear cells of human synovial fluid. Arthritis Rheum 10(6):495–501CrossRefPubMedGoogle Scholar
  31. 31.
    Janossy G, Panayi G, Duke O, Bofill M, Poulter LW, Goldstein G (1981) Rheumatoid arthritis: a disease of T-lymphocyte/macrophage immunoregulation. Lancet 2(8251):839–842CrossRefPubMedGoogle Scholar
  32. 32.
    Udalova IA, Mantovani A, Feldmann M (2016) Macrophage heterogeneity in the context of rheumatoid arthritis. Nat Rev Rheumatol 12(8):472–485.  https://doi.org/10.1038/nrrheum.2016.91 CrossRefPubMedGoogle Scholar
  33. 33.
    Stout RD, Suttles J (2004) Functional plasticity of macrophages: reversible adaptation to changing microenvironments. J Leukoc Biol 76(3):509–513.  https://doi.org/10.1189/jlb.0504272 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Tarique AA, Logan J, Thomas E, Holt PG, Sly PD, Fantino E (2015) Phenotypic, functional, and plasticity features of classical and alternatively activated human macrophages. Am J Respir Cell Mol Biol 53(5):676–688.  https://doi.org/10.1165/rcmb.2015-0012OC CrossRefPubMedGoogle Scholar
  35. 35.
    Moghaddam AS, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, Seifi B, Mohammadi A, Afshari JT, Sahebkar A (2018) Macrophage plasticity, polarization and function in health and disease. J Cell Physiol.  https://doi.org/10.1002/jcp.26429
  36. 36.
    Kennedy A, Fearon U, Veale DJ, Godson C (2011) Macrophages in synovial inflammation. Front Immunol 2:52.  https://doi.org/10.3389/fimmu.2011.00052 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Ye L, Wen Z, Li Y, Chen B, Yu T, Liu L, Zhang J, Ma Y, Xiao S, Ding L, Li L, Huang Z (2014) Interleukin-10 attenuation of collagen-induced arthritis is associated with suppression of interleukin-17 and retinoid-related orphan receptor gammat production in macrophages and repression of classically activated macrophages. Arthritis Res Ther 16(2):R96.  https://doi.org/10.1186/ar4544 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Kotake S, Yago T, Kawamoto M, Nanke Y (2012) Role of osteoclasts and interleukin-17 in the pathogenesis of rheumatoid arthritis: crucial 'human osteoclastology'. J Bone Miner Metab 30(2):125–135.  https://doi.org/10.1007/s00774-011-0321-5 CrossRefPubMedGoogle Scholar
  39. 39.
    Schett G, Teitelbaum SL (2009) Osteoclasts and Arthritis. J Bone Miner Res 24(7):1142–1146.  https://doi.org/10.1359/jbmr.090533 CrossRefPubMedGoogle Scholar
  40. 40.
    Hamilton JA, Filonzi EL, Ianches G (1993) Regulation of macrophage colony-stimulating factor (M-CSF) production in cultured human synovial fibroblasts. Growth Factors 9(2):157–165CrossRefPubMedGoogle Scholar
  41. 41.
    Shigeyama Y, Pap T, Kunzler P, Simmen BR, Gay RE, Gay S (2000) Expression of osteoclast differentiation factor in rheumatoid arthritis. Arthritis Rheum 43(11):2523–2530.  https://doi.org/10.1002/1529-0131(200011)43:11<2523::AID-ANR20>3.0.CO;2-Z CrossRefPubMedGoogle Scholar
  42. 42.
    Teitelbaum SL (2000) Osteoclasts, integrins, and osteoporosis. J Bone Miner Metab 18(6):344–349CrossRefPubMedGoogle Scholar
  43. 43.
    Garimella MG, Kour S, Piprode V, Mittal M, Kumar A, Rani L, Pote ST, Mishra GC, Chattopadhyay N, Wani MR (2015) Adipose-derived mesenchymal stem cells prevent systemic bone loss in collagen-induced arthritis. J Immunol 195(11):5136–5148.  https://doi.org/10.4049/jimmunol.1500332 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Abumaree MH, Al Jumah MA, Kalionis B, Jawdat D, Al Khaldi A, Abomaray FM, Fatani AS, Chamley LW, Knawy BA (2013) Human placental mesenchymal stem cells (pMSCs) play a role as immune suppressive cells by shifting macrophage differentiation from inflammatory M1 to anti-inflammatory M2 macrophages. Stem Cell Rev 9(5):620–641.  https://doi.org/10.1007/s12015-013-9455-2 CrossRefPubMedGoogle Scholar
  45. 45.
    Uccelli A, de Rosbo NK (2015) The immunomodulatory function of mesenchymal stem cells: mode of action and pathways. Ann N Y Acad Sci 1351:114–126.  https://doi.org/10.1111/nyas.12815 CrossRefPubMedGoogle Scholar
  46. 46.
    Choi H, Lee RH, Bazhanov N, Oh JY, Prockop DJ (2011) Anti-inflammatory protein TSG-6 secreted by activated MSCs attenuates zymosan-induced mouse peritonitis by decreasing TLR2/NF-kappaB signaling in resident macrophages. Blood 118(2):330–338.  https://doi.org/10.1182/blood-2010-12-327353 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Ortiz LA, Dutreil M, Fattman C, Pandey AC, Torres G, Go K, Phinney DG (2007) Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc Natl Acad Sci U S A 104(26):11002–11007.  https://doi.org/10.1073/pnas.0704421104 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Fogel LA, Yokoyama WM, French AR (2013) Natural killer cells in human autoimmune disorders. Arthritis Res Ther 15(4):216.  https://doi.org/10.1186/ar4232 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Soderstrom K, Stein E, Colmenero P, Purath U, Muller-Ladner U, de Matos CT, Tarner IH, Robinson WH, Engleman EG (2010) Natural killer cells trigger osteoclastogenesis and bone destruction in arthritis. Proc Natl Acad Sci U S A 107(29):13028–13033.  https://doi.org/10.1073/pnas.1000546107 CrossRefPubMedGoogle Scholar
  50. 50.
    Lo CK, Lam QL, Sun L, Wang S, Ko KH, Xu H, Wu CY, Zheng BJ, Lu L (2008) Natural killer cell degeneration exacerbates experimental arthritis in mice via enhanced interleukin-17 production. Arthritis Rheum 58(9):2700–2711.  https://doi.org/10.1002/art.23760 CrossRefPubMedGoogle Scholar
  51. 51.
    Leavenworth JW, Wang X, Wenander CS, Spee P, Cantor H (2011) Mobilization of natural killer cells inhibits development of collagen-induced arthritis. Proc Natl Acad Sci U S A 108(35):14584–14589.  https://doi.org/10.1073/pnas.1112188108 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Spaggiari GM, Capobianco A, Becchetti S, Mingari MC, Moretta L (2006) Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood 107(4):1484–1490.  https://doi.org/10.1182/blood-2005-07-2775 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Moretta L, Moretta A (2004) Unravelling natural killer cell function: triggering and inhibitory human NK receptors. EMBO J 23(2):255–259.  https://doi.org/10.1038/sj.emboj.7600019 CrossRefPubMedGoogle Scholar
  54. 54.
    Almeida CR, Caires HR, Vasconcelos DP, Barbosa MA (2016) NAP-2 secreted by human NK cells can stimulate mesenchymal stem/stromal cell recruitment. Stem Cell Rep 6(4):466–473.  https://doi.org/10.1016/j.stemcr.2016.02.012 CrossRefGoogle Scholar
  55. 55.
    Klareskog L, Amara K, Malmstrom V (2014) Adaptive immunity in rheumatoid arthritis: anticitrulline and other antibodies in the pathogenesis of rheumatoid arthritis. Curr Opin Rheumatol 26(1):72–79.  https://doi.org/10.1097/BOR.0000000000000016 CrossRefPubMedGoogle Scholar
  56. 56.
    Hamel KM, Cao Y, Olalekan SA, Finnegan A (2014) B cell-specific expression of inducible costimulator ligand is necessary for the induction of arthritis in mice. Arthritis Rheum 66(1):60–67.  https://doi.org/10.1002/art.38207 CrossRefGoogle Scholar
  57. 57.
    Abbas AK, Sharpe AH (2005) Dendritic cells giveth and taketh away. Nat Immunol 6(3):227–228.  https://doi.org/10.1038/ni0305-227 CrossRefPubMedGoogle Scholar
  58. 58.
    Sennikov SV, Falaleeva SA, Shkaruba NS, Chumasova OA, Obleukhova IA, Sizikov AE, Kurilin VV (2016) Maturation and cytokine production potential of dendritic cells isolated from rheumatoid arthritis patients peripheral blood and induced in vitro. Hum Immunol 77(10):930–936.  https://doi.org/10.1016/j.humimm.2016.07.005 CrossRefPubMedGoogle Scholar
  59. 59.
    Byun SH, Lee JH, Jung NC, Choi HJ, Song JY, Seo HG, Choi J, Jung SY, Kang S, Choi YS, Chung JH, Lim DS (2016) Rosiglitazone-mediated dendritic cells ameliorate collagen-induced arthritis in mice. Biochem Pharmacol 115:85–93.  https://doi.org/10.1016/j.bcp.2016.05.009 CrossRefPubMedGoogle Scholar
  60. 60.
    Jiang XX, Zhang Y, Liu B, Zhang SX, Wu Y, Yu XD, Mao N (2005) Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood 105(10):4120–4126.  https://doi.org/10.1182/blood-2004-02-0586 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Li H, Guo Z, Jiang X, Zhu H, Li X, Mao N (2008) Mesenchymal stem cells alter migratory property of T and dendritic cells to delay the development of murine lethal acute graft-versus-host disease. Stem Cells 26(10):2531–2541.  https://doi.org/10.1634/stemcells.2008-0146 CrossRefPubMedGoogle Scholar
  62. 62.
    Chiesa S, Morbelli S, Morando S, Massollo M, Marini C, Bertoni A, Frassoni F, Bartolome ST, Sambuceti G, Traggiai E, Uccelli A (2011) Mesenchymal stem cells impair in vivo T-cell priming by dendritic cells. Proc Natl Acad Sci U S A 108(42):17384–17389.  https://doi.org/10.1073/pnas.1103650108 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Djouad F, Charbonnier LM, Bouffi C, Louis-Plence P, Bony C, Apparailly F, Cantos C, Jorgensen C, Noel D (2007) Mesenchymal stem cells inhibit the differentiation of dendritic cells through an interleukin-6-dependent mechanism. Stem Cells 25(8):2025–2032.  https://doi.org/10.1634/stemcells.2006-0548 CrossRefPubMedGoogle Scholar
  64. 64.
    Lund FE, Randall TD (2010) Effector and regulatory B cells: modulators of CD4+ T cell immunity. Nat Rev Immunol 10(4):236–247.  https://doi.org/10.1038/nri2729 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Franquesa M, Mensah FK, Huizinga R, Strini T, Boon L, Lombardo E, DelaRosa O, Laman JD, Grinyo JM, Weimar W, Betjes MG, Baan CC, Hoogduijn MJ (2015) Human adipose tissue-derived mesenchymal stem cells abrogate plasmablast formation and induce regulatory B cells independently of T helper cells. Stem Cells 33(3):880–891.  https://doi.org/10.1002/stem.1881 CrossRefPubMedGoogle Scholar
  66. 66.
    Traggiai E, Volpi S, Schena F, Gattorno M, Ferlito F, Moretta L, Martini A (2008) Bone marrow-derived mesenchymal stem cells induce both polyclonal expansion and differentiation of B cells isolated from healthy donors and systemic lupus erythematosus patients. Stem Cells 26(2):562–569.  https://doi.org/10.1634/stemcells.2007-0528 CrossRefPubMedGoogle Scholar
  67. 67.
    Rosado MM, Bernardo ME, Scarsella M, Conforti A, Giorda E, Biagini S, Cascioli S, Rossi F, Guzzo I, Vivarelli M, Dello Strologo L, Emma F, Locatelli F, Carsetti R (2015) Inhibition of B-cell proliferation and antibody production by mesenchymal stromal cells is mediated by T cells. Stem Cells Dev 24(1):93–103.  https://doi.org/10.1089/scd.2014.0155 CrossRefPubMedGoogle Scholar
  68. 68.
    Schena F, Gambini C, Gregorio A, Mosconi M, Reverberi D, Gattorno M, Casazza S, Uccelli A, Moretta L, Martini A, Traggiai E (2010) Interferon-gamma-dependent inhibition of B cell activation by bone marrow-derived mesenchymal stem cells in a murine model of systemic lupus erythematosus. Arthritis Rheum 62(9):2776–2786.  https://doi.org/10.1002/art.27560 CrossRefPubMedGoogle Scholar
  69. 69.
    Asari S, Itakura S, Ferreri K, Liu CP, Kuroda Y, Kandeel F, Mullen Y (2009) Mesenchymal stem cells suppress B-cell terminal differentiation. Exp Hematol 37(5):604–615.  https://doi.org/10.1016/j.exphem.2009.01.005 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Che N, Li X, Zhang L, Liu R, Chen H, Gao X, Shi S, Chen W, Sun L (2014) Impaired B cell inhibition by lupus bone marrow mesenchymal stem cells is caused by reduced CCL2 expression. J Immunol 193(10):5306–5314.  https://doi.org/10.4049/jimmunol.1400036 CrossRefPubMedGoogle Scholar
  71. 71.
    Qin Y, Zhou Z, Zhang F, Wang Y, Shen B, Liu Y, Guo Y, Fan Y, Qiu J (2015) Induction of regulatory B-cells by mesenchymal stem cells is affected by SDF-1alpha-CXCR7. Cell Physiol Biochem 37(1):117–130.  https://doi.org/10.1159/000430338 CrossRefPubMedGoogle Scholar
  72. 72.
    Van Boxel JA, Paget SA (1975) Predominantly T-cell infiltrate in rheumatoid synovial membranes. N Engl J Med 293(11):517–520.  https://doi.org/10.1056/NEJM197509112931101 CrossRefPubMedGoogle Scholar
  73. 73.
    Abdel-Nour AN, Elson CJ, Dieppe PA (1986) Proliferative responses of T-cell lines grown from joint fluids of patients with rheumatoid arthritis and other arthritides. Immunol Lett 12(5-6):329–333CrossRefPubMedGoogle Scholar
  74. 74.
    Gravano DM, Hoyer KK (2013) Promotion and prevention of autoimmune disease by CD8+ T cells. J Autoimmun 45:68–79.  https://doi.org/10.1016/j.jaut.2013.06.004 CrossRefPubMedGoogle Scholar
  75. 75.
    Petrelli A, van Wijk F (2016) CD8(+) T cells in human autoimmune arthritis: the unusual suspects. Nat Rev Rheumatol 12(7):421–428.  https://doi.org/10.1038/nrrheum.2016.74 CrossRefPubMedGoogle Scholar
  76. 76.
    Engela AU, Baan CC, Litjens NH, Franquesa M, Betjes MG, Weimar W, Hoogduijn MJ (2013) Mesenchymal stem cells control alloreactive CD8(+) CD28(-) T cells. Clin Exp Immunol 174(3):449–458.  https://doi.org/10.1111/cei.12199 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Liu Q, Zheng H, Chen X, Peng Y, Huang W, Li X, Li G, Xia W, Sun Q, Xiang AP (2015) Human mesenchymal stromal cells enhance the immunomodulatory function of CD8(+)CD28(-) regulatory T cells. Cell Mol Immunol 12(6):708–718.  https://doi.org/10.1038/cmi.2014.118 CrossRefPubMedGoogle Scholar
  78. 78.
    Homey B (2006) After TH1/TH2 now comes Treg/TH17: significance of T helper cells in immune response organization. Hautarzt 57(8):730–732.  https://doi.org/10.1007/s00105-006-1199-3 CrossRefPubMedGoogle Scholar
  79. 79.
    Luckheeram RV, Zhou R, Verma AD, Xia B (2012) CD4(+)T cells: differentiation and functions. Clin Dev Immunol 2012:925135.  https://doi.org/10.1155/2012/925135 CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, Cua DJ, Littman DR (2006) The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126(6):1121–1133.  https://doi.org/10.1016/j.cell.2006.07.035 CrossRefPubMedGoogle Scholar
  81. 81.
    Annunziato F, Cosmi L, Santarlasci V, Maggi L, Liotta F, Mazzinghi B, Parente E, Fili L, Ferri S, Frosali F, Giudici F, Romagnani P, Parronchi P, Tonelli F, Maggi E, Romagnani S (2007) Phenotypic and functional features of human Th17 cells. J Exp Med 204(8):1849–1861.  https://doi.org/10.1084/jem.20070663 CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Morita Y, Yamamura M, Kawashima M, Harada S, Tsuji K, Shibuya K, Maruyama K, Makino H (1998) Flow cytometric single-cell analysis of cytokine production by CD4+ T cells in synovial tissue and peripheral blood from patients with rheumatoid arthritis. Arthritis Rheum 41(9):1669–1676.  https://doi.org/10.1002/1529-0131(199809)41:9<1669::AID-ART19>3.0.CO;2-G CrossRefPubMedGoogle Scholar
  83. 83.
    Simon AK, Seipelt E, Sieper J (1994) Divergent T-cell cytokine patterns in inflammatory arthritis. Proc Natl Acad Sci U S A 91(18):8562–8566CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Malfait AM, Butler DM, Presky DH, Maini RN, Brennan FM, Feldmann M (1998) Blockade of IL-12 during the induction of collagen-induced arthritis (CIA) markedly attenuates the severity of the arthritis. Clin Exp Immunol 111(2):377–383CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Murphy CA, Langrish CL, Chen Y, Blumenschein W, McClanahan T, Kastelein RA, Sedgwick JD, Cua DJ (2003) Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J Exp Med 198(12):1951–1957.  https://doi.org/10.1084/jem.20030896 CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Oppmann B, Lesley R, Blom B, Timans JC, Xu Y, Hunte B, Vega F, Yu N, Wang J, Singh K, Zonin F, Vaisberg E, Churakova T, Liu M, Gorman D, Wagner J, Zurawski S, Liu Y, Abrams JS, Moore KW, Rennick D, de Waal-Malefyt R, Hannum C, Bazan JF, Kastelein RA (2000) Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 13(5):715–725CrossRefGoogle Scholar
  87. 87.
    Vermeire K, Heremans H, Vandeputte M, Huang S, Billiau A, Matthys P (1997) Accelerated collagen-induced arthritis in IFN-gamma receptor-deficient mice. J Immunol 158(11):5507–5513PubMedGoogle Scholar
  88. 88.
    Sarkar S, Cooney LA, White P, Dunlop DB, Endres J, Jorns JM, Wasco MJ, Fox DA (2009) Regulation of pathogenic IL-17 responses in collagen-induced arthritis: roles of endogenous interferon-gamma and IL-4. Arthritis Res Ther 11(5):R158.  https://doi.org/10.1186/ar2838 CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Lubberts E (2015) Role of T lymphocytes in the development of rheumatoid arthritis. Implications for treatment. Curr Pharm Des 21(2):142–146CrossRefPubMedGoogle Scholar
  90. 90.
    Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Weiner HL, Kuchroo VK (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441(7090):235–238.  https://doi.org/10.1038/nature04753 CrossRefPubMedGoogle Scholar
  91. 91.
    Shevach EM (2009) Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity 30(5):636–645.  https://doi.org/10.1016/j.immuni.2009.04.010 CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Buckner JH (2010) Mechanisms of impaired regulation by CD4(+)CD25(+)FOXP3(+) regulatory T cells in human autoimmune diseases. Nat Rev Immunol 10(12):849–859.  https://doi.org/10.1038/nri2889 CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Niu Q, Cai B, Huang ZC, Shi YY, Wang LL (2012) Disturbed Th17/Treg balance in patients with rheumatoid arthritis. Rheumatol Int 32(9):2731–2736.  https://doi.org/10.1007/s00296-011-1984-x CrossRefPubMedGoogle Scholar
  94. 94.
    Ehrenstein MR, Evans JG, Singh A, Moore S, Warnes G, Isenberg DA, Mauri C (2004) Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFalpha therapy. J Exp Med 200(3):277–285.  https://doi.org/10.1084/jem.20040165 CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, Grisanti S, Gianni AM (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99(10):3838–3843CrossRefPubMedGoogle Scholar
  96. 96.
    English K, Ryan JM, Tobin L, Murphy MJ, Barry FP, Mahon BP (2009) Cell contact, prostaglandin E(2) and transforming growth factor beta 1 play non-redundant roles in human mesenchymal stem cell induction of CD4+CD25(High) forkhead box P3+ regulatory T cells. Clin Exp Immunol 156(1):149–160.  https://doi.org/10.1111/j.1365-2249.2009.03874.x CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Tatara R, Ozaki K, Kikuchi Y, Hatanaka K, Oh I, Meguro A, Matsu H, Sato K, Ozawa K (2011) Mesenchymal stromal cells inhibit Th17 but not regulatory T-cell differentiation. Cytotherapy 13(6):686–694.  https://doi.org/10.3109/14653249.2010.542456 CrossRefPubMedGoogle Scholar
  98. 98.
    Ghannam S, Pene J, Moquet-Torcy G, Jorgensen C, Yssel H (2010) Mesenchymal stem cells inhibit human Th17 cell differentiation and function and induce a T regulatory cell phenotype. J Immunol 185(1):302–312.  https://doi.org/10.4049/jimmunol.0902007 CrossRefPubMedGoogle Scholar
  99. 99.
    Luz-Crawford P, Noel D, Fernandez X, Khoury M, Figueroa F, Carrion F, Jorgensen C, Djouad F (2012) Mesenchymal stem cells repress Th17 molecular program through the PD-1 pathway. PLoS One 7(9):e45272.  https://doi.org/10.1371/journal.pone.0045272 CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Duffy MM, Pindjakova J, Hanley SA, McCarthy C, Weidhofer GA, Sweeney EM, English K, Shaw G, Murphy JM, Barry FP, Mahon BP, Belton O, Ceredig R, Griffin MD (2011) Mesenchymal stem cell inhibition of T-helper 17 cell- differentiation is triggered by cell-cell contact and mediated by prostaglandin E2 via the EP4 receptor. Eur J Immunol 41(10):2840–2851.  https://doi.org/10.1002/eji.201141499 CrossRefPubMedGoogle Scholar
  101. 101.
    Obermajer N, Popp FC, Soeder Y, Haarer J, Geissler EK, Schlitt HJ, Dahlke MH (2014) Conversion of Th17 into IL-17A(neg) regulatory T cells: a novel mechanism in prolonged allograft survival promoted by mesenchymal stem cell-supported minimized immunosuppressive therapy. J Immunol 193(10):4988–4999.  https://doi.org/10.4049/jimmunol.1401776 CrossRefPubMedGoogle Scholar
  102. 102.
    Selleri S, Dieng MM, Nicoletti S, Louis I, Beausejour C, Le Deist F, Haddad E (2013) Cord-blood-derived mesenchymal stromal cells downmodulate CD4+ T-cell activation by inducing IL-10-producing Th1 cells. Stem Cells Dev 22(7):1063–1075.  https://doi.org/10.1089/scd.2012.0315 CrossRefPubMedGoogle Scholar
  103. 103.
    Chao YH, Wu HP, Wu KH, Tsai YG, Peng CT, Lin KC, Chao WR, Lee MS, Fu YC (2014) An increase in CD3+CD4+CD25+ regulatory T cells after administration of umbilical cord-derived mesenchymal stem cells during sepsis. PLoS One 9(10):e110338.  https://doi.org/10.1371/journal.pone.0110338 CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Luz-Crawford P, Tejedor G, Mausset-Bonnefont AL, Beaulieu E, Morand EF, Jorgensen C, Noel D, Djouad F (2015) Glucocorticoid-induced leucine zipper governs the therapeutic potential of mesenchymal stem cells by inducing a switch from pathogenic to regulatory Th17 cells in a mouse model of collagen-induced arthritis. Arthritis Rheum 67(6):1514–1524.  https://doi.org/10.1002/art.39069 CrossRefGoogle Scholar
  105. 105.
    Perez-Sayans M, Somoza-Martin JM, Barros-Angueira F, Rey JM, Garcia-Garcia A (2010) RANK/RANKL/OPG role in distraction osteogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 109(5):679–686.  https://doi.org/10.1016/j.tripleo.2009.10.042 CrossRefPubMedGoogle Scholar
  106. 106.
    Tsuboi H, Matsui Y, Hayashida K, Yamane S, Maeda-Tanimura M, Nampei A, Hashimoto J, Suzuki R, Yoshikawa H, Ochi T (2003) Tartrate resistant acid phosphatase (TRAP) positive cells in rheumatoid synovium may induce the destruction of articular cartilage. Ann Rheum Dis 62(3):196–203CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Cho KA, Park M, Kim YH, Ryu KH, Woo SY (2017) Mesenchymal stem cells inhibit RANK-RANKL interactions between osteoclasts and Th17 cells via osteoprotegerin activity. Oncotarget 8(48):83419–83431.  https://doi.org/10.18632/oncotarget.21379 CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Bose T (2017) Role of Immunological Memory Cells as a Therapeutic Target in Multiple Sclerosis. Brain Sci 7(11).  https://doi.org/10.3390/brainsci7110148 CrossRefPubMedCentralGoogle Scholar
  109. 109.
    Farber DL, Yudanin NA, Restifo NP (2014) Human memory T cells: generation, compartmentalization and homeostasis. Nat Rev Immunol 14(1):24–35.  https://doi.org/10.1038/nri3567 CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Sanders ME, Makgoba MW, Sharrow SO, Stephany D, Springer TA, Young HA, Shaw S (1988) Human memory T lymphocytes express increased levels of three cell adhesion molecules (LFA-3, CD2, and LFA-1) and three other molecules (UCHL1, CDw29, and Pgp-1) and have enhanced IFN-gamma production. J Immunol 140(5):1401–1407PubMedGoogle Scholar
  111. 111.
    Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A (1999) Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401(6754):708–712.  https://doi.org/10.1038/44385 CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Rosenblum MD, Way SS, Abbas AK (2016) Regulatory T cell memory. Nat Rev Immunol 16(2):90–101.  https://doi.org/10.1038/nri.2015.1 CrossRefPubMedGoogle Scholar
  113. 113.
    Sallusto F, Geginat J, Lanzavecchia A (2004) Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu Rev Immunol 22:745–763.  https://doi.org/10.1146/annurev.immunol.22.012703.104702 CrossRefPubMedGoogle Scholar
  114. 114.
    Kohem CL, Brezinschek RI, Wisbey H, Tortorella C, Lipsky PE, Oppenheimer-Marks N (1996) Enrichment of differentiated CD45RBdim,CD27- memory T cells in the peripheral blood, synovial fluid, and synovial tissue of patients with rheumatoid arthritis. Arthritis Rheum 39(5):844–854CrossRefPubMedGoogle Scholar
  115. 115.
    Cohen SB, Katsikis PD, Chu CQ, Thomssen H, Webb LM, Maini RN, Londei M, Feldmann M (1995) High level of interleukin-10 production by the activated T cell population within the rheumatoid synovial membrane. Arthritis Rheum 38(7):946–952CrossRefPubMedGoogle Scholar
  116. 116.
    Dolhain RJ, ter Haar NT, Hoefakker S, Tak PP, de Ley M, Claassen E, Breedveld FC, Miltenburg AM (1996) Increased expression of interferon (IFN)-gamma together with IFN-gamma receptor in the rheumatoid synovial membrane compared with synovium of patients with osteoarthritis. Br J Rheumatol 35(1):24–32CrossRefPubMedGoogle Scholar
  117. 117.
    Grom AA, Murray KJ, Luyrink L, Emery H, Passo MH, Glass DN, Bowlin T, Edwards C 3rd (1996) Patterns of expression of tumor necrosis factor alpha, tumor necrosis factor beta, and their receptors in synovia of patients with juvenile rheumatoid arthritis and juvenile spondylarthropathy. Arthritis Rheum 39(10):1703–1710CrossRefPubMedGoogle Scholar
  118. 118.
    MacDonald KP, Nishioka Y, Lipsky PE, Thomas R (1997) Functional CD40 ligand is expressed by T cells in rheumatoid arthritis. J Clin Invest 100(9):2404–2414.  https://doi.org/10.1172/JCI119781 CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Mosmann TR, Sad S (1996) The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol Today 17(3):138–146CrossRefPubMedGoogle Scholar
  120. 120.
    Smeets TJ, Dolhain R, Miltenburg AM, de Kuiper R, Breedveld FC, Tak PP (1998) Poor expression of T cell-derived cytokines and activation and proliferation markers in early rheumatoid synovial tissue. Clin Immunol Immunopathol 88(1):84–90CrossRefPubMedGoogle Scholar
  121. 121.
    Kapranov NM, Davydova YO, Galtseva IV, Petinati NA, Drize NI, Kuzmina LA, Parovichnikova EN, Savchenko VG (2017) Effect of priming of multipotent mesenchymal stromal cells with interferon gamma on their immunomodulating properties. Biochem Biokhimiia 82(10):1158–1168.  https://doi.org/10.1134/S000629791710008X CrossRefGoogle Scholar
  122. 122.
    Laranjeira P, Pedrosa M, Pedreiro S, Gomes J, Martinho A, Antunes B, Ribeiro T, Santos F, Trindade H, Paiva A (2015) Effect of human bone marrow mesenchymal stromal cells on cytokine production by peripheral blood naive, memory, and effector T cells. Stem Cell Res Ther 6:3.  https://doi.org/10.1186/scrt537 CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Ribeiro A, Laranjeira P, Mendes S, Velada I, Leite C, Andrade P, Santos F, Henriques A, Graos M, Cardoso CM, Martinho A, Pais M, da Silva CL, Cabral J, Trindade H, Paiva A (2013) Mesenchymal stem cells from umbilical cord matrix, adipose tissue and bone marrow exhibit different capability to suppress peripheral blood B, natural killer and T cells. Stem Cell Res Ther 4(5):125.  https://doi.org/10.1186/scrt336 CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Krampera M, Glennie S, Dyson J, Scott D, Laylor R, Simpson E, Dazzi F (2003) Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 101(9):3722–3729.  https://doi.org/10.1182/blood-2002-07-2104 CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Pianta S, Bonassi Signoroni P, Muradore I, Rodrigues MF, Rossi D, Silini A, Parolini O (2015) Amniotic membrane mesenchymal cells-derived factors skew T cell polarization toward Treg and downregulate Th1 and Th17 cells subsets. Stem Cell Rev 11(3):394–407.  https://doi.org/10.1007/s12015-014-9558-4 CrossRefPubMedGoogle Scholar
  126. 126.
    Hsu SC, Wang LT, Yao CL, Lai HY, Chan KY, Liu BS, Chong P, Lee OK, Chen HW (2013) Mesenchymal stem cells promote neutrophil activation by inducing IL-17 production in CD4+ CD45RO+ T cells. Immunobiology 218(1):90–95.  https://doi.org/10.1016/j.imbio.2012.02.007 CrossRefPubMedGoogle Scholar
  127. 127.
    Akbar AN, Fletcher JM (2005) Memory T cell homeostasis and senescence during aging. Curr Opin Immunol 17(5):480–485.  https://doi.org/10.1016/j.coi.2005.07.019 CrossRefPubMedGoogle Scholar
  128. 128.
    Ojdana D, Safiejko K, Lipska A, Radziwon P, Dadan J, Tryniszewska E (2008) Effector and memory CD4+ and CD8+ T cells in the chronic infection process. Folia Histochem Cytobiol 46(4):413–417.  https://doi.org/10.2478/v10042-008-0077-5 CrossRefPubMedGoogle Scholar
  129. 129.
    Mack M, Bruhl H, Gruber R, Jaeger C, Cihak J, Eiter V, Plachy J, Stangassinger M, Uhlig K, Schattenkirchner M, Schlondorff D (1999) Predominance of mononuclear cells expressing the chemokine receptor CCR5 in synovial effusions of patients with different forms of arthritis. Arthritis Rheum 42(5):981–988.  https://doi.org/10.1002/1529-0131(199905)42:5<981::AID-ANR17>3.0.CO;2-4 CrossRefPubMedGoogle Scholar
  130. 130.
    Nanki T, Lipsky PE (2000) Cytokine, activation marker, and chemokine receptor expression by individual CD4(+) memory T cells in rheumatoid arthritis synovium. Arthritis Res 2(5):415–423.  https://doi.org/10.1186/ar120 CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Qin S, Rottman JB, Myers P, Kassam N, Weinblatt M, Loetscher M, Koch AE, Moser B, Mackay CR (1998) The chemokine receptors CXCR3 and CCR5 mark subsets of T cells associated with certain inflammatory reactions. J Clin Invest 101(4):746–754.  https://doi.org/10.1172/JCI1422 CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Suzuki N, Nakajima A, Yoshino S, Matsushima K, Yagita H, Okumura K (1999) Selective accumulation of CCR5+ T lymphocytes into inflamed joints of rheumatoid arthritis. Int Immunol 11(4):553–559CrossRefPubMedGoogle Scholar
  133. 133.
    Garred P, Madsen HO, Petersen J, Marquart H, Hansen TM, Freiesleben Sorensen S, Volck B, Svejgaard A, Andersen V (1998) CC chemokine receptor 5 polymorphism in rheumatoid arthritis. J Rheumatol 25(8):1462–1465PubMedGoogle Scholar
  134. 134.
    Liao F, Rabin RL, Smith CS, Sharma G, Nutman TB, Farber JM (1999) CC-chemokine receptor 6 is expressed on diverse memory subsets of T cells and determines responsiveness to macrophage inflammatory protein 3 alpha. J Immunol 162(1):186–194PubMedGoogle Scholar
  135. 135.
    Appay V, van Lier RA, Sallusto F, Roederer M (2008) Phenotype and function of human T lymphocyte subsets: consensus and issues. Cytometry A 73(11):975–983.  https://doi.org/10.1002/cyto.a.20643 CrossRefPubMedGoogle Scholar
  136. 136.
    Goronzy JJ, Weyand CM (2001) Thymic function and peripheral T-cell homeostasis in rheumatoid arthritis. Trends Immunol 22(5):251–255CrossRefPubMedGoogle Scholar
  137. 137.
    Vallejo AN, Bryl E, Klarskov K, Naylor S, Weyand CM, Goronzy JJ (2002) Molecular basis for the loss of CD28 expression in senescent T cells. J Biol Chem 277(49):46940–46949.  https://doi.org/10.1074/jbc.M207352200 CrossRefPubMedGoogle Scholar
  138. 138.
    Appay V, Zaunders JJ, Papagno L, Sutton J, Jaramillo A, Waters A, Easterbrook P, Grey P, Smith D, McMichael AJ, Cooper DA, Rowland-Jones SL, Kelleher AD (2002) Characterization of CD4(+) CTLs ex vivo. J Immunol 168(11):5954–5958CrossRefPubMedGoogle Scholar
  139. 139.
    Park W, Weyand CM, Schmidt D, Goronzy JJ (1997) Co-stimulatory pathways controlling activation and peripheral tolerance of human CD4+CD28- T cells. Eur J Immunol 27(5):1082–1090.  https://doi.org/10.1002/eji.1830270507 CrossRefPubMedGoogle Scholar
  140. 140.
    Teo FH, de Oliveira RT, Mamoni RL, Ferreira MC, Nadruz W Jr, Coelho OR, Fernandes Jde L, Blotta MH (2013) Characterization of CD4+CD28null T cells in patients with coronary artery disease and individuals with risk factors for atherosclerosis. Cell Immunol 281(1):11–19.  https://doi.org/10.1016/j.cellimm.2013.01.007 CrossRefPubMedGoogle Scholar
  141. 141.
    Warrington KJ, Takemura S, Goronzy JJ, Weyand CM (2001) CD4+,CD28- T cells in rheumatoid arthritis patients combine features of the innate and adaptive immune systems. Arthritis Rheum 44(1):13–20.  https://doi.org/10.1002/1529-0131(200101)44:1<13::AID-ANR3>3.0.CO;2-6 CrossRefPubMedGoogle Scholar
  142. 142.
    Fasth AE, Bjorkstrom NK, Anthoni M, Malmberg KJ, Malmstrom V (2010) Activating NK-cell receptors co-stimulate CD4(+)CD28(-) T cells in patients with rheumatoid arthritis. Eur J Immunol 40(2):378–387.  https://doi.org/10.1002/eji.200939399 CrossRefPubMedGoogle Scholar
  143. 143.
    Namekawa T, Snyder MR, Yen JH, Goehring BE, Leibson PJ, Weyand CM, Goronzy JJ (2000) Killer cell activating receptors function as costimulatory molecules on CD4+CD28null T cells clonally expanded in rheumatoid arthritis. J Immunol 165(2):1138–1145CrossRefPubMedGoogle Scholar
  144. 144.
    Namekawa T, Wagner UG, Goronzy JJ, Weyand CM (1998) Functional subsets of CD4 T cells in rheumatoid synovitis. Arthritis Rheum 41(12):2108–2116.  https://doi.org/10.1002/1529-0131(199812)41:12<2108::AID-ART5>3.0.CO;2-Q CrossRefPubMedGoogle Scholar
  145. 145.
    Zhang X, Nakajima T, Goronzy JJ, Weyand CM (2005) Tissue trafficking patterns of effector memory CD4+ T cells in rheumatoid arthritis. Arthritis Rheum 52(12):3839–3849.  https://doi.org/10.1002/art.21482 CrossRefPubMedGoogle Scholar
  146. 146.
    Ivanova-Todorova E, Bochev I, Dimitrov R, Belemezova K, Mourdjeva M, Kyurkchiev S, Kinov P, Altankova I, Kyurkchiev D (2012) Conditioned medium from adipose tissue-derived mesenchymal stem cells induces CD4+FOXP3+ cells and increases IL-10 secretion. J Biomed Biotechnol 2012:295167.  https://doi.org/10.1155/2012/295167 CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Kyurkchiev D, Ivanova-Todorova E, Bochev I, Mourdjeva M, Kyurkchiev S (2013) Differences between adipose tissue-derived mesenchymal stem cells and bone marrow-derived mesenchymal stem cells as regulators of the immune response. In: Hayat MA (ed) Stem cells and cancer stem cells, Therapeutic applications in disease and injury, vol 10. Springer, Dordrecht, pp 71–84.  https://doi.org/10.1007/978-94-007-6262-6_7 CrossRefGoogle Scholar
  148. 148.
    Meirelles Lda S, Fontes AM, Covas DT, Caplan AI (2009) Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev 20(5-6):419–427.  https://doi.org/10.1016/j.cytogfr.2009.10.002 CrossRefPubMedGoogle Scholar
  149. 149.
    McGeachy MJ, Singh D, Henkel M, Moreland L (2016) Th17/TfH cells in rheumatoid arthritis: correlations with disease activity and therapy response. J Immunol 196(1 Suppl):51.23Google Scholar
  150. 150.
    Hu C, Qian L, Miao Y, Huang Q, Miao P, Wang P, Yu Q, Nie H, Zhang J, He D, Xu R, Chen X, Liu B, Zhang D (2012) Antigen-presenting effects of effector memory Vgamma9Vdelta2 T cells in rheumatoid arthritis. Cell Mol Immunol 9(3):245–254.  https://doi.org/10.1038/cmi.2011.50 CrossRefPubMedGoogle Scholar
  151. 151.
    Liu X, Feng T, Gong T, Shen C, Zhu T, Wu Q, Li Q, Li H (2015) Human umbilical cord mesenchymal stem cells inhibit the function of allogeneic activated Vgamma9Vdelta2 T lymphocytes in vitro. Biomed Res Int 2015:317801.  https://doi.org/10.1155/2015/317801 CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Martinet L, Fleury-Cappellesso S, Gadelorge M, Dietrich G, Bourin P, Fournié J-J, Poupot R (2009) A regulatory cross-talk between Vγ9Vδ2 T lymphocytes and mesenchymal stem cells. Eur J Immunol 39(3):752–762.  https://doi.org/10.1002/eji.200838812 CrossRefPubMedGoogle Scholar
  153. 153.
    Liu R, Li X, Zhang Z, Zhou M, Sun Y, Su D, Feng X, Gao X, Shi S, Chen W, Sun L (2015) Allogeneic mesenchymal stem cells inhibited T follicular helper cell generation in rheumatoid arthritis. Sci Rep 5:12777.  https://doi.org/10.1038/srep12777 CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Ueno H, Banchereau J, Vinuesa CG (2015) Pathophysiology of T follicular helper cells in humans and mice. Nat Immunol 16(2):142–152.  https://doi.org/10.1038/ni.3054 CrossRefPubMedPubMedCentralGoogle Scholar
  155. 155.
    Wang J, Shan Y, Jiang Z, Feng J, Li C, Ma L, Jiang Y (2013) High frequencies of activated B cells and T follicular helper cells are correlated with disease activity in patients with new-onset rheumatoid arthritis. Clin Exp Immunol 174(2):212–220.  https://doi.org/10.1111/cei.12162 CrossRefPubMedPubMedCentralGoogle Scholar
  156. 156.
    Liang J, Li X, Zhang H, Wang D, Feng X, Wang H, Hua B, Liu B, Sun L (2012) Allogeneic mesenchymal stem cells transplantation in patients with refractory RA. Clin Rheumatol 31(1):157–161.  https://doi.org/10.1007/s10067-011-1816-0 CrossRefPubMedGoogle Scholar
  157. 157.
    Okada Y, Wu D, Trynka G, Raj T, Terao C, Ikari K, Kochi Y, Ohmura K, Suzuki A, Yoshida S, Graham RR, Manoharan A, Ortmann W, Bhangale T, Denny JC, Carroll RJ, Eyler AE, Greenberg JD, Kremer JM, Pappas DA, Jiang L, Yin J, Ye L, Su DF, Yang J, Xie G, Keystone E, Westra HJ, Esko T, Metspalu A, Zhou X, Gupta N, Mirel D, Stahl EA, Diogo D, Cui J, Liao K, Guo MH, Myouzen K, Kawaguchi T, Coenen MJ, van Riel PL, van de Laar MA, Guchelaar HJ, Huizinga TW, Dieude P, Mariette X, Bridges SL Jr, Zhernakova A, Toes RE, Tak PP, Miceli-Richard C, Bang SY, Lee HS, Martin J, Gonzalez-Gay MA, Rodriguez-Rodriguez L, Rantapaa-Dahlqvist S, Arlestig L, Choi HK, Kamatani Y, Galan P, Lathrop M, Consortium R, Consortium G, Eyre S, Bowes J, Barton A, de Vries N, Moreland LW, Criswell LA, Karlson EW, Taniguchi A, Yamada R, Kubo M, Liu JS, Bae SC, Worthington J, Padyukov L, Klareskog L, Gregersen PK, Raychaudhuri S, Stranger BE, De Jager PL, Franke L, Visscher PM, Brown MA, Yamanaka H, Mimori T, Takahashi A, Xu H, Behrens TW, Siminovitch KA, Momohara S, Matsuda F, Yamamoto K, Plenge RM (2014) Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 506(7488):376–381.  https://doi.org/10.1038/nature12873 CrossRefPubMedGoogle Scholar
  158. 158.
    Diogo D, Okada Y, Plenge RM (2014) Genome-wide association studies to advance our understanding of critical cell types and pathways in rheumatoid arthritis: recent findings and challenges. Curr Opin Rheumatol 26(1):85–92.  https://doi.org/10.1097/BOR.0000000000000012 CrossRefPubMedGoogle Scholar
  159. 159.
    Gregersen PK, Silver J, Winchester RJ (1987) The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum 30(11):1205–1213CrossRefPubMedGoogle Scholar
  160. 160.
    Huizinga TW, Amos CI, van der Helm-van Mil AH, Chen W, van Gaalen FA, Jawaheer D, Schreuder GM, Wener M, Breedveld FC, Ahmad N, Lum RF, de Vries RR, Gregersen PK, Toes RE, Criswell LA (2005) Refining the complex rheumatoid arthritis phenotype based on specificity of the HLA-DRB1 shared epitope for antibodies to citrullinated proteins. Arthritis Rheum 52(11):3433–3438.  https://doi.org/10.1002/art.21385 CrossRefPubMedGoogle Scholar
  161. 161.
    Scally SW, Petersen J, Law SC, Dudek NL, Nel HJ, Loh KL, Wijeyewickrema LC, Eckle SB, van Heemst J, Pike RN, McCluskey J, Toes RE, La Gruta NL, Purcell AW, Reid HH, Thomas R, Rossjohn J (2013) A molecular basis for the association of the HLA-DRB1 locus, citrullination, and rheumatoid arthritis. J Exp Med 210(12):2569–2582.  https://doi.org/10.1084/jem.20131241 CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Amara K, Steen J, Murray F, Morbach H, Fernandez-Rodriguez BM, Joshua V, Engstrom M, Snir O, Israelsson L, Catrina AI, Wardemann H, Corti D, Meffre E, Klareskog L, Malmstrom V (2013) Monoclonal IgG antibodies generated from joint-derived B cells of RA patients have a strong bias toward citrullinated autoantigen recognition. J Exp Med 210(3):445–455.  https://doi.org/10.1084/jem.20121486 CrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    Buckley CD, Amft N, Bradfield PF, Pilling D, Ross E, Arenzana-Seisdedos F, Amara A, Curnow SJ, Lord JM, Scheel-Toellner D, Salmon M (2000) Persistent induction of the chemokine receptor CXCR4 by TGF-beta 1 on synovial T cells contributes to their accumulation within the rheumatoid synovium. J Immunol 165(6):3423–3429CrossRefPubMedGoogle Scholar
  164. 164.
    Nanki T, Hayashida K, El-Gabalawy HS, Suson S, Shi K, Girschick HJ, Yavuz S, Lipsky PE (2000) Stromal cell-derived factor-1-CXC chemokine receptor 4 interactions play a central role in CD4+ T cell accumulation in rheumatoid arthritis synovium. J Immunol 165(11):6590–6598CrossRefPubMedGoogle Scholar
  165. 165.
    Nagafuchi Y, Shoda H, Sumitomo S, Nakachi S, Kato R, Tsuchida Y, Tsuchiya H, Sakurai K, Hanata N, Tateishi S, Kanda H, Ishigaki K, Okada Y, Suzuki A, Kochi Y, Fujio K, Yamamoto K (2016) Immunophenotyping of rheumatoid arthritis reveals a linkage between HLA-DRB1 genotype, CXCR4 expression on memory CD4(+) T cells, and disease activity. Sci Rep 6:29338.  https://doi.org/10.1038/srep29338 CrossRefPubMedPubMedCentralGoogle Scholar
  166. 166.
    Hocking AM (2015) The role of chemokines in mesenchymal stem cell homing to wounds. Adv Wound Care 4(11):623–630.  https://doi.org/10.1089/wound.2014.0579 CrossRefGoogle Scholar
  167. 167.
    MacDonald GI, Augello A, De Bari C (2011) Role of mesenchymal stem cells in reestablishing immunologic tolerance in autoimmune rheumatic diseases. Arthritis Rheum 63(9):2547–2557.  https://doi.org/10.1002/art.30474 CrossRefPubMedGoogle Scholar
  168. 168.
    De Bari C (2015) Are mesenchymal stem cells in rheumatoid arthritis the good or bad guys? Arthritis Res Ther 17:113.  https://doi.org/10.1186/s13075-015-0634-1 CrossRefPubMedPubMedCentralGoogle Scholar
  169. 169.
    Alvaro-Gracia JM, Jover JA, Garcia-Vicuna R, Carreno L, Alonso A, Marsal S, Blanco F, Martinez-Taboada VM, Taylor P, Martin-Martin C, DelaRosa O, Tagarro I, Diaz-Gonzalez F (2017) Intravenous administration of expanded allogeneic adipose-derived mesenchymal stem cells in refractory rheumatoid arthritis (Cx611): results of a multicentre, dose escalation, randomised, single-blind, placebo-controlled phase Ib/IIa clinical trial. Ann Rheum Dis 76(1):196–202.  https://doi.org/10.1136/annrheumdis-2015-208918 CrossRefPubMedGoogle Scholar
  170. 170.
    Franceschetti T, De Bari C (2017) The potential role of adult stem cells in the management of the rheumatic diseases. Ther Adv Musculoskelet Dis 9(7):165–179.  https://doi.org/10.1177/1759720X17704639 CrossRefPubMedPubMedCentralGoogle Scholar
  171. 171.
    Krampera M, Cosmi L, Angeli R, Pasini A, Liotta F, Andreini A, Santarlasci V, Mazzinghi B, Pizzolo G, Vinante F, Romagnani P, Maggi E, Romagnani S, Annunziato F (2006) Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells 24(2):386–398.  https://doi.org/10.1634/stemcells.2005-0008 CrossRefPubMedGoogle Scholar
  172. 172.
    Liotta F, Angeli R, Cosmi L, Fili L, Manuelli C, Frosali F, Mazzinghi B, Maggi L, Pasini A, Lisi V, Santarlasci V, Consoloni L, Angelotti ML, Romagnani P, Parronchi P, Krampera M, Maggi E, Romagnani S, Annunziato F (2008) Toll-like receptors 3 and 4 are expressed by human bone marrow-derived mesenchymal stem cells and can inhibit their T-cell modulatory activity by impairing Notch signaling. Stem Cells 26(1):279–289.  https://doi.org/10.1634/stemcells.2007-0454 CrossRefPubMedGoogle Scholar
  173. 173.
    Ren G, Zhang L, Zhao X, Xu G, Zhang Y, Roberts AI, Zhao RC, Shi Y (2008) Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell 2(2):141–150.  https://doi.org/10.1016/j.stem.2007.11.014 CrossRefPubMedGoogle Scholar
  174. 174.
    Ren G, Zhao X, Zhang L, Zhang J, L'Huillier A, Ling W, Roberts AI, Le AD, Shi S, Shao C, Shi Y (2010) Inflammatory cytokine-induced intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in mesenchymal stem cells are critical for immunosuppression. J Immunol 184(5):2321–2328.  https://doi.org/10.4049/jimmunol.0902023 CrossRefPubMedPubMedCentralGoogle Scholar
  175. 175.
    Dorronsoro A, Ferrin I, Salcedo JM, Jakobsson E, Fernandez-Rueda J, Lang V, Sepulveda P, Fechter K, Pennington D, Trigueros C (2014) Human mesenchymal stromal cells modulate T-cell responses through TNF-alpha-mediated activation of NF-kappaB. Eur J Immunol 44(2):480–488.  https://doi.org/10.1002/eji.201343668 CrossRefPubMedGoogle Scholar
  176. 176.
    Krampera M (2011) Mesenchymal stromal cell 'licensing': a multistep process. Leukemia 25(9):1408–1414.  https://doi.org/10.1038/leu.2011.108 CrossRefPubMedGoogle Scholar
  177. 177.
    Croitoru-Lamoury J, Lamoury FM, Zaunders JJ, Veas LA, Brew BJ (2007) Human mesenchymal stem cells constitutively express chemokines and chemokine receptors that can be upregulated by cytokines, IFN-beta, and Copaxone. J Interf Cytokine Res 27(1):53–64.  https://doi.org/10.1089/jir.2006.0037 CrossRefGoogle Scholar
  178. 178.
    He XX, Bai H, Yang GR, Xue YJ, Su YN (2009) Expression of Toll-like receptors in human bone marrow mesenchymal stem cells. Zhongguo Shi Yan Xue Ye Xue Za Zhi 17(3):695–699PubMedGoogle Scholar
  179. 179.
    DelaRosa O, Lombardo E (2010) Modulation of adult mesenchymal stem cells activity by toll-like receptors: implications on therapeutic potential. Mediat Inflamm 2010:865601.  https://doi.org/10.1155/2010/865601 CrossRefGoogle Scholar
  180. 180.
    Raicevic G, Rouas R, Najar M, Stordeur P, Boufker HI, Bron D, Martiat P, Goldman M, Nevessignsky MT, Lagneaux L (2010) Inflammation modifies the pattern and the function of Toll-like receptors expressed by human mesenchymal stromal cells. Hum Immunol 71(3):235–244.  https://doi.org/10.1016/j.humimm.2009.12.005 CrossRefPubMedGoogle Scholar
  181. 181.
    Waterman RS, Tomchuck SL, Henkle SL, Betancourt AM (2010) A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an Immunosuppressive MSC2 phenotype. PLoS One 5(4):e10088.  https://doi.org/10.1371/journal.pone.0010088 CrossRefPubMedPubMedCentralGoogle Scholar
  182. 182.
    Han X, Yang Q, Lin L, Xu C, Zheng C, Chen X, Han Y, Li M, Cao W, Cao K, Chen Q, Xu G, Zhang Y, Zhang J, Schneider RJ, Qian Y, Wang Y, Brewer G, Shi Y (2014) Interleukin-17 enhances immunosuppression by mesenchymal stem cells. Cell Death Differ 21(11):1758–1768.  https://doi.org/10.1038/cdd.2014.85 CrossRefPubMedPubMedCentralGoogle Scholar
  183. 183.
    Tian J, Rui K, Tang X, Wang W, Ma J, Tian X, Wang Y, Xu H, Lu L, Wang S (2016) IL-17 down-regulates the immunosuppressive capacity of olfactory ecto-mesenchymal stem cells in murine collagen-induced arthritis. Oncotarget 7(28):42953–42962.  https://doi.org/10.18632/oncotarget.10261 CrossRefPubMedPubMedCentralGoogle Scholar
  184. 184.
    Xie J, Wang W, Si JW, Miao XY, Li JC, Wang YC, Wang ZR, Ma J, Zhao XC, Li Z, Yi H, Han H (2013) Notch signaling regulates CXCR4 expression and the migration of mesenchymal stem cells. Cell Immunol 281(1):68–75.  https://doi.org/10.1016/j.cellimm.2013.02.001 CrossRefPubMedGoogle Scholar
  185. 185.
    Daynes RA, Jones DC (2002) Emerging roles of PPARs in inflammation and immunity. Nat Rev Immunol 2(10):748–759.  https://doi.org/10.1038/nri912 CrossRefPubMedGoogle Scholar
  186. 186.
    Luz-Crawford P, Ipseiz N, Espinosa-Carrasco G, Caicedo A, Tejedor G, Toupet K, Loriau J, Scholtysek C, Stoll C, Khoury M, Noel D, Jorgensen C, Kronke G, Djouad F (2016) PPARbeta/delta directs the therapeutic potential of mesenchymal stem cells in arthritis. Ann Rheum Dis 75(12):2166–2174.  https://doi.org/10.1136/annrheumdis-2015-208696 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de MedicinaUniversidad de los AndesSantiagoChile
  2. 2.Inserm, U 1183MontpellierFrance
  3. 3.Université de MontpellierMontpellierFrance

Personalised recommendations