Advertisement

Nucleotide Substitution Models and Evolutionary Distances

  • Xuhua Xia
Chapter

Abstract

Genomes change over time, so are the interactions of genes and gene products that breathe life into a genome. To have the most advantageous view of genomes, genes and their interactions, we need to see things from the very beginning. Substitution models enable us to trace history back to the very early forms of life, by reconstructing the genomic “books” erased and obliterated by billions of years of mutations. This chapter focuses on nucleotide-based substitution models, presenting three different ways of deriving, for various substitution models, transition probability matrices that are needed to compute evolutionary distances and to compute likelihood of a tree. These three different ways should allow students of different mathematical background to understand substitution models and their uses in phylogenetics. Almost all frequently used substitution models are nested models with the simple one being a special case of the more general one. The likelihood ratio test, as well as the information-theoretic indices as an alternative approach to model selection, is numerically illustrated in choosing the substitution model that best describes the aligned sequences.

References

  1. Abdel-Hameed EA, Ji H, Shata MT (2016) HIV-induced epigenetic alterations in host cells. Adv Exp Med Biol 879:27–38CrossRefGoogle Scholar
  2. Abolbaghaei A, Silke JR, Xia X (2017) How changes in anti-SD sequences would affect SD sequences in Escherichia coli and Bacillus subtilis. G3 (Bethesda, Md) 7(5):1607–1615Google Scholar
  3. Abraham EP, Chain E (1940) An enzyme from bacteria able to destroy penicillin. Rev Infect Dis 10(4):677–678Google Scholar
  4. Abraham EP, Chain E, Fletcher CM, Florey HW, Gardner AD, Heatley NG, Jennings MA (1941) Further observations on penicillin. Lancet 238(6155):177–189Google Scholar
  5. Abraham JM, Feagin JE, Stuart K (1988) Characterization of cytochrome c oxidase III transcripts that are edited only in the 3′ region. Cell 55(2):267–272CrossRefGoogle Scholar
  6. Adamski FM, McCaughan KK, Jorgensen F, Kurland CG, Tate WP (1994) The concentration of polypeptide chain release factors 1 and 2 at different growth rates of Escherichia coli. J Mol Biol 238(3):302–308PubMedPubMedCentralGoogle Scholar
  7. Aerts S, Van Loo P, Thijs G, Mayer H, de Martin R, Moreau Y, De Moor B (2005) TOUCAN 2: the all-inclusive open source workbench for regulatory sequence analysis. Nucleic Acids Res 33(Web Server):W393–W396CrossRefGoogle Scholar
  8. Aerts S, van Helden J, Sand O, Hassan BA (2007) Fine-tuning enhancer models to predict transcriptional targets across multiple genomes. PLoS One 2(11):e1115CrossRefGoogle Scholar
  9. Ahn BY, Jones EV, Moss B (1990) Identification of the vaccinia virus gene encoding an 18-kilodalton subunit of RNA polymerase and demonstration of a 5′ poly(A) leader on its early transcript. J Virol 64(6):3019–3024PubMedPubMedCentralGoogle Scholar
  10. Aird WC, Parvin JD, Sharp PA, Rosenberg RD (1994) The interaction of GATA-binding proteins and basal transcription factors with GATA box-containing core promoters. A model of tissue-specific gene expression. J Biol Chem 269(2):883–889Google Scholar
  11. Akaike H (1973) Information theory and an extension of maximum likelihood principle. In: Petrov BN, Csaki F (eds) Second international symposium on information theory. Akademiai Kiado, Budapest, pp 267–281Google Scholar
  12. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723Google Scholar
  13. Akashi H (1994) Synonymous codon usage in Drosophila melanogaster: natural selection and translational accuracy. Genetics 136(3):927–935PubMedPubMedCentralGoogle Scholar
  14. Akashi H, Gojobori T (2002) Metabolic efficiency and amino acid composition in the proteomes of Escherichia coli and Bacillus subtilis. Proc Natl Acad Sci USA 99(6):3695–3700PubMedGoogle Scholar
  15. Alatortsev VS, Cruz-Reyes J, Zhelonkina AG, Sollner-Webb B (2008) Trypanosoma brucei RNA editing: coupled cycles of U deletion reveal processive activity of the editing complex. Mol Cell Biol 28(7):2437–2445PubMedPubMedCentralGoogle Scholar
  16. Alderwick LJ, Seidel M, Sahm H, Besra GS, Eggeling L (2006) Identification of a novel arabinofuranosyltransferase (AftA) involved in cell wall arabinan biosynthesis in Mycobacterium tuberculosis. J Biol Chem 281(23):15653–15661Google Scholar
  17. Allen A, Flemstrom G, Garner A, Kivilaakso E (1993) Gastroduodenal mucosal protection. Physiol Rev 73(4):823–857PubMedGoogle Scholar
  18. Alm RA, Trust TJ (1999) Analysis of the genetic diversity of Helicobacter pylori: the tale of two genomes. J Mol Med 77(12):834–846PubMedGoogle Scholar
  19. Alm RA, Ling LS, Moir DT, King BL, Brown ED, Doig PC, Smith DR, Noonan B, Guild BC, deJonge BL et al (1999) Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397(6715):176–180PubMedGoogle Scholar
  20. Alm RA, Bina J, Andrews BM, Doig P, Hancock RE, Trust TJ (2000) Comparative genomics of Helicobacter pylori: analysis of the outer membrane protein families. Infect Immun 68(7):4155–4168PubMedPubMedCentralGoogle Scholar
  21. Althaus E, Caprara A, Lenhof HP, Reinert K (2002) Multiple sequence alignment with arbitrary gap costs: computing an optimal solution using polyhedral combinatorics. Bioinformatics 18(Suppl 2):S4–S16Google Scholar
  22. Altschul SF (1996) Local alignment statistics. Meth Enzymol 274:460–480Google Scholar
  23. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410Google Scholar
  24. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedPubMedCentralGoogle Scholar
  25. Anderson KP, Crable SC, Lingrel JB (1998) Multiple proteins binding to a GATA-E box-GATA motif regulate the erythroid Kruppel-like factor (EKLF) gene. J Biol Chem 273(23):14347–14354Google Scholar
  26. Andersson DI, Kurland CG (1983) Ram ribosomes are defective proofreaders. Mol Gen Genet 191(3):378–381PubMedGoogle Scholar
  27. Arava Y, Wang Y, Storey JD, Liu CL, Brown PO, Herschlag D (2003) Genome-wide analysis of mRNA translation profiles in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 100(7):3889–3894Google Scholar
  28. Arbibe L, Sansonetti PJ (2007) Epigenetic regulation of host response to LPS: causing tolerance while avoiding toll errancy. Cell Host Microbe 1(4):244–246PubMedPubMedCentralGoogle Scholar
  29. Arnqvist G (2006) Sensory exploitation and sexual conflict. Philos Trans R Soc Lond Ser B Biol Sci 361(1466):375–386Google Scholar
  30. Arvaniti E, Moulos P, Vakrakou A, Chatziantoniou C, Chadjichristos C, Kavvadas P, Charonis A, Politis PK (2016) Whole-transcriptome analysis of UUO mouse model of renal fibrosis reveals new molecular players in kidney diseases. Sci Rep 6:26235PubMedPubMedCentralGoogle Scholar
  31. Ast G (2004) How did alternative splicing evolve? Nat Rev Genet 5(10):773–782PubMedPubMedCentralGoogle Scholar
  32. Auch AF, Henz SR, Holland BR, Goker M (2006) Genome BLAST distance phylogenies inferred from whole plastid and whole mitochondrion genome sequences. BMC Bioinform 7:350Google Scholar
  33. Awan AR, Manfredo A, Pleiss JA (2013) Lariat sequencing in a unicellular yeast identifies regulated alternative splicing of exons that are evolutionarily conserved with humans. Proc Natl Acad Sci USA 110(31):12762–12767Google Scholar
  34. Axon AT (1999) Are all helicobacters equal? Mechanisms of gastroduodenal pathology and their clinical implications. Gut 45(Suppl 1):I1–I4PubMedPubMedCentralGoogle Scholar
  35. Bablanian R, Banerjee AK (1986) Poly(riboadenylic acid) preferentially inhibits in vitro translation of cellular mRNAs compared with vaccinia virus mRNAs: possible role in vaccinia virus cytopathology. Proc Natl Acad Sci USA 83(5):1290–1294PubMedGoogle Scholar
  36. Bablanian R, Coppola G, Masters PS, Banerjee AK (1986) Characterization of vaccinia virus transcripts involved in selective inhibition of host protein synthesis. Virology 148(2):375–380PubMedGoogle Scholar
  37. Bablanian R, Goswami SK, Esteban M, Banerjee AK (1987) Selective inhibition of protein synthesis by synthetic and vaccinia virus-core synthesized poly(riboadenylic acids). Virology 161(2):366–373PubMedGoogle Scholar
  38. Bablanian R, Scribani S, Esteban M (1993) Amplification of polyadenylated nontranslated small RNA sequences (POLADS) during superinfection correlates with the inhibition of viral and cellular protein synthesis. Cell Mol Biol Res 39(3):243–255PubMedGoogle Scholar
  39. Bag J (2001) Feedback inhibition of poly(A)-binding protein mRNA translation. A possible mechanism of translation arrest by stalled 40 S ribosomal subunits. J Biol Chem 276(50):47352–47360PubMedGoogle Scholar
  40. Bag J, Bhattacharjee RB (2010) Multiple levels of post-transcriptional control of expression of the poy (A)-binding protein. RNA Biol 7(1):5–12PubMedGoogle Scholar
  41. Baik SC, Kim KM, Song SM, Kim DS, Jun JS, Lee SG, Song JY, Park JU, Kang HL, Lee WK et al (2004) Proteomic analysis of the sarcosine-insoluble outer membrane fraction of Helicobacter pylori strain 26695. J Bacteriol 186(4):949–955PubMedPubMedCentralGoogle Scholar
  42. Bailey TL, Williams N, Misleh C, Li WW (2006) MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res 34(Web Server issue):W369–W373PubMedPubMedCentralGoogle Scholar
  43. Baird SD, Turcotte M, Korneluk RG, Holcik M (2006) Searching for IRES. RNA 12(10):1755–1785PubMedPubMedCentralGoogle Scholar
  44. Baird SD, Lewis SM, Turcotte M, Holcik M (2007) A search for structurally similar cellular internal ribosome entry sites. Nucleic Acids Res 35(14):4664–4677PubMedPubMedCentralGoogle Scholar
  45. Baldi P, Brunak S (2001) Bioinformatics: the machine learning approach. The MIT Press, Cambridge, MAGoogle Scholar
  46. Bamford DH, Caldentey J, Bamford JK (1995) Bacteriophage PRD1: a broad host range DSDNA tectivirus with an internal membrane. Adv Virus Res 45:281–319PubMedGoogle Scholar
  47. Bao J, Bedford MT (2016) Epigenetic regulation of the histone-to-protamine transition during spermiogenesis. Reproduction 151(5):R55–R70PubMedPubMedCentralGoogle Scholar
  48. Baron D, Cocquet J, Xia X, Fellous M, Guiguen Y, Veitia RA (2004) An evolutionary and functional analysis of FoxL2 in rainbow trout gonad differentiation. J Mol Endocrinol 33:705–715PubMedGoogle Scholar
  49. Bastianelli G, Bouillon A, Nguyen C, Crublet E, Petres S, Gorgette O, Le-Nguyen D, Barale JC, Nilges M (2011) Computational reverse-engineering of a spider-venom derived peptide active against Plasmodium falciparum SUB1. PLoS One 6(7):e21812PubMedPubMedCentralGoogle Scholar
  50. Bauerfeind P, Garner R, Dunn BE, Mobley HL (1997) Synthesis and activity of Helicobacter pylori urease and catalase at low pH. Gut 40(1):25–30PubMedPubMedCentralGoogle Scholar
  51. Baumgartner HK, Montrose MH (2004) Regulated alkali secretion acts in tandem with unstirred layers to regulate mouse gastric surface pH. Gastroenterology 126(3):774–783PubMedGoogle Scholar
  52. Beier H, Grimm M (2001) Misreading of termination codons in eukaryotes by natural nonsense suppressor tRNAs. Nucleic Acids Res 29(23):4767–4782PubMedPubMedCentralGoogle Scholar
  53. Bell D, Bell AH, Bondaruk J, Hanna EY, Weber RS (2016) In-depth characterization of the salivary adenoid cystic carcinoma transcriptome with emphasis on dominant cell type. Cancer 122(10):1513–1522Google Scholar
  54. Ben-Gal I, Shani A, Gohr A, Grau J, Arviv S, Shmilovici A, Posch S, Grosse I (2005) Identification of transcription factor binding sites with variable-order Bayesian networks. Bioinformatics 21(11):2657–2666Google Scholar
  55. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57(1):289–300Google Scholar
  56. Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple hypothesis testing under dependency. Ann Stat 29:1165–1188Google Scholar
  57. Bennetzen JL, Hall BD (1982) Codon selection in yeast. J Biol Chem 257(6):3026–3031PubMedPubMedCentralGoogle Scholar
  58. Benoit G, Lemaitre C, Lavenier D, Drezen E, Dayris T, Uricaru R, Rizk G (2015) Reference-free compression of high throughput sequencing data with a probabilistic de Bruijn graph. BMC Bioinform 16:288Google Scholar
  59. Benzer S, Champe SP (1962) A change from nonsense to sense in the genetic code. Proc Natl Acad Sci USA 48:1114–1121PubMedPubMedCentralGoogle Scholar
  60. Berg JM, Tymoczko JL, Stryer L (2002) Biochemistry. W. H. Freeman and Co, New YorkGoogle Scholar
  61. Berger MF, Levin JZ, Vijayendran K, Sivachenko A, Adiconis X, Maguire J, Johnson LA, Robinson J, Verhaak RG, Sougnez C et al (2010) Integrative analysis of the melanoma transcriptome. Genome Res 20(4):413–427PubMedPubMedCentralGoogle Scholar
  62. Bergsten E, Uutela M, Li X, Pietras K, Ostman A, Heldin CH, Alitalo K, Eriksson U (2001) PDGF-D is a specific, protease-activated ligand for the PDGF beta-receptor. Nat Cell Biol 3(5):512–516Google Scholar
  63. Bertholet C, Van Meir E, ten Heggeler-Bordier B, Wittek R (1987) Vaccinia virus produces late mRNAs by discontinuous synthesis. Cell 50(2):153–162PubMedGoogle Scholar
  64. Besemer J, Borodovsky M (2005) GeneMark: web software for gene finding in prokaryotes, eukaryotes and viruses. Nucleic Acids Res 33(Web Server issue):W451–W454PubMedPubMedCentralGoogle Scholar
  65. Bestor TH, Coxon A (1993) The pros and cons of DNA methylation. Curr Biol 6:384–386Google Scholar
  66. Betney R, de Silva E, Krishnan J, Stansfield I (2010) Autoregulatory systems controlling translation factor expression: thermostat-like control of translational accuracy. RNA 16(4):655–663PubMedPubMedCentralGoogle Scholar
  67. Beznoskova P, Gunisova S, Valasek LS (2016) Rules of UGA-N decoding by near-cognate tRNAs and analysis of readthrough on short uORFs in yeast. RNA 22(3):456–466PubMedPubMedCentralGoogle Scholar
  68. Bhagwat M, Aravind L (2007) PSI-BLAST tutorial. Methods Mol Biol 395:177–186PubMedPubMedCentralGoogle Scholar
  69. Bhatia B, Ponia SS, Solanki AK, Dixit A, Garg LC (2014) Identification of glutamate ABC-transporter component in Clostridium perfringens as a putative drug target. Bioinformation 10(7):401–405PubMedPubMedCentralGoogle Scholar
  70. Bibikova M, Barnes B, Tsan C, Ho V, Klotzle B, Le JM, Delano D, Zhang L, Schroth GP, Gunderson KL et al (2011) High density DNA methylation array with single CpG site resolution. Genomics 98(4):288–295PubMedPubMedCentralGoogle Scholar
  71. Bickel DR (2003) Robust cluster analysis of microarray gene expression data with the number of clusters determined biologically. Bioinformatics 19(7):818–824Google Scholar
  72. Bierne H, Hamon M, Cossart P (2012) Epigenetics and bacterial infections. Cold Spring Harb Perspect Med 2(12):a010272PubMedPubMedCentralGoogle Scholar
  73. Bigaud E, Corrales FJ (2016) Methylthioadenosine (MTA) regulates liver cells proteome and methylproteome: implications in liver biology and disease. Mol Cell Proteomics 15(5):1498–1510PubMedPubMedCentralGoogle Scholar
  74. Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR, Margulies EH, Weng Z, Snyder M, Dermitzakis ET, Thurman RE et al (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447(7146):799–816Google Scholar
  75. Bjorkholm B, Lundin A, Sillen A, Guillemin K, Salama N, Rubio C, Gordon JI, Falk P, Engstrand L (2001) Comparison of genetic divergence and fitness between two subclones of Helicobacter pylori. Infect Immun 69(12):7832–7838PubMedPubMedCentralGoogle Scholar
  76. Bjornsson A, Isaksson LA (1996) Accumulation of a mRNA decay intermediate by ribosomal pausing at a stop codon. Nucleic Acids Res 24(9):1753–1757PubMedPubMedCentralGoogle Scholar
  77. Blackburne BP, Whelan S (2013) Class of multiple sequence alignment algorithm affects genomic analysis. Mol Biol Evol 30(3):642–653PubMedGoogle Scholar
  78. Blakqori G, van Knippenberg I, Elliott RM (2009) Bunyamwera orthobunyavirus S-segment untranslated regions mediate poly(A) tail-independent translation. J Virol 83(8):3637–3646PubMedPubMedCentralGoogle Scholar
  79. Blanchet S, Cornu D, Argentini M, Namy O (2014) New insights into the incorporation of natural suppressor tRNAs at stop codons in Saccharomyces cerevisiae. Nucleic Acids Res 42(15):10061–10072PubMedPubMedCentralGoogle Scholar
  80. Blanchette M, Tompa M (2002) Discovery of regulatory elements by a computational method for phylogenetic footprinting. Genome Res 12(5):739–748PubMedPubMedCentralGoogle Scholar
  81. Blanchette M, Bataille AR, Chen X, Poitras C, Laganiere J, Lefebvre C, Deblois G, Giguere V, Ferretti V, Bergeron D et al (2006) Genome-wide computational prediction of transcriptional regulatory modules reveals new insights into human gene expression. Genome Res 6(5):656–668Google Scholar
  82. Boehringer D, Thermann R, Ostareck-Lederer A, Lewis JD, Stark H (2005) Structure of the hepatitis C virus IRES bound to the human 80S ribosome: remodeling of the HCV IRES. Structure 13(11):1695PubMedGoogle Scholar
  83. Bogenhagen DF, Clayton DA (2003) The mitochondrial DNA replication bubble has not burst. Trends Biochem Sci 28(7):357–360PubMedPubMedCentralGoogle Scholar
  84. Bolden JE, Peart MJ, Johnstone RW (2006) Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 5(9):769–784PubMedPubMedCentralGoogle Scholar
  85. Borodovsky M, McIninch J (1993) GENMARK: parallel gene recognition for both DNA strands. Comput Chem 17:123–133Google Scholar
  86. Bossi L (1983) Context effects: translation of UAG codon by suppressor tRNA is affected by the sequence following UAG in the message. J Mol Biol 164(1):73–87PubMedPubMedCentralGoogle Scholar
  87. Bossi L, Ruth JR (1980) The influence of codon context on genetic code translation. Nature 286(5769):123–127PubMedPubMedCentralGoogle Scholar
  88. Brauch H, Weirich G, Brieger J, Glavac D, Rodl H, Eichinger M, Feurer M, Weidt E, Puranakanitstha C, Neuhaus C et al (2000) VHL alterations in human clear cell renal cell carcinoma: association with advanced tumor stage and a novel hot spot mutation. Cancer Res 60(7):1942–1948PubMedPubMedCentralGoogle Scholar
  89. Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, Aach J, Ansorge W, Ball CA, Causton HC et al (2001) Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet 29(4):365–371Google Scholar
  90. Britten RJ (1986) Rates of DNA sequence evolution differ between taxonomic groups. Science 231:1393–1398PubMedGoogle Scholar
  91. Brooks DR, McLennan DA (1991) Phylogeny, ecology and behavior: a research program in comparative biology. University of Chicago Press, ChicagoGoogle Scholar
  92. Brown CM, Stockwell PA, Trotman CN, Tate WP (1990) Sequence analysis suggests that tetra-nucleotides signal the termination of protein synthesis in eukaryotes. Nucleic Acids Res 18(21):6339–6345PubMedPubMedCentralGoogle Scholar
  93. Brown M, Hughey R, Krogh A, Mian IS, Sjolander K, Haussler D (1993) Using Dirichlet mixture priors to derive hidden Markov models for protein families. Proc Int Conf Intell Syst Mol Biol 1:47–55Google Scholar
  94. Brown TA, Cecconi C, Tkachuk AN, Bustamante C, Clayton DA (2005) Replication of mitochondrial DNA occurs by strand displacement with alternative light-strand origins, not via a strand-coupled mechanism. Genes Dev 19(20):2466–2476PubMedPubMedCentralGoogle Scholar
  95. Brumme ZL, Dong WW, Yip B, Wynhoven B, Hoffman NG, Swanstrom R, Jensen MA, Mullins JI, Hogg RS, Montaner JS et al (2004) Clinical and immunological impact of HIV envelope V3 sequence variation after starting initial triple antiretroviral therapy. AIDS 18(4):F1–F9Google Scholar
  96. Bucklew JA (1990) Large deviation techniques in decision, simulation, and estimation. Wiley, New YorkGoogle Scholar
  97. Bulmer M (1990) The effect of context on synonymous codon usage in genes with low codon usage bias. Nucleic Acids Res 18(10):2869–2873PubMedPubMedCentralGoogle Scholar
  98. Bulmer M (1991) The selection-mutation-drift theory of synonymous codon usage. Genetics 129:897–907PubMedPubMedCentralGoogle Scholar
  99. Bumann D, Aksu S, Wendland M, Janek K, Zimny-Arndt U, Sabarth N, Meyer TF, Jungblut PR (2002) Proteome analysis of secreted proteins of the gastric pathogen Helicobacter pylori. Infect Immun 70(7):3396–3403PubMedPubMedCentralGoogle Scholar
  100. Burge C, Karlin S (1997) Prediction of complete gene structures in human genomic DNA. J Mol Biol 268:78–94Google Scholar
  101. Burge CB, Karlin S (1998) Finding the genes in genomic DNA. Curr Opin Struct Biol 8(3):346–354PubMedPubMedCentralGoogle Scholar
  102. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New YorkGoogle Scholar
  103. Bury-Mone S, Skouloubris S, Labigne A, De Reuse H (2001) The Helicobacter pylori UreI protein: role in adaptation to acidity and identification of residues essential for its activity and for acid activation. Mol Microbiol 42(4):1021–1034PubMedPubMedCentralGoogle Scholar
  104. Calderone TL, Stevens RD, Oas TG (1996) High-level misincorporation of lysine for arginine at AGA codons in a fusion protein expressed in Escherichia coli. J Mol Biol 262(4):407–412PubMedPubMedCentralGoogle Scholar
  105. Cao Y, Janke A, Waddell PJ, Westerman M, Takenaka O, Murata S, Okada N, Paabo S, Hasegawa M (1998) Conflict among individual mitochondrial proteins in resolving the phylogeny of eutherian orders. J Mol Evol 47(3):307–322PubMedPubMedCentralGoogle Scholar
  106. Capecchi MR (1967) Polypeptide chain termination in vitro: isolation of a release factor. Proc Natl Acad Sci USA 58(3):1144–1151PubMedPubMedCentralGoogle Scholar
  107. Capuano F, Mulleder M, Kok R, Blom HJ, Ralser M (2014) Cytosine DNA methylation is found in Drosophila melanogaster but absent in Saccharomyces cerevisiae, Schizosaccharomyces pombe, and other yeast species. Anal Chem 86(8):3697–3702PubMedPubMedCentralGoogle Scholar
  108. Cardon LR, Burge C, Clayton DA, Karlin S (1994) Pervasive CpG suppression in animal mitochondrial genomes. Proc Natl Acad Sci USA 91:3799–3803PubMedPubMedCentralGoogle Scholar
  109. Carlini DB (2005) Context-dependent codon bias and messenger RNA longevity in the yeast transcriptome. Mol Biol Evol 22(6):1403–1411PubMedPubMedCentralGoogle Scholar
  110. Carroll J, Fearnley IM, Shannon RJ, Hirst J, Walker JE (2003) Analysis of the subunit composition of complex I from bovine heart mitochondria. Mol Cell Proteomics 2(2):117–126PubMedPubMedCentralGoogle Scholar
  111. Carullo M, Xia X (2008) An extensive study of mutation and selection on the wobble nucleotide in tRNA anticodons in fungal mitochondrial genomes. J Mol Evol 66(5):484–493PubMedPubMedCentralGoogle Scholar
  112. Censini S, Lange C, Xiang Z, Crabtree JE, Ghiara P, Borodovsky M, Rappuoli R, Covacci A (1996) Cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Proc Natl Acad Sci USA 93(25):14648–14653PubMedPubMedCentralGoogle Scholar
  113. Cesar Sanchez J, Padron G, Santana H, Herrera L (1998) Elimination of an HuIFN alpha 2b readthrough species, produced in Escherichia coli, by replacing its natural translational stop signal. J Biotechnol 63(3):179–186PubMedPubMedCentralGoogle Scholar
  114. Chakrabarti S, Lanczycki CJ (2007) Analysis and prediction of functionally important sites in proteins. Protein Sci 16(1):4–13PubMedPubMedCentralGoogle Scholar
  115. Chakraborty R (1977) Estimation of time of divergence from phylogenetic studies. Can J Genet Cytol 19:217–223PubMedPubMedCentralGoogle Scholar
  116. Chambaud I, Heilig R, Ferris S, Barbe V, Samson D, Galisson F, Moszer I, Dybvig K, Wroblewski H, Viari A et al (2001) The complete genome sequence of the murine respiratory pathogen Mycoplasma pulmonis. Nucleic Acids Res 29(10):2145–2153PubMedPubMedCentralGoogle Scholar
  117. Chan S-W, Egan P (2009) Effects of hepatitis C virus envelope glycoprotein unfolded protein response activation on translation and transcription. Arch Virol 154(10):1631–1640PubMedPubMedCentralGoogle Scholar
  118. Chan PP, Lowe TM (2009) GtRNAdb: a database of transfer RNA genes detected in genomic sequence. Nucleic Acids Res 37(Database issue):D93–D97PubMedPubMedCentralGoogle Scholar
  119. Chang SY, McGary EC, Chang S (1989) Methionine aminopeptidase gene of Escherichia coli is essential for cell growth. J Bacteriol 171(7):4071–4072PubMedPubMedCentralGoogle Scholar
  120. Charig CR, Webb DR, Payne SR, Wickham JE (1986) Comparison of treatment of renal calculi by open surgery, percutaneous nephrolithotomy, and extracorporeal shockwave lithotripsy. Br Med J (Clin Res Ed) 292(6524):879–882Google Scholar
  121. Chen JJ, Peck K, Hong TM, Yang SC, Sher YP, Shih JY, Wu R, Cheng JL, Roffler SR, Wu CW et al (2001) Global analysis of gene expression in invasion by a lung cancer model. Cancer Res 61(13):5223–5230Google Scholar
  122. Chen Q, Yan M, Cao Z, Li X, Zhang Y, Shi J, Feng GH, Peng H, Zhang X, Qian J et al (2016) Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science 351(6271):397–400PubMedPubMedCentralGoogle Scholar
  123. Chilingaryan A, Gevorgyan N, Vardanyan A, Jones D, Szabo A (2002) Multivariate approach for selecting sets of differentially expressed genes. Math Biosci 176(1):59–69Google Scholar
  124. Chithambaram S, Prabhakaran R, Xia X (2014a) Differential codon adaptation between dsDNA and ssDNA phages in escherichia coli. Mol Biol Evol 31(6):1606–1617PubMedPubMedCentralGoogle Scholar
  125. Chithambaram S, Prabhakaran R, Xia X (2014b) The effect of mutation and selection on codon adaptation in escherichia coli bacteriophage. Genetics 197(1):301–315PubMedPubMedCentralGoogle Scholar
  126. Cho RJ, Campbell MJ, Winzeler EA, Steinmetz L, Conway A, Wodicka L, Wolfsberg TG, Gabrielian AE, Landsman D, Lockhart DJ et al (1998) A genome-wide transcriptional analysis of the mitotic cell cycle. Mol Cell 2(1):65–73Google Scholar
  127. Chou PY, Fasman GD (1978a) Empirical predictions of protein conformation. Annu Rev Biochem 47:251–276PubMedPubMedCentralGoogle Scholar
  128. Chou PY, Fasman GD (1978b) Prediction of the secondary structure of proteins from their amino acid sequence. Adv Enzymol Relat Areas Mol Biol 47:45–148Google Scholar
  129. Chu C, Qu K, Zhong FL, Artandi SE, Chang HY (2011) Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Mol Cell 44(4):667–678PubMedPubMedCentralGoogle Scholar
  130. Chu C, Quinn J, Chang HY (2012) Chromatin isolation by RNA purification (ChIRP). J Vis Exp 61:e3912Google Scholar
  131. Chuang SE, Daniels DL, Blattner FR (1993) Global regulation of gene expression in Escherichia coli. J Bacteriol 175(7):2026–2036PubMedPubMedCentralGoogle Scholar
  132. Clark AT (2015) DNA methylation remodeling in vitro and in vivo. Curr Opin Genet Dev 34:82–87PubMedPubMedCentralGoogle Scholar
  133. Claverie JM (1994) Some useful statistical properties of position-weight matrices. Comput Chem 18(3):287–294Google Scholar
  134. Claverie JM, Audic S (1996) The statistical significance of nucleotide position-weight matrix matches. Comput Appl Biosci 12(5):431–439Google Scholar
  135. Clayton DA (1982) Replication of animal mitochondrial DNA. Cell 28(4):693–705PubMedPubMedCentralGoogle Scholar
  136. Clayton DA (2000) Transcription and replication of mitochondrial DNA. Hum Reprod 15(Suppl 2):11–17PubMedPubMedCentralGoogle Scholar
  137. Cocquet J, De Baere E, Gareil M, Pannetier M, Xia X, Fellous M, Veitia RA (2003) Structure, evolution and expression of the FOXL2 transcription unit. Cytogenet Genome Res 101:206–211PubMedPubMedCentralGoogle Scholar
  138. Coessens B, Thijs G, Aerts S, Marchal K, De Smet F, Engelen K, Glenisson P, Moreau Y, Mathys J, De Moor B (2003) INCLUSive: a web portal and service registry for microarray and regulatory sequence analysis. Nucleic Acids Res 31(13):3468–3470PubMedPubMedCentralGoogle Scholar
  139. Coghlan A, Wolfe KH (2000) Relationship of codon bias to mRNA concentration and protein length in Saccharomyces cerevisiae. Yeast 16(12):1131–1145PubMedPubMedCentralGoogle Scholar
  140. Comeron JM, Aguade M (1998) An evaluation of measures of synonymous codon usage bias. J Mol Evol 47(3):268–274PubMedPubMedCentralGoogle Scholar
  141. Correa P (1997) Helicobacter pylori as a pathogen and carcinogen. J Physiol Pharmacol 48(Suppl 4):19–24PubMedPubMedCentralGoogle Scholar
  142. Cottrell JS (1994) Protein identification by peptide mass fingerprinting. Pept Res 7(3):115–124PubMedPubMedCentralGoogle Scholar
  143. Cottrell JS, Sutton CW (1996) The identification of electrophoretically separated proteins by peptide mass fingerprinting. Methods Mol Biol 61:67–82PubMedPubMedCentralGoogle Scholar
  144. Covacci A, Falkow S, Berg DE, Rappuoli R (1997) Did the inheritance of a pathogenicity island modify the virulence of Helicobacter pylori? Trends Microbiol 5(5):205–208Google Scholar
  145. Covell DG, Wallqvist A, Rabow AA, Thanki N (2003) Molecular classification of cancer: unsupervised self-organizing map analysis of gene expression microarray data. Mol Cancer Ther 2(3):317–332Google Scholar
  146. Cox SS, van der Giezen M, Tarr SJ, Crompton MR, Tovar J (2006) Evidence from bioinformatics, expression and inhibition studies of phosphoinositide-3 kinase signalling in Giardia intestinalis. BMC Microbiol 6:45PubMedPubMedCentralGoogle Scholar
  147. Craigen WJ, Caskey CT (1986) Expression of peptide chain release factor 2 requires high-efficiency frameshift. Nature 322(6076):273–275PubMedPubMedCentralGoogle Scholar
  148. Craigen WJ, Caskey CT (1987) The function, structure and regulation of E. coli peptide chain release factors. Biochimie 69(10):1031–1041PubMedPubMedCentralGoogle Scholar
  149. Craigen WJ, Cook RG, Tate WP, Caskey CT (1985) Bacterial peptide chain release factors: conserved primary structure and possible frameshift regulation of release factor 2. Proc Natl Acad Sci USA 82(11):3616–3620PubMedPubMedCentralGoogle Scholar
  150. Craigen WJ, Lee CC, Caskey CT (1990) Recent advances in peptide chain termination. Mol Microbiol 4(6):861–865PubMedPubMedCentralGoogle Scholar
  151. Crick FH (1966) Codon—anticodon pairing: the wobble hypothesis. J Mol Biol 19(2):548–555PubMedPubMedCentralGoogle Scholar
  152. Curran JF, Yarus M (1988) Use of tRNA suppressors to probe regulation of Escherichia coli release factor 2. J Mol Biol 203(1):75–83PubMedPubMedCentralGoogle Scholar
  153. Czerwoniec A, Dunin-Horkawicz S, Purta E, Kaminska KH, Kasprzak JM, Bujnicki JM, Grosjean H, Rother K (2009) MODOMICS: a database of RNA modification pathways. 2008 update. Nucleic Acids Res 37(Database issue):D118–D121PubMedPubMedCentralGoogle Scholar
  154. Danchin A (2002) The Delphic boat : what genomes tell us. Harvard University Press, Cambridge, MAGoogle Scholar
  155. David E, Tramontin T, Zemmel R (2009) Pharmaceutical R&D: the road to positive returns. Nat Rev Drug Discov 8(8):609–610Google Scholar
  156. Davies J, Jones DS, Khorana HG (1966) A further study of misreading of codons induced by streptomycin and neomycin using ribopolynucleotides containing two nucleotides in alternating sequence as templates. J Mol Biol 18(1):48–57PubMedPubMedCentralGoogle Scholar
  157. Dayhoff MO, Schwartz RM, Orcutt BC (1978) A model of evolutionary change in proteins. In: Dayhoff MO (ed) Atlas of protein sequence and structure. National Biomedical Research Foundation, Washington, DC, pp 345–352Google Scholar
  158. Delorenzi M, Speed T (2002) An HMM model for coiled-coil domains and a comparison with PSSM-based predictions. Bioinformatics 18(4):617–625Google Scholar
  159. Deng R, Huang M, Wang J, Huang Y, Yang J, Feng J, Wang X (2006) PTreeRec: phylogenetic tree reconstruction based on genome BLAST distance. Comput Biol Chem 30(4):300–302Google Scholar
  160. Deng W, Lee J, Wang H, Miller J, Reik A, Gregory PD, Dean A, Blobel GA (2012) Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor. Cell 149(6):1233–1244PubMedPubMedCentralGoogle Scholar
  161. Deng Q, Ramskold D, Reinius B, Sandberg R (2014a) Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science 343(6167):193–196Google Scholar
  162. Deng W, Rupon JW, Krivega I, Breda L, Motta I, Jahn KS, Reik A, Gregory PD, Rivella S, Dean A et al (2014b) Reactivation of developmentally silenced globin genes by forced chromatin looping. Cell 158(4):849–860PubMedPubMedCentralGoogle Scholar
  163. Desper R, Gascuel O (2002) Fast and accurate phylogeny reconstruction algorithms based on the minimum-evolution principle. J Comput Biol 9(5):687–705Google Scholar
  164. Dewey CN, Rogozin IB, Koonin EV (2006) Compensatory relationship between splice sites and exonic splicing signals depending on the length of vertebrate introns. BMC Genomics 7:311PubMedPubMedCentralGoogle Scholar
  165. Diehn M, Eisen MB, Botstein D, Brown PO (2000) Large-scale identification of secreted and membrane-associated gene products using DNA microarrays. Nat Genet 25(1):58–62PubMedPubMedCentralGoogle Scholar
  166. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21PubMedPubMedCentralGoogle Scholar
  167. Dobzhansky T (1973) Nothing in biology makes sense except in the light of evolution. Am Biol Teach 35:125–129Google Scholar
  168. Donly BC, Edgar CD, Adamski FM, Tate WP (1990) Frameshift autoregulation in the gene for Escherichia coli release factor 2: partly functional mutants result in frameshift enhancement. Nucleic Acids Res 18(22):6517–6522PubMedPubMedCentralGoogle Scholar
  169. Doolittle RF, Hunkapiller MW, Hood LE, Devare SG, Robbins KC, Aaronson SA, Antoniades HN (1983) Simian sarcoma virus onc gene, v-sis, is derived from the gene (or genes) encoding a platelet-derived growth factor. Science 221(4607):275–277PubMedPubMedCentralGoogle Scholar
  170. Dorokhov YL, Skulachev MV, Ivanov PA, Zvereva SD, Tjulkina LG, Merits A, Gleba YY, Hohn T, Atabekov JG (2002) Polypurine (A)-rich sequences promote cross-kingdom conservation of internal ribosome entry. Proc Natl Acad Sci USA 99(8):5301–5306PubMedPubMedCentralGoogle Scholar
  171. dos Reis M, Savva R, Wernisch L (2004) Solving the riddle of codon usage preferences: a test for translational selection. Nucleic Acids Res 32(17):5036–5044 Print 2004PubMedPubMedCentralGoogle Scholar
  172. Doudna JA, Sarnow P (2007) Translation initiation by viral internal ribosome entry sites. In: Mathews MB, Sonenberg N, Hershey J (eds) Translational control in biology and medicine. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 129–154Google Scholar
  173. Drews J, Ryser S (1997) The role of innovation in drug development. Nat Biotechnol 15(13):1318–1319PubMedPubMedCentralGoogle Scholar
  174. Drouin G, Daoud H, Xia J (2008) Relative rates of synonymous substitutions in the mitochondrial, chloroplast and nuclear genomes of seed plants. Mol Phylogenet Evol 49(3):827–831PubMedPubMedCentralGoogle Scholar
  175. Drummond A, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7(1):214PubMedPubMedCentralGoogle Scholar
  176. Drummond A, Rodrigo AG (2000) Reconstructing genealogies of serial samples under the assumption of a molecular clock using serial-sample UPGMA. Mol Biol Evol 17(12):1807–1815PubMedGoogle Scholar
  177. Drummond A, Forsberg R, Rodrigo AG (2001) The inference of stepwise changes in substitution rates using serial sequence samples. Mol Biol Evol 18(7):1365–1371PubMedGoogle Scholar
  178. Drummond AJ, Pybus OG, Rambaut A, Forsberg R, Rodrigo AG (2003a) Measurably evolving populations. Trends Ecol Evol 18(9):481–488Google Scholar
  179. Drummond A, Pybus OG, Rambaut A (2003b) Inference of viral evolutionary rates from molecular sequences. Adv Parasitol 54:331–358PubMedGoogle Scholar
  180. Durbin R (1998) Biological sequence analysis : probabilistic models of proteins and nucleic acids. Cambridge University Press, CambridgeGoogle Scholar
  181. Duret L, Mouchiroud D (1999) Expression pattern and, surprisingly, gene length shape codon usage in Caenorhabditis, Drosophila, and Arabidopsis. Proc Natl Acad Sci USA 96(8):4482–4487PubMedGoogle Scholar
  182. DuRose JB, Scheuner D, Kaufman RJ, Rothblum LI, Niwa M (2009) Phosphorylation of eukaryotic translation initiation factor 2alpha coordinates rRNA transcription and translation inhibition during endoplasmic reticulum stress. Mol Cell Biol 29(15):4295–4307PubMedPubMedCentralGoogle Scholar
  183. Duval M, Korepanov A, Fuchsbauer O, Fechter P, Haller A, Fabbretti A, Choulier L, Micura R, Klaholz BP, Romby P et al (2013) Escherichia coli Ribosomal protein S1 unfolds structured mRNAs onto the ribosome for active translation initiation. PLoS Biol 11(12):e1001731PubMedPubMedCentralGoogle Scholar
  184. Eckhardt F, Lewin J, Cortese R, Rakyan VK, Attwood J, Burger M, Burton J, Cox TV, Davies R, Down TA et al (2006) DNA methylation profiling of human chromosomes 6, 20 and 22. Nat Genet 38(12):1378–1385PubMedPubMedCentralGoogle Scholar
  185. Eddy SR (1996) Hidden Markov models. Curr Opin Struct Biol 6(3):361–365PubMedPubMedCentralGoogle Scholar
  186. Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14(9):755–763PubMedPubMedCentralGoogle Scholar
  187. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797PubMedPubMedCentralGoogle Scholar
  188. Edgar RC, Batzoglou S (2006) Multiple sequence alignment. Curr Opin Struct Biol 16(3):368–373PubMedGoogle Scholar
  189. Efron B (1982) The jackknife, the bootstrap and other resampling plans. Society for Industrial and Applied Mathematics, PhiladelphiaGoogle Scholar
  190. Ehnman M, Missiaglia E, Folestad E, Selfe J, Strell C, Thway K, Brodin B, Pietras K, Shipley J, Ostman A et al (2013) Distinct effects of ligand-induced PDGFRalpha and PDGFRbeta signaling in the human rhabdomyosarcoma tumor cell and stroma cell compartments. Cancer Res 73(7):2139–2149PubMedPubMedCentralGoogle Scholar
  191. Ehrenberg M, Tenson T (2002) A new beginning of the end of translation. Nat Struct Biol 9(2):85–87PubMedPubMedCentralGoogle Scholar
  192. Einstein A, Russell B, Dewey J, Millikan RA, Dreiser T, Wells HG, Nansen F, Jeans SJ, Babbitt I, Keith SA et al (1931) Living philosophies. Simon and Schuster, New YorkGoogle Scholar
  193. Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 95(25):14863–14868PubMedPubMedCentralGoogle Scholar
  194. Elf J, Nilsson D, Tenson T, Ehrenberg M (2003) Selective charging of tRNA isoacceptors explains patterns of codon usage. Science 300(5626):1718–1722PubMedGoogle Scholar
  195. Elroy-Stein O, Merrick W (2007) Translation initiation via cellular internal ribosome entry sites. In: Mathews MB, Sonenberg N, Hershey J (eds) Translational control in biology and medicine. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 155–172Google Scholar
  196. Engel E, Peskoff A, Kauffman GL Jr, Grossman MI (1984) Analysis of hydrogen ion concentration in the gastric gel mucus layer. Am J Phys 247(4 Pt 1):G321–G338Google Scholar
  197. Engelberg-Kulka H (1981) UGA suppression by normal tRNA Trp in Escherichia coli: codon context effects. Nucleic Acids Res 9(4):983–991PubMedPubMedCentralGoogle Scholar
  198. Epstein CB, Butow RA (2000) Microarray technology – enhanced versatility, persistent challenge. Curr Opin Biotechnol 11(1):36–41PubMedPubMedCentralGoogle Scholar
  199. Eswarappa SM, Potdar AA, Koch WJ, Fan Y, Vasu K, Lindner D, Willard B, Graham LM, DiCorleto PE, Fox PL (2014) Programmed translational readthrough generates antiangiogenic VEGF-Ax. Cell 157(7):1605–1618PubMedPubMedCentralGoogle Scholar
  200. Evans T, Felsenfeld G, Reitman M (1990) Control of globin gene transcription. Annu Rev Cell Biol 6:95–124Google Scholar
  201. Eyre-Walker A (1996) The close proximity of Escherichia coli genes: consequences for stop codon and synonymous codon use. J Mol Evol 42(2):73–78PubMedPubMedCentralGoogle Scholar
  202. Eyre-Walker A, Bulmer M (1993) Reduced synonymous substitution rate at the start of enterobacterial genes. Nucleic Acids Res 21:4599–4603PubMedPubMedCentralGoogle Scholar
  203. Ezzell C (2002) Proteins rule. Sci Am 286(4):40–47Google Scholar
  204. Farazi TA, Waksman G, Gordon JI (2001) The biology and enzymology of protein N-myristoylation. J Biol Chem 276(43):39501–39504PubMedPubMedCentralGoogle Scholar
  205. Farnham PJ, Platt T (1981) Rho-independent termination: dyad symmetry in DNA causes RNA polymerase to pause during transcription in vitro. Nucleic Acids Res 9(3):563–577PubMedPubMedCentralGoogle Scholar
  206. Fasman GD, Chou PY (1974) Prediction of protein conformation: consequences and aspirations. In: Blout ER, Bovey FA, Goodman M, Latan N (eds) Peptides, polypeptides and proteins. Wiley, New York, pp 114–125Google Scholar
  207. Fatemi M, Hermann A, Pradhan S, Jeltsch A (2001) The activity of the murine DNA methyltransferase Dnmt1 is controlled by interaction of the catalytic domain with the N-terminal part of the enzyme leading to an allosteric activation of the enzyme after binding to methylated DNA. J Mol Biol 309(5):1189–1199PubMedPubMedCentralGoogle Scholar
  208. Felsenstein J (1973) Maximum-likelihood and minimum-steps methods for estimating evolutionary trees from data on discrete characters. Syst Zool 22:240–249Google Scholar
  209. Felsenstein J (1978a) Cases in which parsimony and compatibility methods will be positively misleading. Syst Zool 27:401–410Google Scholar
  210. Felsenstein J (1978b) The number of evolutionary trees. Syst Zool 27:27–33Google Scholar
  211. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376Google Scholar
  212. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791Google Scholar
  213. Felsenstein J (2004) Inferring phylogenies. Sinauer, SunderlandGoogle Scholar
  214. Felsenstein J, Churchill GA (1996) A Hidden Markov Model approach to variation among sites in rate of evolution. Mol Biol Evol 13(1):93–104Google Scholar
  215. Feng DF, Doolittle RF (1987) Progressive sequence alignment as a prerequisite to correct phylogenetic trees. J Mol Evol 25(4):351–360Google Scholar
  216. Feng DF, Doolittle RF (1990) Progressive alignment and phylogenetic tree construction of protein sequences. Methods Enzymol 183:375–387PubMedPubMedCentralGoogle Scholar
  217. Fernandez-Pinar R, Lo Sciuto A, Rossi A, Ranucci S, Bragonzi A, Imperi F (2015) In vitro and in vivo screening for novel essential cell-envelope proteins in Pseudomonas aeruginosa. Sci Rep 5:17593PubMedPubMedCentralGoogle Scholar
  218. Fickett JW (1996) Quantitative discrimination of MEF2 sites. Mol Cell Biol 16(1):437–441PubMedPubMedCentralGoogle Scholar
  219. Figeys D (2002) Adapting arrays and lab-on-a-chip technology for proteomics. Proteomics 2(4):373–382Google Scholar
  220. Figeys D (2003a) Novel approaches to map protein interactions. Curr Opin Biotechnol 14(1):119–125Google Scholar
  221. Figeys D (2003b) Proteomics in 2002: a year of technical development and wide-ranging applications. Anal Chem 75(12):2891–2905Google Scholar
  222. Fisher RA (1926) The arrangement of field experiments. J Minist Agric 33:503–513Google Scholar
  223. Fisher RA (1936) The use of multiple measurements in taxonomic problems. Ann Eugenics 7:179–188Google Scholar
  224. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416Google Scholar
  225. Fitch WM, Margoliash E (1967) Construction of phylogenetic trees. Science 155:279–284PubMedPubMedCentralGoogle Scholar
  226. Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM et al (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269(5223):496–512Google Scholar
  227. Fong TC, Emerson BM (1992) The erythroid-specific protein cGATA-1 mediates distal enhancer activity through a specialized beta-globin TATA box. Genes Dev 6(4):521–532Google Scholar
  228. Forde CE, McCutchen-Maloney SL (2002) Characterization of transcription factors by mass spectrometry and the role of SELDI-MS. Mass Spectrom Rev 21(6):419–439PubMedPubMedCentralGoogle Scholar
  229. Forrester WC, Epner E, Driscoll MC, Enver T, Brice M, Papayannopoulou T, Groudine M (1990) A deletion of the human beta-globin locus activation region causes a major alteration in chromatin structure and replication across the entire beta-globin locus. Genes Dev 4(10):1637–1649PubMedPubMedCentralGoogle Scholar
  230. Frank C, Makkonen H, Dunlop TW, Matilainen M, Vaisanen S, Carlberg C (2005) Identification of pregnane X receptor binding sites in the regulatory regions of genes involved in bile acid homeostasis. J Mol Biol 346(2):505–519Google Scholar
  231. Fraser CM, Gocayne JD, White O, Adams MD, Clayton RA, Fleischmann RD, Bult CJ, Kerlavage AR, Sutton G, Kelley JM et al (1995) The minimal gene complement of Mycoplasma genitalium. Science 270(5235):397–403Google Scholar
  232. Frederico LA, Kunkel TA, Shaw BR (1990) A sensitive genetic assay for the detection of cytosine deamination: determination of rate constants and the activation energy. Biochemistry (Mosc) 29(10):2532–2537Google Scholar
  233. Frishman D, Mironov A, Mewes HW, Gelfand M (1998) Combining diverse evidence for gene recognition in completely sequenced bacterial genomes. Nucleic Acids Res 26(12):2941–2947PubMedPubMedCentralGoogle Scholar
  234. Frolova LY, Tsivkovskii RY, Sivolobova GF, Oparina NY, Serpinsky OI, Blinov VM, Tatkov SI, Kisselev LL (1999) Mutations in the highly conserved GGQ motif of class 1 polypeptide release factors abolish ability of human eRF1 to trigger peptidyl-tRNA hydrolysis. RNA 5(8):1014–1020PubMedPubMedCentralGoogle Scholar
  235. Frottin F, Martinez A, Peynot P, Mitra S, Holz RC, Giglione C, Meinnel T (2006) The proteomics of N-terminal methionine cleavage. Mol Cell Proteomics 5(12):2336–2349PubMedPubMedCentralGoogle Scholar
  236. Furukawa R, Hachiya T, Ohmomo H, Shiwa Y, Ono K, Suzuki S, Satoh M, Hitomi J, Sobue K, Shimizu A (2016) Intraindividual dynamics of transcriptome and genome-wide stability of DNA methylation. Sci Rep 6:26424PubMedPubMedCentralGoogle Scholar
  237. Futcher B, Latter GI, Monardo P, McLaughlin CS, Garrels JI (1999) A sampling of the yeast proteome. Mol Cell Biol 19(11):7357–7368PubMedPubMedCentralGoogle Scholar
  238. Gaasterland T, Bekiranov S (2000) Making the most of microarray data [news]. Nat Genet 24(3):204–206PubMedPubMedCentralGoogle Scholar
  239. Gallie DR, Tanguay R (1994) Poly(A) binds to initiation factors and increases cap-dependent translation in vitro. J Biol Chem 269(25):17166–17173PubMedPubMedCentralGoogle Scholar
  240. Gal-Mor O, Finlay BB (2006) Pathogenicity islands: a molecular toolbox for bacterial virulence. Cell Microbiol 8(11):1707–1719Google Scholar
  241. Galtier N, Lobry JR (1997) Relationships between genomic G+C content, RNA secondary structures, and optimal growth temperature in prokaryotes. J Mol Evol 44(6):632–636Google Scholar
  242. Gao L, Qi J (2007) Whole genome molecular phylogeny of large dsDNA viruses using composition vector method. BMC Evol Biol 7:41PubMedPubMedCentralGoogle Scholar
  243. Gapp K, Jawaid A, Sarkies P, Bohacek J, Pelczar P, Prados J, Farinelli L, Miska E, Mansuy IM (2014) Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat Neurosci 17(5):667–669PubMedPubMedCentralGoogle Scholar
  244. Gascuel O, Steel M (2006) Neighbor-joining revealed. Mol Biol Evol 23(11):1997–2000PubMedPubMedCentralGoogle Scholar
  245. Ge Y, Sealfon SC, Speed TP (2008) Some step-down procedures controlling the false discovery rate under dependence. Stat Sin 18(3):881–904PubMedPubMedCentralGoogle Scholar
  246. Geller AI, Rich A (1980) A UGA termination suppression tRNATrp active in rabbit reticulocytes. Nature 283(5742):41–46PubMedPubMedCentralGoogle Scholar
  247. Geman S, Geman D (1984) Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell 6:721–741Google Scholar
  248. Ghaemmaghami S, Huh WK, Bower K, Howson RW, Belle A, Dephoure N, O’Shea EK, Weissman JS (2003) Global analysis of protein expression in yeast. Nature 425(6959):737–741PubMedPubMedCentralGoogle Scholar
  249. Gibbs JB (2000) Mechanism-based target identification and drug discovery in cancer research. Science 287(5460):1969–1973Google Scholar
  250. Giglione C, Vallon O, Meinnel T (2003) Control of protein life-span by N-terminal methionine excision. EMBO J 22(1):13–23PubMedPubMedCentralGoogle Scholar
  251. Giglione C, Boularot A, Meinnel T (2004) Protein N-terminal methionine excision. Cell Mol Life Sci 61(12):1455–1474PubMedPubMedCentralGoogle Scholar
  252. Gilbert WV (2010) Alternative ways to think about cellular internal ribosome entry. J Biol Chem 285(38):29033–29038PubMedPubMedCentralGoogle Scholar
  253. Gilbert WV, Zhou K, Butler TK, Doudna JA (2007) Cap-independent translation is required for starvation-induced differentiation in yeast. Science 317(5842):1224–1227Google Scholar
  254. Gillespie JH (1991) The causes of molecular evolution. Oxford University Press, OxfordGoogle Scholar
  255. Gojobori T, Li WH, Graur D (1982) Patterns of nucleotide substitution in pseudogenes and functional genes. J Mol Evol 18(5):360–369PubMedPubMedCentralGoogle Scholar
  256. Gonzalez B, Ceciliani F, Galizzi A (2003) Growth at low temperature suppresses readthrough of the UGA stop codon during the expression of Bacillus subtilis flgM gene in Escherichia coli. J Biotechnol 101(2):173–180PubMedPubMedCentralGoogle Scholar
  257. Gorodkin J, Heyer LJ, Brunak S, Stormo GD (1997) Displaying the information contents of structural RNA alignments: the structure logos. Comput Appl Biosci 13(6):583–586Google Scholar
  258. Goto M, Washio T, Tomita M (2000) Causal analysis of CpG suppression in the Mycoplasma genome. Microb Comp Genomics 5(1):51–58PubMedPubMedCentralGoogle Scholar
  259. Gotoh O (1982) An improved algorithm for matching biological sequences. J Mol Biol 162(3):705–708Google Scholar
  260. Gould SJ, Vrba ES (1982) Exaptation – a missing term in the science of form. Paleobiology 8:4–15Google Scholar
  261. Gouy M (1987) Codon contexts in enterobacterial and coliphage genes. Mol Biol Evol 4(4):426–444PubMedPubMedCentralGoogle Scholar
  262. Gouy M, Gautier C (1982) Codon usage in bacteria: correlation with gene expressivity. Nucleic Acids Res 10:7055–7064PubMedPubMedCentralGoogle Scholar
  263. Gowri-Shankar V, Rattray M (2007) A reversible jump method for Bayesian phylogenetic inference with a nonhomogeneous substitution model. Mol Biol Evol 24(6):1286–1299Google Scholar
  264. Grahn AM, Butcher SJ, Bamford JKH, Bamford DH (2006) PRD1: dissecting the genome, structure and entry. In: Calendar R (ed) The bacteriophages. Oxford University Press, Oxford, pp 176–185Google Scholar
  265. Gramm J, Niedermeier R (2002) Breakpoint medians and breakpoint phylogenies: a fixed-parameter approach. Bioinformatics 18(Suppl 2):S128–S139PubMedPubMedCentralGoogle Scholar
  266. Grantham R (1974) Amino acid difference formula to help explain protein evolution. Science 185:862–864Google Scholar
  267. Graveley BR (2005) Mutually exclusive splicing of the insect Dscam pre-mRNA directed by competing intronic RNA secondary structures. Cell 123(1):65–73PubMedPubMedCentralGoogle Scholar
  268. Grech B, Maetschke S, Mathews S, Timms P (2007) Genome-wide analysis of chlamydiae for promoters that phylogenetically footprint. Res Microbiol 158(8–9):685–693Google Scholar
  269. Grigg GW (1996) Sequencing 5-methylcytosine residues by the bisulphite method. DNA Seq 6(4):189–198PubMedPubMedCentralGoogle Scholar
  270. Grigg G, Clark S (1994) Sequencing 5-methylcytosine residues in genomic DNA. BioEssays 16(6):431–436PubMedPubMedCentralGoogle Scholar
  271. Grosjean H, Marck C, de Crecy-Lagard V (2007) The various strategies of codon decoding in organisms of the three domains of life: evolutionary implications. Nucleic Acids Symp Ser (Oxf) 51:15–16Google Scholar
  272. Grosjean H, de Crecy-Lagard V, Marck C (2010) Deciphering synonymous codons in the three domains of life: co-evolution with specific tRNA modification enzymes. FEBS Lett 584(2):252–264PubMedPubMedCentralGoogle Scholar
  273. Grossi de Sa MF, Standart N, Martins de Sa C, Akhayat O, Huesca M, Scherrer K (1988) The poly(A)-binding protein facilitates in vitro translation of poly(A)-rich mRNA. Eur J Biochem 176(3):521–526PubMedPubMedCentralGoogle Scholar
  274. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59(3):307–321Google Scholar
  275. Gumbel EJ (1958) Statistics of extremes. Columbia University Press, New YorkGoogle Scholar
  276. Gupta SK, Kececioglu JD, Schaffer AA (1995) Improving the practical space and time efficiency of the shortest-paths approach to sum-of-pairs multiple sequence alignment. J Comput Biol 2(3):459–472Google Scholar
  277. Gusfield D (1997) Algorithms on strings, trees, and sequences : computer science and computational biology. Cambridge University Press, CambridgeGoogle Scholar
  278. Gygi SP, Rochon Y, Franza BR, Aebersold R (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19(3):1720–1730PubMedPubMedCentralGoogle Scholar
  279. Haas J, Park E-C, Seed B (1996) Codon usage limitation in the expression of HIV-1 envelope glycoprotein. Curr Biol 6(3):315–324PubMedPubMedCentralGoogle Scholar
  280. Hacker J, Kaper JB (2000) Pathogenicity islands and the evolution of microbes. Annu Rev Microbiol 54:641–679Google Scholar
  281. Hacker J, Blum-Oehler G, Muhldorfer I, Tschape H (1997) Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution. Mol Microbiol 23(6):1089–1097Google Scholar
  282. Hamajima N, Goto Y, Nishio K, Tanaka D, Kawai S, Sakakibara H, Kondo T (2004) Helicobacter pylori eradication as a preventive tool against gastric cancer. Asian Pac J Cancer Prev 5(3):246–252PubMedPubMedCentralGoogle Scholar
  283. Hanada K, Suzuki Y, Gojobori T (2004) A large variation in the rates of synonymous substitution for RNA viruses and its relationship to a diversity of viral infection and transmission modes. Mol Biol Evol 21(6):1074–1080PubMedPubMedCentralGoogle Scholar
  284. Hartigan JA (1975) Clustering algorithms. Wiley, New YorkGoogle Scholar
  285. Hasegawa M, Kishino H (1989) Heterogeneity of tempo and mode of mitochondrial DNA evolution among mammalian orders. Jpn J Genet 64(4):243–258PubMedPubMedCentralGoogle Scholar
  286. Hasegawa M, Kishino H, Yano T (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22(2):160–174PubMedPubMedCentralGoogle Scholar
  287. Haustead DJ, Stevenson A, Saxena V, Marriage F, Firth M, Silla R, Martin L, Adcroft KF, Rea S, Day PJ et al (2016) Transcriptome analysis of human ageing in male skin shows mid-life period of variability and central role of NF-kappaB. Sci Rep 6:26846PubMedPubMedCentralGoogle Scholar
  288. Hayes WS, Borodovsky M (1998) How to interpret an anonymous bacterial genome: machine learning approach to gene identification. Genome Res 8(11):1154–1171PubMedPubMedCentralGoogle Scholar
  289. Heath JR, Ribas A, Mischel PS (2016) Single-cell analysis tools for drug discovery and development. Nat Rev Drug Discov 15(3):204–216PubMedPubMedCentralGoogle Scholar
  290. Hein J (1990) A unified approach to phylogenies and alignments. Methods Enzymol 183:625–644Google Scholar
  291. Hein J (1994) TreeAlign. Methods Mol Biol 25:349–364Google Scholar
  292. Hendy MD, Penny D (1982) Branch and bound algorithms to determine minimal evolutionary trees. Math Biosci 60:133–142Google Scholar
  293. Hendy MD, Penny D (1989) A framework for the quantitative study of evolutionary trees. Syst Zool 38:297–309Google Scholar
  294. Henikoff S, Henikoff JG (1992) Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci U S A 89:10915–10919PubMedPubMedCentralGoogle Scholar
  295. Henz SR, Huson DH, Auch AF, Nieselt-Struwe K, Schuster SC (2005) Whole-genome prokaryotic phylogeny. Bioinformatics 21(10):2329–2335PubMedPubMedCentralGoogle Scholar
  296. Herman JL, Challis CJ, Novak A, Hein J, Schmidler SC (2014) Simultaneous Bayesian estimation of alignment and phylogeny under a joint model of protein sequence and structure. Mol Biol Evol 31(9):2251–2266PubMedPubMedCentralGoogle Scholar
  297. Hernández G (2008) Was the initiation of translation in early eukaryotes IRES-driven? Trends Biochem Sci 33(2):58PubMedPubMedCentralGoogle Scholar
  298. Hernandez G, Vazquez-Pianzola P, Sierra JM, Rivera-Pomar R (2004) Internal ribosome entry site drives cap-independent translation of reaper and heat shock protein 70 mRNAs in Drosophila embryos. RNA 10(11):1783–1797PubMedPubMedCentralGoogle Scholar
  299. Herniou EA, Luque T, Chen X, Vlak JM, Winstanley D, Cory JS, O’Reilly DR (2001) Use of whole genome sequence data to infer baculovirus phylogeny. J Virol 75(17):8117–8126PubMedPubMedCentralGoogle Scholar
  300. Hertz GZ, Stormo GD (1999) Identifying DNA and protein patterns with statistically significant alignments of multiple sequences. Bioinformatics 15(7–8):563–577Google Scholar
  301. Hertz GZ, Hartzell GW 3rd, Stormo GD (1990) Identification of consensus patterns in unaligned DNA sequences known to be functionally related. Comput Appl Biosci 6(2):81–92Google Scholar
  302. Hertzberg L, Izraeli S, Domany E (2007) STOP: searching for transcription factor motifs using gene expression. Bioinformatics 23(14):1737–1743Google Scholar
  303. Hiard S, Maree R, Colson S, Hoskisson PA, Titgemeyer F, van Wezel GP, Joris B, Wehenkel L, Rigali S (2007) PREDetector: a new tool to identify regulatory elements in bacterial genomes. Biochem Biophys Res Commun 357(4):861–864Google Scholar
  304. Hickson RE, Simon C, Perrey SW (2000) The performance of several multiple-sequence alignment programs in relation to secondary-structure features for an rRNA sequence. Mol Biol Evol 17(4):530–539Google Scholar
  305. Higashi K, Kashiwagi K, Taniguchi S, Terui Y, Yamamoto K, Ishihama A, Igarashi K (2006) Enhancement of +1 frameshift by polyamines during translation of polypeptide release factor 2 in Escherichia coli. J Biol Chem 281(14):9527–9537Google Scholar
  306. Higgins DG (1994) CLUSTAL V: multiple alignment of DNA and protein sequences. Methods Mol Biol 25:307–318Google Scholar
  307. Higgs PG, Attwood TK (2005) Bioinformatics and molecular evolution. Blackwell, MaldenGoogle Scholar
  308. Higgs PG, Ran W (2008) Coevolution of codon usage and tRNA genes leads to alternative stable states of biased codon usage. Mol Biol Evol 25(11):2279–2291PubMedPubMedCentralGoogle Scholar
  309. Hiller K, Grote A, Scheer M, Munch R, Jahn D (2004) PrediSi: prediction of signal peptides and their cleavage positions. Nucleic Acids Res 32(Web Server issue):W375–W379PubMedPubMedCentralGoogle Scholar
  310. Hirao I, Kimoto M (2010) Expansion of the genetic alphabet in nucleic acids by creating new base pairs. In: Mayer G (ed) The chemical biology of nucleic acids. Wiley, Chichester, pp 39–62Google Scholar
  311. Hirsh D, Gold L (1971) Translation of the UGA triplet in vitro by tryptophan transfer RNA’s. J Mol Biol 58(2):459–468PubMedPubMedCentralGoogle Scholar
  312. Hirst JD, Sternberg MJ (1991) Prediction of ATP/GTP-binding motif: a comparison of a perceptron type neural network and a consensus sequence method [corrected]. Protein Eng 4(6):615–623Google Scholar
  313. Hoagland MB, Stephenson ML, Scott JF, Hecht LI, Zamecnik PC (1958) A soluble ribonucleic acid intermediate in protein synthesis. J Biol Chem 231(1):241–257PubMedPubMedCentralGoogle Scholar
  314. Hobolth A, Christensen OF, Mailund T, Schierup MH (2007) Genomic relationships and speciation times of human, chimpanzee, and gorilla inferred from a coalescent hidden Markov model. PLoS Genet 3(2):e7PubMedPubMedCentralGoogle Scholar
  315. Hofacker IL (2003) Vienna RNA secondary structure server. Nucleic Acids Res 31(13):3429–3431PubMedPubMedCentralGoogle Scholar
  316. Hofacker IL, Fekete M, Stadler PF (2002) Secondary structure prediction for aligned RNA sequences. J Mol Biol 319(5):1059–1066PubMedPubMedCentralGoogle Scholar
  317. Hofer A, Steverding D, Chabes A, Brun R, Thelander L (2001) Trypanosoma brucei CTP synthetase: a target for the treatment of African sleeping sickness. Proc Natl Acad Sci U S A 98(11):6412–6416PubMedPubMedCentralGoogle Scholar
  318. Hogeweg P, Hesper aB (1984) The alignment of sets of sequences and the construction of phylogenetic trees: an integrated method. J Mol Evol 20:175–186Google Scholar
  319. Holmes I, Bruno WJ (2001) Evolutionary HMMs: a Bayesian approach to multiple alignment. Bioinformatics 17(9):803–820Google Scholar
  320. Holstege FC, Jennings EG, Wyrick JJ, Lee TI, Hengartner CJ, Green MR, Golub TR, Lander ES, Young RA (1998) Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95(5):717–728 Transcriptomic data at http://web.wi.mit.edu/young/pub/data/orf_transcriptome.txtPubMedPubMedCentralGoogle Scholar
  321. Hou C, Zhao H, Tanimoto K, Dean A (2008) CTCF-dependent enhancer-blocking by alternative chromatin loop formation. Proc Natl Acad Sci U S A 105(51):20398–20403PubMedPubMedCentralGoogle Scholar
  322. Hua S, Sun Z (2001) Support vector machine approach for protein subcellular localization prediction. Bioinformatics 17(8):721–728Google Scholar
  323. Hudson RR (1992) Gene trees, species trees and the segregation of ancestral alleles. Genetics 131(2):509–513PubMedPubMedCentralGoogle Scholar
  324. Huelsenbeck JP, Larget B, Alfaro ME (2004) Bayesian phylogenetic model selection using reversible jump Markov chain Monte Carlo. Mol Biol Evol 21(6):1123–1133PubMedPubMedCentralGoogle Scholar
  325. Hughes D (1987) Mutant forms of tufA and tufB independently suppress nonsense mutations. J Mol Biol 197(4):611–615Google Scholar
  326. Hui A, de Boer HA (1987) Specialized ribosome system: preferential translation of a single mRNA species by a subpopulation of mutated ribosomes in Escherichia coli. Proc Natl Acad Sci U S A 84(14):4762–4766PubMedPubMedCentralGoogle Scholar
  327. Hunt RH (2004) Will eradication of Helicobacter pylori infection influence the risk of gastric cancer? Am J Med 117(Suppl 5A):86S–91SPubMedPubMedCentralGoogle Scholar
  328. Hurst LD, Merchant AR (2001) High guanine-cytosine content is not an adaptation to high temperature: a comparative analysis amongst prokaryotes. Proc R Soc Lond B 268:493–497Google Scholar
  329. Huynen M, Dandekar T, Bork P (1998) Differential genome analysis applied to the species-specific features of Helicobacter pylori. FEBS Lett 426(1):1–5PubMedPubMedCentralGoogle Scholar
  330. Hwang S, Gou Z, Kuznetsov IB (2007) DP-Bind: a web server for sequence-based prediction of DNA-binding residues in DNA-binding proteins. Bioinformatics 23(5):634–636Google Scholar
  331. Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform 11:119Google Scholar
  332. Igarashi K, Kashiwagi K (2006) Polyamine Modulon in Escherichia coli: genes involved in the stimulation of cell growth by polyamines. J Biochem 139(1):11–16Google Scholar
  333. Ikemura T (1981a) Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes. J Mol Biol 146:1–21PubMedPubMedCentralGoogle Scholar
  334. Ikemura T (1981b) Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes: a proposal for a synonymous codon choice that is optimal for the E coli translational system. J Mol Biol 151:389–409PubMedPubMedCentralGoogle Scholar
  335. Ikemura T (1982) Correlation between the abundance of yeast transfer RNAs and the occurrence of the respective codons in protein genes. Differences in synonymous codon choice patterns of yeast and Escherichia coli with reference to the abundance of isoaccepting transfer RNAs. J Mol Biol 158(4):573–597PubMedPubMedCentralGoogle Scholar
  336. Ikemura T (1985) Codon usage and tRNA content in unicellular and multicellular organisms. Mol Biol Evol 2:13–34PubMedPubMedCentralGoogle Scholar
  337. Ikemura T (1992) Correlation between codon usage and tRNA content in microorganisms. In: Hatfield DL, Lee BJ, Pirtle RM (eds) Transfer RNA in protein synthesis. CRC Press, Boca Raton, pp 87–111Google Scholar
  338. Ilkow CS, Mancinelli V, Beatch MD, Hobman TC (2008) Rubella virus capsid protein interacts with poly(a)-binding protein and inhibits translation. J Virol 82(9):4284–4294PubMedPubMedCentralGoogle Scholar
  339. Ingolia NT (2010) Genome-wide translational profiling by ribosome footprinting. Methods Enzymol 470:119–142Google Scholar
  340. Ingolia NT (2014) Ribosome profiling: new views of translation, from single codons to genome scale. Nat Rev Genet 15(3):205–213Google Scholar
  341. Ingolia NT (2016) Ribosome footprint profiling of translation throughout the Genome. Cell 165(1):22–33PubMedPubMedCentralGoogle Scholar
  342. Ingolia NT, Ghaemmaghami S, Newman JRS, Weissman JS (2009) Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324(5924):218–223PubMedPubMedCentralGoogle Scholar
  343. Ingolia NT, Lareau LF, Weissman JS (2011) Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell 147(4):789–802PubMedPubMedCentralGoogle Scholar
  344. Ingolia NT, Brar GA, Stern-Ginossar N, Harris MS, Talhouarne GJ, Jackson SE, Wills MR, Weissman JS (2014) Ribosome profiling reveals pervasive translation outside of annotated protein-coding genes. Cell Rep 8(5):1365–1379PubMedPubMedCentralGoogle Scholar
  345. Ingram VM (1956) A specific chemical difference between the globins of normal human and sickle-cell anaemia haemoglobin. Nature 178(4537):792–794Google Scholar
  346. Ingram VM (1957) Gene mutations in human haemoglobin: the chemical difference between normal and sickle cell haemoglobin. Nature 180(4581):326–328Google Scholar
  347. Ingrosso D, Perna AF (2009) Epigenetics in hyperhomocysteinemic states. A special focus on uremia. Biochim Biophys Acta 1790(9):892–899PubMedPubMedCentralGoogle Scholar
  348. Ingrosso D, Cimmino A, Perna AF, Masella L, De Santo NG, De Bonis ML, Vacca M, D’Esposito M, D’Urso M, Galletti P et al (2003) Folate treatment and unbalanced methylation and changes of allelic expression induced by hyperhomocysteinaemia in patients with uraemia. Lancet 361(9370):1693–1699PubMedPubMedCentralGoogle Scholar
  349. Ink BS, Pickup DJ (1990) Vaccinia virus directs the synthesis of early mRNAs containing 5′ poly(A) sequences. Proc Natl Acad Sci U S A 87(4):1536–1540PubMedPubMedCentralGoogle Scholar
  350. Insinga A, Minucci S, Pelicci PG (2005a) Mechanisms of selective anticancer action of histone deacetylase inhibitors. Cell Cycle 4(6):741–743PubMedPubMedCentralGoogle Scholar
  351. Insinga A, Monestiroli S, Ronzoni S, Gelmetti V, Marchesi F, Viale A, Altucci L, Nervi C, Minucci S, Pelicci PG (2005b) Inhibitors of histone deacetylases induce tumor-selective apoptosis through activation of the death receptor pathway. Nat Med 11(1):71–76PubMedPubMedCentralGoogle Scholar
  352. Ito T, Bulger M, Pazin MJ, Kobayashi R, Kadonaga JT (1997) ACF, an ISWI-containing and ATP-utilizing chromatin assembly and remodeling factor. Cell 90(1):145–155PubMedPubMedCentralGoogle Scholar
  353. Ito K, Uno M, Nakamura Y (2000) A tripeptide ‘anticodon’ deciphers stop codons in messenger RNA. Nature 403(6770):680–684PubMedPubMedCentralGoogle Scholar
  354. Jackson RJ, Hellen CU, Pestova TV (2010) The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 11(2):113–127PubMedPubMedCentralGoogle Scholar
  355. Jacob F (1982) The possible and the actual. University of Washington Press, Seattle, p 70Google Scholar
  356. Jacob F (1988) The statue within: an autobiography. Basic Books, Inc., New YorkGoogle Scholar
  357. Jacob F, Monod J (1961) Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3:318–356Google Scholar
  358. Jacobson A, Favreau M (1983) Possible involvement of poly(A) in protein synthesis. Nucleic Acids Res 11(18):6353–6368PubMedPubMedCentralGoogle Scholar
  359. James P, Quadroni M, Carafoli E, Gonnet G (1994) Protein identification in DNA databases by peptide mass fingerprinting. Protein Sci 3(8):1347–1350PubMedPubMedCentralGoogle Scholar
  360. Jan E, Sarnow P (2002) Factorless ribosome assembly on the internal ribosome entry site of cricket paralysis virus. J Mol Biol 324(5):889–902PubMedPubMedCentralGoogle Scholar
  361. Jan E, Thompson SR, Wilson JE, Pestova TV, Hellen CU, Sarnow P (2001) Initiator Met-tRNA-independent translation mediated by an internal ribosome entry site element in cricket paralysis virus-like insect viruses. Cold Spring Harb Symp Quant Biol 66:285–292PubMedPubMedCentralGoogle Scholar
  362. Janin L, Schulz-Trieglaff O, Cox AJ (2014) BEETL-fastq: a searchable compressed archive for DNA reads. Bioinformatics 30(19):2796–2801PubMedPubMedCentralGoogle Scholar
  363. Jank P, Shindo-Okada N, Nishimura S, Gross HJ (1977) Rabbit liver tRNA1Val:I. Primary structure and unusual codon recognition. Nucleic Acids Res 4(6):1999–2008PubMedPubMedCentralGoogle Scholar
  364. Jayaswal V, Jermiin LS, Robinson J (2005) Estimation of phylogeny using a general markov model. Evol Bioinform Online 1:62–80Google Scholar
  365. Jenkins GM, Holmes EC (2003) The extent of codon usage bias in human RNA viruses and its evolutionary origin. Virus Res 92(1):1–7PubMedPubMedCentralGoogle Scholar
  366. Jensen JL, Hein J (2005) Gibbs sampler for statistical multiple alignment. Stat Sin 15:889–907Google Scholar
  367. Jia W, Higgs PG (2008) Codon usage in mitochondrial genomes: distinguishing context-dependent mutation from translational selection. Mol Biol Evol 25(2):339–351PubMedPubMedCentralGoogle Scholar
  368. Jin P, Alisch RS, Warren ST (2004a) RNA and microRNAs in fragile X mental retardation. Nat Cell Biol 6(11):1048–1053PubMedPubMedCentralGoogle Scholar
  369. Jin VX, Leu YW, Liyanarachchi S, Sun H, Fan M, Nephew KP, Huang TH, Davuluri RV (2004b) Identifying estrogen receptor alpha target genes using integrated computational genomics and chromatin immunoprecipitation microarray. Nucleic Acids Res 32(22):6627–6635PubMedPubMedCentralGoogle Scholar
  370. Jin VX, O’Geen H, Iyengar S, Green R, Farnham PJ (2007) Identification of an OCT4 and SRY regulatory module using integrated computational and experimental genomics approaches. Genome Res 17(6):807–817PubMedPubMedCentralGoogle Scholar
  371. Johnston TC, Parker J (1985) Streptomycin-induced, third-position misreading of the genetic code. J Mol Biol 181(2):313–315PubMedPubMedCentralGoogle Scholar
  372. Johnston TC, Borgia PT, Parker J (1984) Codon specificity of starvation induced misreading. Mol Gen Genet MGG 195(3):459–465PubMedPubMedCentralGoogle Scholar
  373. Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282PubMedPubMedCentralGoogle Scholar
  374. Jorgensen F, Adamski FM, Tate WP, Kurland CG (1993) Release factor-dependent false stops are infrequent in Escherichia coli. J Mol Biol 230(1):41–50PubMedPubMedCentralGoogle Scholar
  375. Josse J, Kaiser AD, Kornberg A (1961) Enzymatic synthesis of deoxyribonucleic acid VII. Frequencies of nearest neighbor base-sequences in deoxyribonucleic acid. J Biol Chem 236:864–875PubMedPubMedCentralGoogle Scholar
  376. Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic, New York, pp 21–123Google Scholar
  377. Kaishima M, Ishii J, Matsuno T, Fukuda N, Kondo A (2016) Expression of varied GFPs in Saccharomyces cerevisiae: codon optimization yields stronger than expected expression and fluorescence intensity. Sci Rep 6:35932PubMedPubMedCentralGoogle Scholar
  378. Kamalakaran S, Radhakrishnan SK, Beck WT (2005) Identification of estrogen-responsive genes using a genome-wide analysis of promoter elements for transcription factor binding sites. J Biol Chem 280(22):21491–21497Google Scholar
  379. Kanehisa M (2013) Molecular network analysis of diseases and drugs in KEGG. Methods Mol Biol 939:263–275PubMedPubMedCentralGoogle Scholar
  380. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M (2016) KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 44(D1):D457–D462PubMedPubMedCentralGoogle Scholar
  381. Kaneko T, Tanaka A, Sato S, Kotani H, Sazuka T, Miyajima N, Sugiura M, Tabata S (1995) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. I. Sequence features in the 1 Mb region from map positions 64% to 92% of the genome. DNA Res 2(4):153–166 191-8Google Scholar
  382. Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E, Nakamura Y, Miyajima N, Hirosawa M, Sugiura M, Sasamoto S et al (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3(3):109–136Google Scholar
  383. Karlin S, Burge C (1995) Dinucleotide relative abundance extremes: a genomic signature. TIG 11(7):283–290PubMedPubMedCentralGoogle Scholar
  384. Katsafanas GC, Moss B (2007a) Colocalization of transcription and translation within cytoplasmic poxvirus factories coordinates viral expression and subjugates host functions. Cell Host Microbe 2(4):221PubMedPubMedCentralGoogle Scholar
  385. Karlin S, Mrazek J (1996) What drives codon choices in human genes. J Mol Biol 262:459–472Google Scholar
  386. Kass RE, Raftery AE (1995) Bayes factors. J Am Stat Assoc 90(430):773–795Google Scholar
  387. Katoh K, Toh H (2008) Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 9(4):286–298Google Scholar
  388. Katoh K, Toh H (2010) Parallelization of the MAFFT multiple sequence alignment program. Bioinformatics 26(15):1899–1900PubMedPubMedCentralGoogle Scholar
  389. Katoh K, Kuma K, Toh H, Miyata T (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 33(2):511–518PubMedPubMedCentralGoogle Scholar
  390. Katoh K, Asimenos G, Toh H (2009) Multiple alignment of DNA sequences with MAFFT. Methods Mol Biol 537:39–64PubMedPubMedCentralGoogle Scholar
  391. Katsafanas GC, Moss B (2007b) Colocalization of transcription and translation within cytoplasmic poxvirus factories coordinates viral expression and subjugates host functions. Cell Host Microbe 2(4):221PubMedPubMedCentralGoogle Scholar
  392. Kawashima T, Douglass S, Gabunilas J, Pellegrini M, Chanfreau GF (2014) Widespread use of non-productive alternative splice sites in Saccharomyces cerevisiae. PLoS Genet 10(4):e1004249PubMedPubMedCentralGoogle Scholar
  393. Kazan K (2003) Alternative splicing and proteome diversity in plants: the tip of the iceberg has just emerged. Trends Plant Sci 8(10):468–471PubMedPubMedCentralGoogle Scholar
  394. Keeling PJ, Doolittle WF (1996) A non-canonical genetic code in an early diverging eukaryotic lineage. EMBO J 15(9):2285–2290PubMedPubMedCentralGoogle Scholar
  395. Kersulyte D, Chalkauskas H, Berg DE (1999) Emergence of recombinant strains of Helicobacter pylori during human infection. Mol Microbiol 31(1):31–43PubMedPubMedCentralGoogle Scholar
  396. Kim H, Park H (2004) Prediction of protein relative solvent accessibility with support vector machines and long-range interaction 3D local descriptor. Proteins 54(3):557–562Google Scholar
  397. Kim DW, Lee KH, Lee D (2005) Detecting clusters of different geometrical shapes in microarray gene expression data. Bioinformatics 21(9):1927–1934Google Scholar
  398. Kimura M (1968) Evolutionary rate at the molecular level. Nature 217:624–626PubMedPubMedCentralGoogle Scholar
  399. Kimura M (1977) Preponderance of synonymous changes as evidence for the neutral theory of molecular evolution. Nature 267:275–276PubMedPubMedCentralGoogle Scholar
  400. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120PubMedPubMedCentralGoogle Scholar
  401. Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, CambridgeGoogle Scholar
  402. Kimura M, Ohta T (1972) On the stochastic model for estimation of mutational distance between homologous proteins. J Mol Evol 2:87–90PubMedPubMedCentralGoogle Scholar
  403. King MC, Jukes TH (1969) Non-Darwinian evolution. Science 164:788–798PubMedPubMedCentralGoogle Scholar
  404. Kingsford C, Patro R (2015) Reference-based compression of short-read sequences using path encoding. Bioinformatics 31(12):1920–1928PubMedPubMedCentralGoogle Scholar
  405. Kioussis D, Vanin E, deLange T, Flavell RA, Grosveld FG (1983) Beta-globin gene inactivation by DNA translocation in gamma beta-thalassaemia. Nature 306(5944):662–666Google Scholar
  406. Kishino H, Hasegawa M (1989) Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. J Mol Evol 29:170–179Google Scholar
  407. Kishino H, Hasegawa M (1990) Converting distance to time: application to human evolution. Methods Enzymol 183:550–570PubMedPubMedCentralGoogle Scholar
  408. Kjer KM (1995) Use of ribosomal-RNA secondary structure in phylogenetic studies to identify homologous positions – an example of alignment and data presentation from the frogs. Mol Phylogenet Evol 4(3):314–330Google Scholar
  409. Kliman RM, Bernal CA (2005) Unusual usage of AGG and TTG codons in humans and their viruses. Gene 352:92PubMedPubMedCentralGoogle Scholar
  410. Kobayashi H, Akitomi J, Fujii N, Kobayashi K, Altaf-Ul-Amin M, Kurokawa K, Ogasawara N, Kanaya S (2007) The entire organization of transcription units on the Bacillus subtilis genome. BMC Genomics 8:197PubMedPubMedCentralGoogle Scholar
  411. Kodama Y, Shumway M, Leinonen R (2012) The sequence read archive: explosive growth of sequencing data. Nucleic Acids Res 40(Database issue):D54–D56Google Scholar
  412. Kohonen T (2001) Self-organizing maps. Springer, BerlinGoogle Scholar
  413. Komar AA, Hatzoglou M (2005) Internal ribosome entry sites in cellular mRNAs: mystery of their existence. J Biol Chem 280(25):23425–23428PubMedPubMedCentralGoogle Scholar
  414. Korenke GC, Fuchs S, Krasemann E, Doerr HG, Wilichowski E, Hunneman DH, Hanefeld F (1996) Cerebral adrenoleukodystrophy (ALD) in only one of monozygotic twins with an identical ALD genotype. Ann Neurol 40(2):254–257PubMedPubMedCentralGoogle Scholar
  415. Korkmaz G, Holm M, Wiens T, Sanyal S (2014) Comprehensive analysis of stop codon usage in bacteria and its correlation with release factor abundance. J Biol Chem 289(44):30334–30342PubMedPubMedCentralGoogle Scholar
  416. Kornblihtt AR (2005) Promoter usage and alternative splicing. Curr Opin Cell Biol 17(3):262–268PubMedPubMedCentralGoogle Scholar
  417. Kozak M (1978) How do eucaryotic ribosomes select initiation regions in messenger RNA? Cell 15(4):1109–1123PubMedPubMedCentralGoogle Scholar
  418. Kozak M (1980a) Evaluation of the “scanning model” for initiation of protein synthesis in eucaryotes. Cell 22(1 Pt 1):7–8PubMedPubMedCentralGoogle Scholar
  419. Kozak M (1980b) Influence of mRNA secondary structure on binding and migration of 40S ribosomal subunits. Cell 19(1):79–90PubMedPubMedCentralGoogle Scholar
  420. Kozak M (1981) Possible role of flanking nucleotides in recognition of the AUG initiator codon by eukaryotic ribosomes. Nucleic Acids Res 9(20):5233–5252PubMedPubMedCentralGoogle Scholar
  421. Kozak M (1986) Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44(2):283–292PubMedPubMedCentralGoogle Scholar
  422. Kozak M (1991) Effects of long 5′ leader sequences on initiation by eukaryotic ribosomes in vitro. Gene Expr 1(2):117–125Google Scholar
  423. Kozak M (1997) Recognition of AUG and alternative initiator codons is augmented by G in position +4 but is not generally affected by the nucleotides in positions +5 and +6. EMBO J 16(9):2482–2492PubMedPubMedCentralGoogle Scholar
  424. Kozak M (1999) Initiation of translation in prokaryotes and eukaryotes. Gene 234(2):187–208Google Scholar
  425. Kozak M (2005) A second look at cellular mRNA sequences said to function as internal ribosome entry sites. Nucleic Acids Res 33(20):6593–6602PubMedPubMedCentralGoogle Scholar
  426. Kozak M (2007) Some thoughts about translational regulation: forward and backward glances. J Cell Biochem 102(2):280–290PubMedPubMedCentralGoogle Scholar
  427. Krasemann EW, Meier V, Korenke GC, Hunneman DH, Hanefeld F (1996) Identification of mutations in the ALD-gene of 20 families with adrenoleukodystrophy/adrenomyeloneuropathy. Hum Genet 97(2):194–197PubMedPubMedCentralGoogle Scholar
  428. Kreutzer DA, Essigmann JM (1998) Oxidized, deaminated cytosines are a source of C --> T transitions in vivo. Proc Natl Acad Sci U S A 95(7):3578–3582PubMedPubMedCentralGoogle Scholar
  429. Krogh A, Mian IS, Haussler D (1994) A hidden Markov model that finds genes in E. coli DNA. Nucleic Acids Res 22(22):4768–4778PubMedPubMedCentralGoogle Scholar
  430. Kudla G, Murray AW, Tollervey D, Plotkin JB (2009) Coding-sequence determinants of gene expression in escherichia coli. Science 324(5924):255–258PubMedPubMedCentralGoogle Scholar
  431. Kullback S (1959) Information theory and statistics. Wiley, New YorkGoogle Scholar
  432. Kullback S (1987) The Kullback-Leibler distance. Am Stat 41:340–341Google Scholar
  433. Kullback S, Leibler RA (1951) On information and sufficiency. Ann Math Stat 22:79–86Google Scholar
  434. Kumar S, Filipski A (2007) Multiple sequence alignment: in pursuit of homologous DNA positions. Genome Res 17(2):127–135PubMedPubMedCentralGoogle Scholar
  435. Kumar KK, Shelokar PS (2008) An SVM method using evolutionary information for the identification of allergenic proteins. Bioinformation 2(6):253–256PubMedPubMedCentralGoogle Scholar
  436. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874PubMedPubMedCentralGoogle Scholar
  437. Kungulovski G, Jeltsch A (2016) Epigenome editing: state of the art, concepts, and perspectives. Trends Genet 32(2):101–113PubMedPubMedCentralGoogle Scholar
  438. Kurland CG (1987) Strategies for efficiency and accuracy in gene expression. Trends Biochem Sci 12:126Google Scholar
  439. Kutlar A (2007) Sickle cell disease: a multigenic perspective of a single gene disorder. Hemoglobin 31(2):209–224Google Scholar
  440. Kuznetsov IB, Gou Z, Li R, Hwang S (2006) Using evolutionary and structural information to predict DNA-binding sites on DNA-binding proteins. Proteins 64(1):19–27Google Scholar
  441. Kypr J, Mrazek JAN (1987) Unusual codon usage of HIV. Nature 327(6117):20PubMedPubMedCentralGoogle Scholar
  442. Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132Google Scholar
  443. Lacerda R, Menezes J, Romao L (2016) More than just scanning: the importance of cap-independent mRNA translation initiation for cellular stress response and cancer. Cell Mol Life Sci 74(9):1659–1680PubMedPubMedCentralGoogle Scholar
  444. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nat Biotechnol 227:680–685Google Scholar
  445. Lake JA (1994) Reconstructing evolutionary trees from DNA and protein sequences: paralinear distances. Proc Natl Acad Sci U S A 91:1455–1459PubMedPubMedCentralGoogle Scholar
  446. Lamendola DE, Duan Z, Yusuf RZ, Seiden MV (2003) Molecular description of evolving paclitaxel resistance in the SKOV-3 human ovarian carcinoma cell line. Cancer Res 63(9):2200–2205Google Scholar
  447. Lamond AI (1988) RNA editing and the mysterious undercover genes of trypanosomatid mitochondria. Trends Biochem Sci 13(8):283–284Google Scholar
  448. Lanave C, Preparata G, Saccone C, Serio G (1984) A new method for calculating evolutionary substitution rates. J Mol Evol 20(1):86–93PubMedPubMedCentralGoogle Scholar
  449. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W et al (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921PubMedPubMedCentralGoogle Scholar
  450. Lang BF, Burger G, O’Kelly CJ, Cedergren R, Golding GB, Lemieux C, Sankoff D, Turmel M, Gray MW (1997) An ancestral mitochondrial DNA resembling a eubacterial genome in miniature. Nature 387(6632):493–497PubMedPubMedCentralGoogle Scholar
  451. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359PubMedPubMedCentralGoogle Scholar
  452. Langmead B, Schatz MC, Lin J, Pop M, Salzberg SL (2009a) Searching for SNPs with cloud computing. Genome Biol 10(11):R134PubMedPubMedCentralGoogle Scholar
  453. Langmead B, Trapnell C, Pop M, Salzberg SL (2009b) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10(3):R25PubMedPubMedCentralGoogle Scholar
  454. Langmead B, Hansen KD, Leek JT (2010) Cloud-scale RNA-sequencing differential expression analysis with Myrna. Genome Biol 11(8):R83PubMedPubMedCentralGoogle Scholar
  455. Lawrence CE, Altschul SF, Boguski MS, Liu JS, Neuwald AF, Wootton JC (1993) Detecting subtle sequence signals: a Gibbs sampling strategy for multiple alignment. Science 262(5131):208–214PubMedPubMedCentralGoogle Scholar
  456. Lee C, Wang Q (2005) Bioinformatics analysis of alternative splicing. Brief Bioinform 6(1):23–33PubMedPubMedCentralGoogle Scholar
  457. Leinonen R, Sugawara H, Shumway M (2011) The sequence read archive. Nucleic Acids Res 39(Database):D19–D21PubMedPubMedCentralGoogle Scholar
  458. Lemay DG, Hwang DH (2006) Genome-wide identification of peroxisome proliferator response elements using integrated computational genomics. J Lipid Res 47(7):1583–1587Google Scholar
  459. Lesk AM (2004) Introduction to protein science: architecture, function and genomics. Oxford University Press, New YorkGoogle Scholar
  460. Li CC (1976) First course in population genetics. The Boxwood Press, Pacific GroveGoogle Scholar
  461. Li W-H (1983) Evolution of duplicate genes and pseudogenes. Sinauer, SunderlandGoogle Scholar
  462. Li W-H (1997) Molecular evolution. Sinauer, SunderlandGoogle Scholar
  463. Li X, Chang YH (1995) Amino-terminal protein processing in Saccharomyces cerevisiae is an essential function that requires two distinct methionine aminopeptidases. Proc Natl Acad Sci U S A 92(26):12357–12361PubMedPubMedCentralGoogle Scholar
  464. Li GL, Leong TY (2005) Feature selection for the prediction of translation initiation sites. Genomics Proteomics Bioinformatics 3(2):73–83PubMedPubMedCentralGoogle Scholar
  465. Li W-H, Tanimura M (1987) The molecular clock runs more slowly in man than in apes and monkeys. Nature 326:93–96PubMedPubMedCentralGoogle Scholar
  466. Li WH, Wu CI (1987) Rates of nucleotide substitution are evidently higher in rodents than in man. Mol Biol Evol 4(1):74–82PubMedPubMedCentralGoogle Scholar
  467. Li WH, Gojobori T, Nei M (1981) Pseudogenes as a paradigm of neutral evolution. Nature 292(5820):237–239PubMedPubMedCentralGoogle Scholar
  468. Li W-H, Wolfe KH, Sourdis J, Sharp PM (1987) Reconstruction of phylogenetic trees and estimation of divergence times under nonconstant rates of evolution. Cold Spring Harb Symp Quant Biol 52:847–856PubMedPubMedCentralGoogle Scholar
  469. Li F, Ge P, Hui WH, Atanasov I, Rogers K, Guo Q, Osato D, Falick AM, Zhou ZH, Simpson L (2009) Structure of the core editing complex (L-complex) involved in uridine insertion/deletion RNA editing in trypanosomatid mitochondria. Proc Natl Acad Sci U S A 106(30):12306–12310PubMedPubMedCentralGoogle Scholar
  470. Liang KC, Wang X, Anastassiou D (2008) A profile-based deterministic sequential Monte Carlo algorithm for motif discovery. Bioinformatics 24(1):46–55Google Scholar
  471. Liberman N, Gandin V, Svitkin YV, David M, Virgili G, Jaramillo M, Holcik M, Nagar B, Kimchi A, Sonenberg N (2015) DAP5 associates with eIF2beta and eIF4AI to promote Internal Ribosome Entry Site driven translation. Nucleic Acids Res 43(7):3764–3775PubMedPubMedCentralGoogle Scholar
  472. Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO et al (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326(5950):289–293PubMedPubMedCentralGoogle Scholar
  473. Liebler DC, TBDC L III., fb JRY, Publisher : c (2002) Introduction to proteomics: tools for the new biology. Humana Press, TotowaGoogle Scholar
  474. Liljenstrom H, von Heijne G (1987) Translation rate modification by preferential codon usage: intragenic position effects. J Theor Biol 124(1):43–55PubMedPubMedCentralGoogle Scholar
  475. Lim VI (1994) Analysis of action of wobble nucleoside modifications on codon-anticodon pairing within the ribosome. J Mol Biol 240(1):8–19PubMedPubMedCentralGoogle Scholar
  476. Lin JP, Aker M, Sitney KC, Mortimer RK (1986) First position wobble in codon-anticodon pairing: amber suppression by a yeast glutamine tRNA. Gene 49(3):383–388PubMedPubMedCentralGoogle Scholar
  477. Lin HC, Tsai K, Chang BL, Liu J, Young M, Hsu W, Louie S, Nicholas HB Jr, Rosenquist GL (2003) Prediction of tyrosine sulfation sites in animal viruses. Biochem Biophys Res Commun 312(4):1154–1158Google Scholar
  478. Lin GN, Cai Z, Lin G, Chakraborty S, Xu D (2009) ComPhy: prokaryotic composite distance phylogenies inferred from whole-genome gene sets. BMC Bioinform 10(Suppl 1):S5Google Scholar
  479. Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362:709–715PubMedPubMedCentralGoogle Scholar
  480. Lipman DJ, Pearson WR (1985) Rapid and sensitive protein similarity searches. Science 227(4693):1435–1441Google Scholar
  481. Lipman DJ, Altschul SF, Kececioglu JD (1989) A tool for multiple sequence alignment. Proc Natl Acad Sci U S A 86(12):4412–4415PubMedPubMedCentralGoogle Scholar
  482. Lipscombe D (2005) Neuronal proteins custom designed by alternative splicing. Curr Opin Neurobiol 15(3):358–363PubMedPubMedCentralGoogle Scholar
  483. Lithwick G, Margalit H (2005) Relative predicted protein levels of functionally associated proteins are conserved across organisms. Nucleic Acids Res 33(3):1051–1057PubMedPubMedCentralGoogle Scholar
  484. Liu J, Louie S, Hsu W, Yu KM, Nicholas HB Jr, Rosenquist GL (2008) Tyrosine sulfation is prevalent in human chemokine receptors important in lung disease. Am J Respir Cell Mol Biol 38(6):738–743PubMedPubMedCentralGoogle Scholar
  485. Liu X, Jiang H, Gu Z, Roberts JW (2013) High-resolution view of bacteriophage lambda gene expression by ribosome profiling. Proc Natl Acad Sci U S A 110(29):11928–11933PubMedPubMedCentralGoogle Scholar
  486. Livesey R (2002) Have microarrays failed to deliver for developmental biology? Genome Biol 3(9):comment2009Google Scholar
  487. Lobry JR (1996) Asymmetric substitution patterns in the two DNA strands of bacteria. Mol Biol Evol 13(5):660–665PubMedPubMedCentralGoogle Scholar
  488. Lockhart PJ, Steel MA, Hendy MD, Penny D (1994) Recovering evolutionary trees under a more realistic model of sequence evolution. Mol Biol Evol 11:605–612PubMedPubMedCentralGoogle Scholar
  489. Lodish HF, Nathan DG (1972) Regulation of hemoglobin synthesis. Preferential inhibition of and globin synthesis. J Biol Chem 247(23):7822–7829PubMedPubMedCentralGoogle Scholar
  490. Lopez P, Philippe H, Myllykallio H, Forterre P (1999) Identification of putative chromosomal origins of replication in Archaea. Mol Microbiol 32(4):883–886PubMedPubMedCentralGoogle Scholar
  491. Lowry JA, Atchley WR (2000) Molecular evolution of the GATA family of transcription factors: conservation within the DNA-binding domain. J Mol Evol 50(2):103–115Google Scholar
  492. Lu C, Bablanian R (1996) Characterization of small nontranslated polyadenylylated RNAs in vaccinia virus-infected cells. Proc Natl Acad Sci U S A 93(5):2037–2042PubMedPubMedCentralGoogle Scholar
  493. Lunter G, Rocco A, Mimouni N, Heger A, Caldeira A, Hein J (2008) Uncertainty in homology inferences: assessing and improving genomic sequence alignment. Genome Res 18(2):298–309PubMedPubMedCentralGoogle Scholar
  494. Lustig F, Boren T, Guindy YS, Elias P, Samuelsson T, Gehrke CW, Kuo KC, Lagerkvist U (1989) Codon discrimination and anticodon structural context. Proc Natl Acad Sci U S A 86(18):6873–6877PubMedPubMedCentralGoogle Scholar
  495. Ma B, Nussinov R (2004) Release factors eRF1 and RF2: a universal mechanism controls the large conformational changes. J Biol Chem 279(51):53875–53885PubMedPubMedCentralGoogle Scholar
  496. Ma P, Xia X (2011) Factors affecting splicing strength of yeast genes. Comp Funct Genomics:Article ID 212146, 13 pagesGoogle Scholar
  497. Ma S, Musa T, Bag J (2006) Reduced stability of mitogen-activated protein kinase kinase-2 mRNA and phosphorylation of poly(A)-binding protein (PABP) in cells overexpressing PABP. J Biol Chem 281(6):3145–3156PubMedPubMedCentralGoogle Scholar
  498. MacKay VL, Li X, Flory MR, Turcott E, Law GL, Serikawa KA, Xu XL, Lee H, Goodlett DR, Aebersold R et al (2004) Gene expression analyzed by high-resolution state array analysis and quantitative proteomics: response of yeast to mating pheromone. Mol Cell Proteomics 3(5):478–489Google Scholar
  499. Madden SL, Galella EA, Zhu J, Bertelsen AH, Beaudry GA (1997) SAGE transcript profiles for p53-dependent growth regulation. Oncogene 15(9):1079–1085Google Scholar
  500. Maher CA, Kumar-Sinha C, Cao X, Kalyana-Sundaram S, Han B, Jing X, Sam L, Barrette T, Palanisamy N, Chinnaiyan AM (2009) Transcriptome sequencing to detect gene fusions in cancer. Nature 458(7234):97–101PubMedPubMedCentralGoogle Scholar
  501. Mannella CA, Neuwald AF, Lawrence CE (1996) Detection of likely transmembrane beta strand regions in sequences of mitochondrial pore proteins using the Gibbs sampler. J Bioenerg Biomembr 28(2):163–169Google Scholar
  502. Marck C, Grosjean H (2002) tRNomics: analysis of tRNA genes from 50 genomes of Eukarya, Archaea, and Bacteria reveals anticodon-sparing strategies and domain-specific features. RNA 8(10):1189–1232PubMedPubMedCentralGoogle Scholar
  503. Marin A, Xia X (2008) GC skew in protein-coding genes between the leading and lagging strands in bacterial genomes: new substitution models incorporating strand bias. J Theor Biol 253(3):508–513PubMedPubMedCentralGoogle Scholar
  504. Martinez MA, Vartanian J-P, Simon W-H (1994) Hypermutagenesis of RNA using human immunodeficiency virus type 1 reverse transcriptase and biased dNTP concentrations. Proc Natl Acad Sci U S A 91(25):11787–11791PubMedPubMedCentralGoogle Scholar
  505. Matin A, Zychlinsky E, Keyhan M, Sachs G (1996) Capacity of Helicobacter pylori to generate ionic gradients at low pH is similar to that of bacteria which grow under strongly acidic conditions. Infect Immun 64(4):1434–1436PubMedPubMedCentralGoogle Scholar
  506. McNulty DE, Claffee BA, Huddleston MJ, Porter ML, Cavnar KM, Kane JF (2003) Mistranslational errors associated with the rare arginine codon CGG in Escherichia coli. Protein Expr Purif 27(2):365–374Google Scholar
  507. McPherson DT (1988) Codon preference reflects mistranslational constraints: a proposal. Nucleic Acids Res 16(9):4111–4120PubMedPubMedCentralGoogle Scholar
  508. Medawar PB, Medawar JS (1983) Aristotle to zoos: a philosophical dictionary of biology. Harvard University Press, Cambridge, MAGoogle Scholar
  509. Meinnel T, Mechulam Y, Blanquet S (1993) Methionine as translation start signal: a review of the enzymes of the pathway in Escherichia coli. Biochimie 75(12):1061–1075PubMedPubMedCentralGoogle Scholar
  510. Melo EO, de Melo Neto OP, Martins de Sa C (2003a) Adenosine-rich elements present in the 5′-untranslated region of PABP mRNA can selectively reduce the abundance and translation of CAT mRNAs in vivo. FEBS Lett 546(2–3):329–334PubMedPubMedCentralGoogle Scholar
  511. Melo EO, Dhalia R, Martins de Sa C, Standart N, de Melo Neto OP (2003b) Identification of a C-terminal poly(A)-binding protein (PABP)-PABP interaction domain: role in cooperative binding to poly (A) and efficient cap distal translational repression. J Biol Chem 278(47):46357–46368PubMedPubMedCentralGoogle Scholar
  512. Menaker RJ, Sharaf AA, Jones NL (2004) Helicobacter pylori infection and gastric cancer: host, bug, environment, or all three? Curr Gastroenterol Rep 6(6):429–435PubMedPubMedCentralGoogle Scholar
  513. Mendz GL, Hazell SL (1996) The urea cycle of Helicobacter pylori. Microbiology 142(Pt 10):2959–2967PubMedPubMedCentralGoogle Scholar
  514. Meng SY, Hui JO, Haniu M, Tsai LB (1995) Analysis of translational termination of recombinant human methionyl-neurotrophin 3 in Escherichia coli. Biochem Biophys Res Commun 211(1):40–48PubMedPubMedCentralGoogle Scholar
  515. Metropolis N (1987) The beginnning of the Monte Carlo method. Los Alamos Sci 15(Special issue):125–130Google Scholar
  516. Meyer IM, Durbin R (2004) Gene structure conservation aids similarity based gene prediction. Nucleic Acids Res 32(2):776–783PubMedPubMedCentralGoogle Scholar
  517. Miller JH, Albertini AM (1983) Effects of surrounding sequence on the suppression of nonsense codons. J Mol Biol 164(1):59–71PubMedPubMedCentralGoogle Scholar
  518. Miller CG, Kukral AM, Miller JL, Movva NR (1989) pepM is an essential gene in Salmonella typhimurium. J Bacteriol 171(9):5215–5217PubMedPubMedCentralGoogle Scholar
  519. Milman G, Goldstein J, Scolnick E, Caskey T (1969) Peptide chain termination. 3. Stimulation of in vitro termination. Proc Natl Acad Sci U S A 63(1):183–190PubMedPubMedCentralGoogle Scholar
  520. Min Jou W, Haegeman G, Ysebaert M, Fiers W (1972) Nucleotide sequence of the gene coding for the bacteriophage MS2 coat protein. Nature 237(5350):82–88PubMedPubMedCentralGoogle Scholar
  521. Minakshi R, Padhan K, Rani M, Khan N, Ahmad F, Jameel S (2009) The SARS coronavirus 3a protein causes endoplasmic reticulum stress and induces ligand-independent downregulation of the type 1 interferon receptor. PLoS One 4(12):e8342PubMedPubMedCentralGoogle Scholar
  522. Mine T, Muraoka H, Saika T, Kobayashi I (2005) Characteristics of a clinical isolate of urease-negative Helicobacter pylori and its ability to induce gastric ulcers in Mongolian gerbils. Helicobacter 10(2):125–131PubMedPubMedCentralGoogle Scholar
  523. Mitra SK, Lustig F, Akesson B, Lagerkvist U (1977) Codon-acticodon recognition in the valine codon family. J Biol Chem 252(2):471–478PubMedPubMedCentralGoogle Scholar
  524. Miura F, Kawaguchi N, Sese J, Toyoda A, Hattori M, Morishita S, Ito T (2006) A large-scale full-length cDNA analysis to explore the budding yeast transcriptome. Proc Natl Acad Sci 103(47):17846–17851PubMedPubMedCentralGoogle Scholar
  525. Miyata T, Yasunaga T (1980) Molecular evolution of mRNA: a method for estimating evolutionary rates of synonymous and amino acid substitutions from homologous nucleotide sequences and its application. J Mol Evol 16(1):23–36PubMedPubMedCentralGoogle Scholar
  526. Miyata T, Miyazawa S, Yasunaga T (1979) Two types of amino acid substitutions in protein evolution. J Mol Evol 12(3):219–236Google Scholar
  527. Mlera L, Lam J, Offerdahl DK, Martens C, Sturdevant D, Turner CV, Porcella SF, Bloom ME (2016) Transcriptome analysis reveals a signature profile for tick-borne Flavivirus persistence in HEK 293T cells. MBio 7(3):e00314–e00316PubMedPubMedCentralGoogle Scholar
  528. Mobley HL, Hu LT, Foxal PA (1991) Helicobacter pylori urease: properties and role in pathogenesis. Scand J Gastroenterol 187(Supplement):39–46Google Scholar
  529. Moerschell RP, Hosokawa Y, Tsunasawa S, Sherman F (1990) The specificities of yeast methionine aminopeptidase and acetylation of amino-terminal methionine in vivo. Processing of altered iso-1-cytochromes c created by oligonucleotide transformation. J Biol Chem 265(32):19638–19643Google Scholar
  530. Moffat JG, Rudolph J, Bailey D (2014) Phenotypic screening in cancer drug discovery – past, present and future. Nat Rev Drug Discov 13(8):588–602Google Scholar
  531. Moi P, Loudianos G, Lavinha J, Murru S, Cossu P, Casu R, Oggiano L, Longinotti M, Cao A, Pirastu M (1992) Delta-thalassemia due to a mutation in an erythroid-specific binding protein sequence 3′ to the delta-globin gene. Blood 79(2):512–516Google Scholar
  532. Monteiro PT, Mendes ND, Teixeira MC, d’Orey S, Tenreiro S, Mira NP, Pais H, Francisco AP, Carvalho AM, Lourenco AB et al (2008) YEASTRACT-DISCOVERER: new tools to improve the analysis of transcriptional regulatory associations in Saccharomyces cerevisiae. Nucleic Acids Res 36(Database issue):D132–D136Google Scholar
  533. Mora L, Heurgue-Hamard V, Champ S, Ehrenberg M, Kisselev LL, Buckingham RH (2003) The essential role of the invariant GGQ motif in the function and stability in vivo of bacterial release factors RF1 and RF2. Mol Microbiol 47(1):267–275PubMedPubMedCentralGoogle Scholar
  534. Mora L, Heurgue-Hamard V, de Zamaroczy M, Kervestin S, Buckingham RH (2007) Methylation of bacterial release factors RF1 and RF2 is required for normal translation termination in vivo. J Biol Chem 282(49):35638–35645PubMedPubMedCentralGoogle Scholar
  535. Morin R, Bainbridge M, Fejes A, Hirst M, Krzywinski M, Pugh T, McDonald H, Varhol R, Jones S, Marra M (2008a) Profiling the HeLa S3 transcriptome using randomly primed cDNA and massively parallel short-read sequencing. BioTechniques 45(1):81–94PubMedPubMedCentralGoogle Scholar
  536. Morin RD, O’Connor MD, Griffith M, Kuchenbauer F, Delaney A, Prabhu AL, Zhao Y, McDonald H, Zeng T, Hirst M et al (2008b) Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res 18(4):610–621PubMedPubMedCentralGoogle Scholar
  537. Morita M, Shimozawa N, Kashiwayama Y, Suzuki Y, Imanaka T (2011) ABC subfamily D proteins and very long chain fatty acid metabolism as novel targets in adrenoleukodystrophy. Curr Drug Targets 12(5):694–706Google Scholar
  538. Moriyama EN, Powell JR (1997) Codon usage bias and tRNA abundance in Drosophila. J Mol Evol 45(5):514–523PubMedPubMedCentralGoogle Scholar
  539. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5(7):621–628Google Scholar
  540. Mottagui-Tabar S, Isaksson LA (1997) Only the last amino acids in the nascent peptide influence translation termination in Escherichia coli genes. FEBS Lett 414(1):165–170PubMedPubMedCentralGoogle Scholar
  541. Moult J, Hubbard T, Fidelis K, Pedersen JT (1999) Critical assessment of methods of protein structure prediction (CASP): round III. Proteins 37(Suppl 3):2–6Google Scholar
  542. Muller HJ, Altenburg E (1930) The frequency of translocations produced by X-rays in Drosophila. Genetics 15(4):283–311PubMedPubMedCentralGoogle Scholar
  543. Murphy J, Mahony J, Ainsworth S, Nauta A, van Sinderen D (2013) Bacteriophage orphan DNA methyltransferases: insights from their bacterial origin, function, and occurrence. Appl Environ Microbiol 79(24):7547–7555PubMedPubMedCentralGoogle Scholar
  544. Murtagh F (1984) Complexities of hierarchic clustering algorithms: state of the art. Comput Stat Q 1:101–113Google Scholar
  545. Muto A, Osawa S (1987) The guanine and cytosine content of genomic DNA and bacterial evolution. Proc Natl Acad Sci U S A 84:166–169PubMedPubMedCentralGoogle Scholar
  546. Nachman MW, Crowell SL (2000) Estimate of the mutation rate per nucleotide in humans. Genetics 156(1):297–304PubMedPubMedCentralGoogle Scholar
  547. Nakai K, Horton P (1999) PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem Sci 24(1):34–36PubMedPubMedCentralGoogle Scholar
  548. Nakamoto T (2006) A unified view of the initiation of protein synthesis. Biochem Biophys Res Commun 341(3):675–678PubMedPubMedCentralGoogle Scholar
  549. Nakamura Y, Ito K, Matsumura K, Kawazu Y, Ebihara K (1995) Regulation of translation termination: conserved structural motifs in bacterial and eukaryotic polypeptide release factors. Biochem Cell Biol 73(11–12):1113–1122Google Scholar
  550. Nakamura Y, Ito K, Isaksson LA (1996) Emerging understanding of translation termination. Cell 87(2):147–150PubMedPubMedCentralGoogle Scholar
  551. Nakamura Y, Gojobori T, Ikemura T (2000) Codon usage tabulated from international DNA sequence databases: status for the year 2000. Nucleic Acids Res 28(1):292PubMedPubMedCentralGoogle Scholar
  552. Nakashima H, Fukuchi S, Nishikawa K (2003) Compositional changes in RNA, DNA and proteins for bacterial adaptation to higher and lower temperatures. J Biochem (Tokyo) 133(4):507–513Google Scholar
  553. Nasvall SJ, Chen P, Bjork GR (2007) The wobble hypothesis revisited: uridine-5-oxyacetic acid is critical for reading of G-ending codons. RNA 13(12):2151–2164PubMedPubMedCentralGoogle Scholar
  554. Needleman SB, Wunsch CD (1970) A general method applicable to the search of similarities in the amino acid sequence of two proteins. J Mol Biol 48:443–453Google Scholar
  555. Nei M (1996) Phylogenetic analysis in molecular evolutionary genetics. Annu Rev Genet 30:371–403PubMedPubMedCentralGoogle Scholar
  556. Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New YorkGoogle Scholar
  557. Neuwald AF, Liu JS, Lawrence CE (1995) Gibbs motif sampling: detection of bacterial outer membrane protein repeats. Protein Sci 4(8):1618–1632PubMedPubMedCentralGoogle Scholar
  558. Ngumbela KC, Ryan KP, Sivamurthy R, Brockman MA, Gandhi RT, Bhardwaj N, Kavanagh DG (2008) Quantitative effect of suboptimal codon usage on translational efficiency of mRNA encoding HIV-1 gag in intact T cells. PLoS One 3(6):e2356PubMedPubMedCentralGoogle Scholar
  559. Nicholas HB Jr, Chan SS, Rosenquist GL (1999) Reevaluation of the determinants of tyrosine sulfation. Endocrine 11(3):285–292Google Scholar
  560. Nichols T, Hayasaka S (2003) Controlling the familywise error rate in functional neuroimaging: a comparative review. Stat Meth Med Res 12(5):419–446Google Scholar
  561. Nicolae M, Pathak S, Rajasekaran S (2015) LFQC: a lossless compression algorithm for FASTQ files. Bioinformatics 31(20):3276–3281PubMedPubMedCentralGoogle Scholar
  562. Nishimura S, Takahashi S, Kuroha T, Suwabe N, Nagasawa T, Trainor C, Yamamoto M (2000) A GATA box in the GATA-1 gene hematopoietic enhancer is a critical element in the network of GATA factors and sites that regulate this gene. Mol Cell Biol 20(2):713–723PubMedPubMedCentralGoogle Scholar
  563. Nissen P, Kjeldgaard M, Thirup S, Polekhina G, Reshetnikova L, Clark BF, Nyborg J (1995) Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog. Science 270(5241):1464–1472PubMedPubMedCentralGoogle Scholar
  564. Noedl H, Se Y, Schaecher K, Smith BL, Socheat D, Fukuda MM (2008) Evidence of artemisinin-resistant malaria in western Cambodia. N Engl J Med 359(24):2619–2620Google Scholar
  565. Noedl H, Socheat D, Satimai W (2009) Artemisinin-resistant malaria in Asia. N Engl J Med 361(5):540–541Google Scholar
  566. Noedl H, Se Y, Sriwichai S, Schaecher K, Teja-Isavadharm P, Smith B, Rutvisuttinunt W, Bethell D, Surasri S, Fukuda MM et al (2010) Artemisinin resistance in Cambodia: a clinical trial designed to address an emerging problem in Southeast Asia. Clin Infect Dis 51(11):e82–e89Google Scholar
  567. Nomenclature Committee of the International Union of Biochemistry (1985) Nomenclature for incompletely specified bases in nucleic acid sequences. Recommendations 1984. Eur J Biochem 150:1–5Google Scholar
  568. Notredame C, O’Brien EA, Higgins DG (1997) RAGA: RNA sequence alignment by genetic algorithm. Nucleic Acids Res 25(22):4570–4580PubMedPubMedCentralGoogle Scholar
  569. Numanagic I, Bonfield JK, Hach F, Voges J, Ostermann J, Alberti C, Mattavelli M, Sahinalp SC (2016) Comparison of high-throughput sequencing data compression tools. Nat Methods 13(12):1005–1008PubMedPubMedCentralGoogle Scholar
  570. Nur I, Szyf M, Razin A, Glaser G, Rottem S, Razin S (1985) Procaryotic and eucaryotic traits of DNA methylation in spiroplasmas (mycoplasmas). J Bacteriol 164(1):19–24PubMedPubMedCentralGoogle Scholar
  571. Nussinov R (1984) Doublet frequencies in evolutionary distinct groups. Nucleic Acids Res 12(3):1749–1763PubMedPubMedCentralGoogle Scholar
  572. O’Brien JD, She ZS, Suchard MA (2008) Dating the time of viral subtype divergence. BMC Evol Biol 8:172PubMedPubMedCentralGoogle Scholar
  573. Obenauer JC, Cantley LC, Yaffe MB (2003) Scansite 2.0: proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res 31(13):3635–3641PubMedPubMedCentralGoogle Scholar
  574. Ohta T, Gray TA, Rogan PK, Buiting K, Gabriel JM, Saitoh S, Muralidhar B, Bilienska B, Krajewska-Walasek M, Driscoll DJ et al (1999) Imprinting-mutation mechanisms in Prader-Willi syndrome. Am J Hum Genet 64(2):397–413PubMedPubMedCentralGoogle Scholar
  575. Ordway JM, Fenster SD, Ruan H, Curran T (2005) A transcriptome map of cellular transformation by the fos oncogene. Mol Cancer 4(1):19PubMedPubMedCentralGoogle Scholar
  576. Orkin SH (1990) Globin gene regulation and switching: circa 1990. Cell 63(4):665–672Google Scholar
  577. Orkin SH (1992) GATA-binding transcription factors in hematopoietic cells. Blood 80(3):575–581Google Scholar
  578. Osawa S, Jukes TH, Muto A, Yamao F, Ohama T, Andachi Y (1987) Role of directional mutation pressure in the evolution of the eubacterial genetic code. Cold Spring Harb Symp Quant Biol 52:777–789PubMedPubMedCentralGoogle Scholar
  579. Osterman IA, Evfratov SA, Sergiev PV, Dontsova OA (2013) Comparison of mRNA features affecting translation initiation and reinitiation. Nucleic Acids Res 41(1):474–486PubMedPubMedCentralGoogle Scholar
  580. Ostrin EJ, Li Y, Hoffman K, Liu J, Wang K, Zhang L, Mardon G, Chen R (2006) Genome-wide identification of direct targets of the Drosophila retinal determination protein Eyeless. Genome Res 16(4):466–476PubMedPubMedCentralGoogle Scholar
  581. Ota S, Li WH (2000) NJML: a hybrid algorithm for the neighbor-joining and maximum-likelihood methods. Mol Biol Evol 17(9):1401–1409PubMedPubMedCentralGoogle Scholar
  582. Ota S, Li WH (2001) NJML+: an extension of the NJML method to handle protein sequence data and computer software implementation. Mol Biol Evol 18(11):1983–1992PubMedPubMedCentralGoogle Scholar
  583. Otu HH, Sayood K (2003) A new sequence distance measure for phylogenetic tree construction. Bioinformatics 19(16):2122–2130PubMedPubMedCentralGoogle Scholar
  584. Palidwor GA, Perkins TJ, Xia X (2010) A general model of codon bias due to GC mutational bias. PLoS One 5(10):e13431PubMedPubMedCentralGoogle Scholar
  585. Palstra RJ, Tolhuis B, Splinter E, Nijmeijer R, Grosveld F, de Laat W (2003) The beta-globin nuclear compartment in development and erythroid differentiation. Nat Genet 35(2):190–194PubMedPubMedCentralGoogle Scholar
  586. Pandey RR, Mondal T, Mohammad F, Enroth S, Redrup L, Komorowski J, Nagano T, Mancini-Dinardo D, Kanduri C (2008) Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell 32(2):232–246PubMedPubMedCentralGoogle Scholar
  587. Pappin DJ, Hojrup P, Bleasby AJ (1993) Rapid identification of proteins by peptide-mass fingerprinting. Curr Biol 3(6):327–332PubMedPubMedCentralGoogle Scholar
  588. Park SY, Cromie MJ, Lee EJ, Groisman EA (2010) A bacterial mRNA leader that employs different mechanisms to sense disparate intracellular signals. Cell 142(5):737–748PubMedPubMedCentralGoogle Scholar
  589. Parker J (1989) Errors and alternatives in reading the universal genetic code. Microbiol Rev 53(3):273–298PubMedPubMedCentralGoogle Scholar
  590. Patel GP, Bag J (2006) IMP1 interacts with poly(A)-binding protein (PABP) and the autoregulatory translational control element of PABP-mRNA through the KH III-IV domain. FEBS J 273(24):5678–5690PubMedPubMedCentralGoogle Scholar
  591. Patel GP, Ma S, Bag J (2005) The autoregulatory translational control element of poly(A)-binding protein mRNA forms a heteromeric ribonucleoprotein complex. Nucleic Acids Res 33(22):7074–7089PubMedPubMedCentralGoogle Scholar
  592. Pauling L, Itano HA, Singer SJ, Wells IC (1949) Sickle cell anemia a molecular disease. Science 110(2865):543–548PubMedPubMedCentralGoogle Scholar
  593. Pazin MJ, Kamakaka RT, Kadonaga JT (1994) ATP-dependent nucleosome reconfiguration and transcriptional activation from preassembled chromatin templates. Science 266(5193):2007–2011PubMedPubMedCentralGoogle Scholar
  594. Pazin MJ, Sheridan PL, Cannon K, Cao Z, Keck JG, Kadonaga JT, Jones KA (1996) NF-kappa B-mediated chromatin reconfiguration and transcriptional activation of the HIV-1 enhancer in vitro. Genes Dev 10(1):37–49PubMedPubMedCentralGoogle Scholar
  595. Pazin MJ, Hermann JW, Kadonaga JT (1998) Promoter structure and transcriptional activation with chromatin templates assembled in vitro. A single Gal4-VP16 dimer binds to chromatin or to DNA with comparable affinity. J Biol Chem 273(51):34653–34660Google Scholar
  596. Peabody MA, Laird MR, Vlasschaert C, Lo R, Brinkman FS (2016) PSORTdb: expanding the bacteria and archaea protein subcellular localization database to better reflect diversity in cell envelope structures. Nucleic Acids Res 44(D1):D663–D668PubMedPubMedCentralGoogle Scholar
  597. Pearson WR (1990) Rapid and sensitive sequence comparison with FASTP and FASTA. Methods Enzymol 183:63–98Google Scholar
  598. Pearson WR (1994) Using the FASTA program to search protein and DNA sequence databases. Methods Mol Biol 24:307–331Google Scholar
  599. Pearson WR (1998) Empirical statistical estimates for sequence similarity searches. J Mol Biol 276(1):71–84Google Scholar
  600. Pearson WR, Lipman DJ (1988) Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A 85:2444–2448PubMedPubMedCentralGoogle Scholar
  601. Pei J, Kim BH, Grishin NV (2008) PROMALS3D: a tool for multiple protein sequence and structure alignments. Nucleic Acids Res 36(7):2295–2300PubMedPubMedCentralGoogle Scholar
  602. Percudani R, Pavesi A, Ottonello S (1997) Transfer RNA gene redundancy and translational selection in Saccharomyces cerevisiae. J Mol Biol 268(2):322–330PubMedGoogle Scholar
  603. Pereira SL, Baker AJ (2006) A mitogenomic timescale for birds detects variable phylogenetic rates of molecular evolution and refutes the standard molecular clock. Mol Biol Evol 23(9):1731–1740PubMedGoogle Scholar
  604. Pestova TV, Shatsky IN, Fletcher SP, Jackson RJ, Hellen CU (1998) A prokaryotic-like mode of cytoplasmic eukaryotic ribosome binding to the initiation codon during internal translation initiation of hepatitis C and classical swine fever virus RNAs. Genes Dev 12(1):67–83PubMedPubMedCentralGoogle Scholar
  605. Pestova TV, Lomakin IB, Hellen CU (2004) Position of the CrPV IRES on the 40S subunit and factor dependence of IRES/80S ribosome assembly. EMBO Rep 5(9):906–913PubMedPubMedCentralGoogle Scholar
  606. Petronis A (2004) The origin of schizophrenia: genetic thesis, epigenetic antithesis, and resolving synthesis. Biol Psychiatry 55(10):965–970PubMedPubMedCentralGoogle Scholar
  607. Petronis A (2006) Epigenetics and twins: three variations on the theme. Trends Genet 22(7):347–350PubMedPubMedCentralGoogle Scholar
  608. Petronis A, Gottesman II, Kan P, Kennedy JL, Basile VS, Paterson AD, Popendikyte V (2003) Monozygotic twins exhibit numerous epigenetic differences: clues to twin discordance? Schizophr Bull 29(1):169–178PubMedPubMedCentralGoogle Scholar
  609. Petrullo LA, Gallagher PJ, Elseviers D (1983) The role of 2-methylthio-N6-isopentenyladenosine in readthrough and suppression of nonsense codons in Escherichia coli. Mol Gen Genet 190(2):289–294PubMedPubMedCentralGoogle Scholar
  610. Petry S, Brodersen DE, FVt M, Dunham CM, Selmer M, Tarry MJ, Kelley AC, Ramakrishnan V (2005) Crystal structures of the ribosome in complex with release factors RF1 and RF2 bound to a cognate stop codon. Cell 123(7):1255–1266PubMedPubMedCentralGoogle Scholar
  611. Pevzner PA (2000) Computational molecular biology: an algorithmic approach. The MIT Press, Cambridge, MAGoogle Scholar
  612. Pielou EC (1984) The interpretation of ecological data: a primer on classification and ordination. Wiley, New YorkGoogle Scholar
  613. Pietras K, Sjoblom T, Rubin K, Heldin CH, Ostman A (2003) PDGF receptors as cancer drug targets. Cancer Cell 3(5):439–443Google Scholar
  614. Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-PLUS. Springer, Berlin/HeidelbergGoogle Scholar
  615. Pleiss JA, Whitworth GB, Bergkessel M, Guthrie C (2007) Rapid, transcript-specific changes in splicing in response to environmental stress. Mol Cell 27(6):928–937PubMedPubMedCentralGoogle Scholar
  616. Pobre V, Arraiano CM (2015) Next generation sequencing analysis reveals that the ribonucleases RNase II, RNase R and PNPase affect bacterial motility and biofilm formation in E. coli. BMC Genomics 16:72PubMedPubMedCentralGoogle Scholar
  617. Poole ES, Brown CM, Tate WP (1995) The identity of the base following the stop codon determines the efficiency of in vivo translational termination in Escherichia coli. EMBO J 14(1):151–158PubMedPubMedCentralGoogle Scholar
  618. Poole ES, Major LL, Mannering SA, Tate WP (1998) Translational termination in Escherichia coli: three bases following the stop codon crosslink to release factor 2 and affect the decoding efficiency of UGA-containing signals. Nucleic Acids Res 26(4):954–960PubMedPubMedCentralGoogle Scholar
  619. Popa A, Lebrigand K, Barbry P, Waldmann R (2016) Pateamine A-sensitive ribosome profiling reveals the scope of translation in mouse embryonic stem cells. BMC Genomics 17:52PubMedPubMedCentralGoogle Scholar
  620. Poulos MG, Batra R, Charizanis K, Swanson MS (2011) Developments in RNA splicing and disease. Cold Spring Harb Perspect Biol 3(1):a000778PubMedPubMedCentralGoogle Scholar
  621. Povolotskaya IS, Kondrashov FA, Ledda A, Vlasov PK (2012) Stop codons in bacteria are not selectively equivalent. Biol Direct 7:30PubMedPubMedCentralGoogle Scholar
  622. Prabhakaran R, Chithambaram S, Xia X (2015) Escherichia coli and Staphylococcus phages: effect of translation initiation efficiency on differential codon adaptation mediated by virulent and temperate lifestyles. J Gen Virol 96(Pt 5):1169–1179PubMedPubMedCentralGoogle Scholar
  623. Prensner JR, Iyer MK, Balbin OA, Dhanasekaran SM, Cao Q, Brenner JC, Laxman B, Asangani IA, Grasso CS, Kominsky HD et al (2011) Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression. Nat Biotechnol 29(8):742–749PubMedPubMedCentralGoogle Scholar
  624. Press WH, Teukolsky SA, Tetterling WT, Flannery BP (1992) Numerical recipes in C: the art of scientifi computing. Cambridge University Press, CambridgeGoogle Scholar
  625. Prival MJ (1996) Isolation of glutamate-inserting ochre suppressor mutants of Salmonella typhimurium and Escherichia coli. J Bacteriol 178(10):2989–2990PubMedPubMedCentralGoogle Scholar
  626. Ptashne M (1986) A genetic switch: gene control and phage lambda. Cell Press and Blackwell Scientific, Cambridge, MAGoogle Scholar
  627. Pure GA, Robinson GW, Naumovski L, Friedberg EC (1985) Partial suppression of an ochre mutation in Saccharomyces cerevisiae by multicopy plasmids containing a normal yeast tRNAGln gene. J Mol Biol 183(1):31–42Google Scholar
  628. Pyronnet S, Pradayrol L, Sonenberg N (2000) A cell cycle-dependent internal ribosome entry site. Mol Cell 5(4):607–616PubMedGoogle Scholar
  629. Qin ZS, McCue LA, Thompson W, Mayerhofer L, Lawrence CE, Liu JS (2003) Identification of co-regulated genes through Bayesian clustering of predicted regulatory binding sites. Nat Biotechnol 21(4):435–439Google Scholar
  630. Qu K, McCue LA, Lawrence CE (1998) Bayesian protein family classifier. Proc Int Conf Intell Syst Mol Biol 6:131–139Google Scholar
  631. Raaum RL, Sterner KN, Noviello CM, Stewart C-B, Disotell TR (2005) Catarrhine primate divergence dates estimated from complete mitochondrial genomes: concordance with fossil and nuclear DNA evidence. J Hum Evol 48(3):237PubMedPubMedCentralGoogle Scholar
  632. Rabiner LR (1989) A tutorial on hidden Markov models and selected applications in speech recognition. Proc IEEE 77(2):257–286Google Scholar
  633. Rahi SJ, Pecani K, Ondracka A, Oikonomou C, Cross FR (2016) The CDK-APC/C oscillator predominantly entrains periodic cell-cycle transcription. Cell 165(2):475–487PubMedPubMedCentralGoogle Scholar
  634. Rambaut A, Bromham L (1998) Estimating divergence dates from molecular sequences. Mol Biol Evol 15(4):442–448PubMedPubMedCentralGoogle Scholar
  635. Ran W, Higgs PG (2012) Contributions of speed and accuracy to translational selection in bacteria. PLoS One 7(12):e51652PubMedPubMedCentralGoogle Scholar
  636. Rannala B, Yang Z (2007) Inferring speciation times under an episodic molecular clock. Syst Biol 56(3):453–466PubMedPubMedCentralGoogle Scholar
  637. Rashid M, Saha S, Raghava GP (2007) Support Vector Machine-based method for predicting subcellular localization of mycobacterial proteins using evolutionary information and motifs. BMC Bioinformatics 8:337PubMedPubMedCentralGoogle Scholar
  638. Razin A, Razin S (1980) Methylated bases in mycoplasmal DNA. Nucleic Acids Res 8(6):1383–1390PubMedPubMedCentralGoogle Scholar
  639. Regier JC, Shultz JW, Zwick A, Hussey A, Ball B, Wetzer R, Martin JW, Cunningham CW (2010) Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature 463(7284):1079–1083Google Scholar
  640. Reinert K, Stoye J, Will T (2000) An iterative method for faster sum-of-pairs multiple sequence alignment. Bioinformatics 16(9):808–814Google Scholar
  641. Rektorschek M, Buhmann A, Weeks D, Schwan D, Bensch KW, Eskandari S, Scott D, Sachs G, Melchers K (2000) Acid resistance of Helicobacter pylori depends on the UreI membrane protein and an inner membrane proton barrier. Mol Microbiol 36(1):141–152PubMedPubMedCentralGoogle Scholar
  642. Rice P, Longden I, Bleasby A (2000) EMBOSS: the European molecular biology open software suite. Trends Genet 16(6):276–277PubMedPubMedCentralGoogle Scholar
  643. Rideout WMI, Coetzee GA, Olumi AF, Jones PA (1990) 5-Methylcytosine as an endogenous mutagen in the human LDL receptor and p53 genes. Science 249:1288–1290PubMedPubMedCentralGoogle Scholar
  644. Rimsky L, Hauber J, Dukovich M, Malim MH, Langlois A, Cullen BR, Greene WC (1988) Functional replacement of the HIV-1 rev protein by the HTLV-1 rex protein. Nature 335(6192):738–740PubMedPubMedCentralGoogle Scholar
  645. Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough LH, Helms JA, Farnham PJ, Segal E et al (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129(7):1311–1323PubMedPubMedCentralGoogle Scholar
  646. Ritland K, Clegg M (1990) Optimal DNA sequence divergence for testing phylogenetic hypotheses. In: Molecular evolution. Alan R. Liss, New York, pp 289–296Google Scholar
  647. Roberts A, Pachter L (2013) Streaming fragment assignment for real-time analysis of sequencing experiments. Nat Methods 10(1):71–73PubMedCentralGoogle Scholar
  648. Roberts A, Trapnell C, Donaghey J, Rinn JL, Pachter L (2011) Improving RNA-Seq expression estimates by correcting for fragment bias. Genome Biol 12(3):R22PubMedPubMedCentralGoogle Scholar
  649. Roberts A, Feng H, Pachter L (2013a) Fragment assignment in the cloud with eXpress-D. BMC Bioinform 14:358Google Scholar
  650. Roberts A, Schaeffer L, Pachter L (2013b) Updating RNA-Seq analyses after re-annotation. Bioinformatics 29(13):1631–1637PubMedPubMedCentralGoogle Scholar
  651. Robertson G, Hirst M, Bainbridge M, Bilenky M, Zhao Y, Zeng T, Euskirchen G, Bernier B, Varhol R, Delaney A et al (2007) Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat Methods 4(8):651–657Google Scholar
  652. Robinson M, Lilley R, Little S, Emtage JS, Yarranton G, Stephens P, Millican A, Eaton M, Humphreys G (1984) Codon usage can affect efficiency of translation of genes in Escherichia coli. Nucleic Acids Res 12(17):6663–6671PubMedPubMedCentralGoogle Scholar
  653. Rodgers AB, Morgan CP, Leu NA, Bale TL (2015) Transgenerational epigenetic programming via sperm microRNA recapitulates effects of paternal stress. Proc Natl Acad Sci U S A 112(44):13699–13704PubMedPubMedCentralGoogle Scholar
  654. Rogers MF, Thomas J, Reddy AS, Ben-Hur A (2012) SpliceGrapher: detecting patterns of alternative splicing from RNA-Seq data in the context of gene models and EST data. Genome Biol 13(1):R4PubMedPubMedCentralGoogle Scholar
  655. Rogozin IB, Managadze D, Shabalina SA, Koonin EV (2014) Gene family level comparative analysis of gene expression in mammals validates the ortholog conjecture. Genome Biol Evol 6(4):754–762PubMedPubMedCentralGoogle Scholar
  656. Rosenberg MS, Kumar S (2003) Heterogeneity of nucleotide frequencies among evolutionary lineages and phylogenetic inference. Mol Biol Evol 20(4):610–621PubMedPubMedCentralGoogle Scholar
  657. Rosenblatt F (1958) The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev 65(6):386–408Google Scholar
  658. Ross S, Giglione C, Pierre M, Espagne C, Meinnel T (2005) Functional and developmental impact of cytosolic protein N-terminal methionine excision in Arabidopsis. Plant Physiol 137(2):623–637PubMedPubMedCentralGoogle Scholar
  659. Roth JR (1970) UGA nonsense mutations in Salmonella typhimurium. J Bacteriol 102(2):467–475PubMedPubMedCentralGoogle Scholar
  660. Rouchka EC (1997) A brief overview of Gibbs Sampling. IBC Statistics Study Group, Washington University, Institute for Biomedical ComputingGoogle Scholar
  661. Ruiz LM, Armengol G, Habeych E, Orduz S (2006) A theoretical analysis of codon adaptation index of the Boophilus microplus bm86 gene directed to the optimization of a DNA vaccine. J Theor Biol 239(4):445–449PubMedPubMedCentralGoogle Scholar
  662. Ryan MJ, Fox JH, Wilczynski W, Rand AS (1990) Sexual selection for sensory exploitation in the frog Physalaemus pustulosus. Nature 343:66–67Google Scholar
  663. Ryden SM, Isaksson LA (1984) A temperature-sensitive mutant of Escherichia coli that shows enhanced misreading of UAG/A and increased efficiency for some tRNA nonsense suppressors. Mol Gen Genet 193(1):38–45PubMedPubMedCentralGoogle Scholar
  664. Rzhetsky A, Nei M (1994a) Unbiased estimates of the number of nucleotide substitutions when substitution rate varies among different sites. J Mol Evol 38(3):295–299PubMedPubMedCentralGoogle Scholar
  665. Rzhetsky A, Nei M (1994b) Unbiased estimates of the number of nucleotide substitutions when substitution rate varies among different sites. J Mol Evol 38(3):295–299PubMedPubMedCentralGoogle Scholar
  666. Rzhetsky A, Nei M (1995) Tests of applicability of several substitution models for DNA sequence data. Mol Biol Evol 12(1):131–151PubMedPubMedCentralGoogle Scholar
  667. Saadatpour A, Lai S, Guo G, Yuan GC (2015) Single-cell analysis in cancer genomics. Trends Genet 31(10):576–586PubMedPubMedCentralGoogle Scholar
  668. Sachs AB, Davis RW, Kornberg RD (1987) A single domain of yeast poly(A)-binding protein is necessary and sufficient for RNA binding and cell viability. Mol Cell Biol 7(9):3268–3276PubMedPubMedCentralGoogle Scholar
  669. Sachs G, Meyer-Rosberg K, Scott DR, Melchers K (1996) Acid, protons and Helicobacter pylori. Yale J Biol Med 69(3):301–316PubMedPubMedCentralGoogle Scholar
  670. Sachs G, Weeks DL, Melchers K, Scott DR (2003) The gastric biology of Helicobacter pylori. Annu Rev Physiol 65(1):349–369PubMedPubMedCentralGoogle Scholar
  671. Saha S, Sparks AB, Rago C, Akmaev V, Wang CJ, Vogelstein B, Kinzler KW, Velculescu VE (2002) Using the transcriptome to annotate the genome. Nat Biotechnol 20(5):508–512Google Scholar
  672. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedPubMedCentralGoogle Scholar
  673. Sakaluk SK (2000) Sensory exploitation as an evolutionary origin to nuptial food gifts in insects. Proc Biol Sci 267(1441):339–343PubMedPubMedCentralGoogle Scholar
  674. Salzberg SL, Delcher AL, Kasif S, White O (1998) Microbial gene identification using interpolated Markov models. Nucleic Acids Res 26(2):544–548PubMedPubMedCentralGoogle Scholar
  675. Sambrook JF, Fan DP, Brenner S (1967) A strong suppressor specific for UGA. Nature 214(5087):452–453PubMedPubMedCentralGoogle Scholar
  676. Samso M, Palumbo MJ, Radermacher M, Liu JS, Lawrence CE (2002) A Bayesian method for classification of images from electron micrographs. J Struct Biol 138(3):157–170Google Scholar
  677. Sancar A, Sancar GB (1988) DNA repair enzymes. Annu Rev Biochem 57:29–67PubMedPubMedCentralGoogle Scholar
  678. Sanderson MJ (1997) A nonparametric approach to estimating divergence times in the absence of rate constancy. Mol Biol Evol 14:1218–1232Google Scholar
  679. Sankoff D (1975) Minimal mutation trees of sequences. J SIAM Appl Math 28:35–42Google Scholar
  680. Sankoff D, Morel C, Cedergren RJ (1973) Evolution of 5S RNA and the non-randomness of base replacement. Nat New Biol 245(147):232–234Google Scholar
  681. Sankoff D, Cedergren RJ, Lapalme G (1976) Frequency of insertion-deletion, transversion, and transition in the evolution of 5S ribosomal RNA. J Mol Evol 7(2):133–149Google Scholar
  682. Sawa T, Ohno-Machado L (2003) A neural network-based similarity index for clustering DNA microarray data. Comput Biol Med 33(1):1–15Google Scholar
  683. Schena M (1996) Genome analysis with gene expression microarrays. BioEssays 18(5):427–431PubMedPubMedCentralGoogle Scholar
  684. Schena M (2003) Microarray analysis. Wiley-Liss, New YorkGoogle Scholar
  685. Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270(5235):467–470PubMedPubMedCentralGoogle Scholar
  686. Schena M, Heller RA, Theriault TP, Konrad K, Lachenmeier E, Davis RW (1998) Microarrays: biotechnology’s discovery platform for functional genomics [see comments]. Trends Biotechnol 16(7):301–306PubMedPubMedCentralGoogle Scholar
  687. Schmucker D, Clemens JC, Shu H, Worby CA, Xiao J, Muda M, Dixon JE, Zipursky SL (2000) Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell 101(6):671–684PubMedPubMedCentralGoogle Scholar
  688. Schneider TD, Stephens RM (1990) Sequence logos: a new way to display consensus sequences. Nucleic Acids Res 18(20):6097–6100PubMedPubMedCentralGoogle Scholar
  689. Schuler M, Connell SR, Lescoute A, Giesebrecht J, Dabrowski M, Schroeer B, Mielke T, Penczek PA, Westhof E, Spahn CM (2006) Structure of the ribosome-bound cricket paralysis virus IRES RNA. Nat Struct Mol Biol 13(12):1092–1096PubMedPubMedCentralGoogle Scholar
  690. Schwartz S, Silva J, Burstein D, Pupko T, Eyras E, Ast G (2008) Large-scale comparative analysis of splicing signals and their corresponding splicing factors in eukaryotes. Genome Res 18(1):88–103PubMedPubMedCentralGoogle Scholar
  691. Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6(2):461–464Google Scholar
  692. Schwer B, Stunnenberg HG (1988) Vaccinia virus late transcripts generated in vitro have a poly(A) head. EMBO J 7(4):1183–1190PubMedPubMedCentralGoogle Scholar
  693. Schwer B, Visca P, Vos JC, Stunnenberg HG (1987) Discontinuous transcription or RNA processing of vaccinia virus late messengers results in a 5′ poly(A) leader. Cell 50(2):163–169PubMedPubMedCentralGoogle Scholar
  694. Scolnick EM, Caskey CT (1969) Peptide chain termination. V. The role of release factors in mRNA terminator codon recognition. Proc Natl Acad Sci U S A 64(4):1235–1241PubMedPubMedCentralGoogle Scholar
  695. Scolnick E, Tompkins R, Caskey T, Nirenberg M (1968) Release factors differing in specificity for terminator codons. Proc Natl Acad Sci U S A 61(2):768–774PubMedPubMedCentralGoogle Scholar
  696. Scott D, Weeks D, Melchers K, Sachs G (1998) The life and death of Helicobacter pylori. Gut 43(Suppl 1):S56–S60PubMedPubMedCentralGoogle Scholar
  697. Scott DR, Marcus EA, Weeks DL, Sachs G (2002) Mechanisms of acid resistance due to the urease system of Helicobacter pylori. Gastroenterology 123(1):187–195PubMedPubMedCentralGoogle Scholar
  698. Seetharam R, Heeren RA, Wong EY, Braford SR, Klein BK, Aykent S, Kotts CE, Mathis KJ, Bishop BF, Jennings MJ et al (1988) Mistranslation in IGF-1 during over-expression of the protein in Escherichia coli using a synthetic gene containing low frequency codons. Biochem Biophys Res Commun 155(1):518–523Google Scholar
  699. Segurel L, Bon C (2017) On the evolution of lactase persistence in humans. Annu Rev Genomics Hum Genet 18:297–319PubMedPubMedCentralGoogle Scholar
  700. Sendler E, Johnson GD, Mao S, Goodrich RJ, Diamond MP, Hauser R, Krawetz SA (2013) Stability, delivery and functions of human sperm RNAs at fertilization. Nucleic Acids Res 41(7):4104–4117PubMedPubMedCentralGoogle Scholar
  701. Seo EY, Namkung JH, Lee KM, Lee WH, Im M, Kee SH, Tae Park G, Yang JM, Seo YJ, Park JK et al (2005) Analysis of calcium-inducible genes in keratinocytes using suppression subtractive hybridization and cDNA microarray. Genomics 86(5):528–538Google Scholar
  702. Serero A, Giglione C, Sardini A, Martinez-Sanz J, Meinnel T (2003) An unusual peptide deformylase features in the human mitochondrial N-terminal methionine excision pathway. J Biol Chem 278(52):52953–52963PubMedPubMedCentralGoogle Scholar
  703. Shadel GS, Clayton DA (1997) Mitochondrial DNA maintenance in vertebrates. Annu Rev Biochem 66:409–435PubMedPubMedCentralGoogle Scholar
  704. Sharma U, Conine CC, Shea JM, Boskovic A, Derr AG, Bing XY, Belleannee C, Kucukural A, Serra RW, Sun F et al (2016) Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science 351(6271):391–396PubMedPubMedCentralGoogle Scholar
  705. Sharp PM (1986) What can AIDS virus codon usage tell us? Nature 324(6093):114PubMedPubMedCentralGoogle Scholar
  706. Sharp PM, Bulmer M (1988) Selective differences among translation termination codons. Gene 63(1):141–145Google Scholar
  707. Sharp PM, Li WH (1987) The codon adaptation index – a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res 15(3):1281–1295PubMedPubMedCentralGoogle Scholar
  708. Sharp PM, Tuohy TM, Mosurski KR (1986) Codon usage in yeast: cluster analysis clearly differentiates highly and lowly expressed genes. Nucleic Acids Res 14(13):5125–5143PubMedPubMedCentralGoogle Scholar
  709. Sheppard K, Yuan J, Hohn MJ, Jester B, Devine KM, Soll D (2008) From one amino acid to another: tRNA-dependent amino acid biosynthesis. Nucleic Acids Res 36(6):1813–1825PubMedPubMedCentralGoogle Scholar
  710. Sheridan PL, Sheline CT, Cannon K, Voz ML, Pazin MJ, Kadonaga JT, Jones KA (1995) Activation of the HIV-1 enhancer by the LEF-1 HMG protein on nucleosome-assembled DNA in vitro. Genes Dev 9(17):2090–2104PubMedPubMedCentralGoogle Scholar
  711. Sheth N, Roca X, Hastings ML, Roeder T, Krainer AR, Sachidanandam R (2006) Comprehensive splice-site analysis using comparative genomics. Nucl Acids Res 34(14):3955–3967Google Scholar
  712. Shimodaira H, Hasegawa M (1999) Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 16(8):1114–1116Google Scholar
  713. Shine J, Dalgarno L (1974a) The 3′-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci U S A 71(4):1342–1346PubMedPubMedCentralGoogle Scholar
  714. Shine J, Dalgarno L (1974b) Identical 3′-terminal octanucleotide sequence in 18S ribosomal ribonucleic acid from different eukaryotes. A proposed role for this sequence in the recognition of terminator codons. Biochem J 141(3):609–615PubMedPubMedCentralGoogle Scholar
  715. Shine J, Dalgarno L (1975) Determinant of cistron specificity in bacterial ribosomes. Nature 254(5495):34–38PubMedPubMedCentralGoogle Scholar
  716. Shirokikh NE, Spirin AS (2008) Poly(A) leader of eukaryotic mRNA bypasses the dependence of translation on initiation factors. Proc Natl Acad Sci U S A 105(31):10738–10743PubMedPubMedCentralGoogle Scholar
  717. Shoemaker RH (2006) The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer 6(10):813–823PubMedPubMedCentralGoogle Scholar
  718. Shoemaker DD, Schadt EE, Armour CD, He YD, Garrett-Engele P, McDonagh PD, Loerch PM, Leonardson A, Lum PY, Cavet G et al (2001) Experimental annotation of the human genome using microarray technology. Nature 409(6822):922–927PubMedPubMedCentralGoogle Scholar
  719. Shoemaker R, Deng J, Wang W, Zhang K (2010) Allele-specific methylation is prevalent and is contributed by CpG-SNPs in the human genome. Genome Res 20(7):883–889PubMedPubMedCentralGoogle Scholar
  720. Shpaer EG (1986) Constraints on codon context in Escherichia coli genes. Their possible role in modulating the efficiency of translation. J Mol Biol 188(4):555–564Google Scholar
  721. Siavoshi F, Malekzadeh R, Daneshmand M, Smoot DT, Ashktorab H (2004) Association between Helicobacter pylori infection in gastric cancer, ulcers and gastritis in Iranian patients. Helicobacter 9(5):470PubMedPubMedCentralGoogle Scholar
  722. Siepel A, Haussler D (2004a) Combining phylogenetic and hidden Markov models in biosequence analysis. J Comput Biol 11(2–3):413–428PubMedPubMedCentralGoogle Scholar
  723. Siepel A, Haussler D (2004b) Phylogenetic estimation of context-dependent substitution rates by maximum likelihood. Mol Biol Evol 21(3):468–488PubMedPubMedCentralGoogle Scholar
  724. Siepel A, Haussler D (2005) Phylogenetic hidden Markov models. In: Nielsen R (ed) Statistical methods in molecular evolution. Springer, New York, pp 325–351Google Scholar
  725. Sim J, Kim SY, Lee J (2005) PPRODO: prediction of protein domain boundaries using neural networks. Proteins 59(3):627–632Google Scholar
  726. Simpson RM, Bruno AE, Bard JE, Buck MJ, Read LK (2016) High-throughput sequencing of partially edited trypanosome mRNAs reveals barriers to editing progression and evidence for alternative editing. RNA 22(5):677–695PubMedPubMedCentralGoogle Scholar
  727. Sloane AJ, Duff JL, Wilson NL, Gandhi PS, Hill CJ, Hopwood FG, Smith PE, Thomas ML, Cole RA, Packer NH et al (2002) High throughput peptide mass fingerprinting and protein macroarray analysis using chemical printing strategies. Mol Cell Proteomics 1(7):490–499Google Scholar
  728. Smircich P, Eastman G, Bispo S, Duhagon MA, Guerra-Slompo EP, Garat B, Goldenberg S, Munroe DJ, Dallagiovanna B, Holetz F et al (2015) Ribosome profiling reveals translation control as a key mechanism generating differential gene expression in Trypanosoma cruzi. BMC Genomics 16:443PubMedPubMedCentralGoogle Scholar
  729. Smit AF (1999) Interspersed repeats and other mementos of transposable elements in mammalian genomes. Curr Opin Genet Dev 9(6):657–663PubMedPubMedCentralGoogle Scholar
  730. Smith TF, Waterman MS (1981) Identification of common molecular subsequences. J Mol Biol 147(1):195–197Google Scholar
  731. Smith AB, Pisani D, Mackenzie-Dodds JA, Stockley B, Webster BL, Littlewood DT (2006) Testing the molecular clock: molecular and paleontological estimates of divergence times in the Echinoidea (Echinodermata). Mol Biol Evol 23(10):1832–1851PubMedPubMedCentralGoogle Scholar
  732. Smyth RP, Davenport MP, Mak J (2012) The origin of genetic diversity in HIV-1. Virus Res 169(2):415–429Google Scholar
  733. Smyth RP, Schlub TE, Grimm AJ, Waugh C, Ellenberg P, Chopra A, Mallal S, Cromer D, Mak J, Davenport MP (2014) Identifying recombination hot spots in the HIV-1 genome. J Virol 88(5):2891–2902PubMedPubMedCentralGoogle Scholar
  734. Sneath PHA (1962) The construction of taxonomic groups. In: Ainsworth GC, Sneath PHA (eds) Microbial classification. Cambridge University Press, Cambridge, pp 289–332Google Scholar
  735. Sokal RR, Michener CD (1958) A statistical method for evaluating systematic relationships. Univ Kans Sci Bull 28:1409–1438Google Scholar
  736. Solnick JV, Hansen LM, Salama NR, Boonjakuakul JK, Syvanen M (2004) Modification of Helicobacter pylori outer membrane protein expression during experimental infection of rhesus macaques. Proc Natl Acad Sci U S A 101(7):2106–2111PubMedPubMedCentralGoogle Scholar
  737. Sommerer N, Centeno D, Rossignol M (2006) Peptide mass fingerprinting: identification of proteins by maldi-tof. Methods Mol Biol 355:219–234Google Scholar
  738. Sonenberg N, Meerovitch K (1990) Translation of poliovirus mRNA. Enzyme 44(1–4):278–291PubMedPubMedCentralGoogle Scholar
  739. Sorensen MA, Kurland CG, Pedersen S (1989) Codon usage determines translation rate in Escherichia coli. J Mol Biol 207:365–377PubMedPubMedCentralGoogle Scholar
  740. Staden R (1984) Computer methods to locate signals in nucleic acid sequences. Nucleic Acids Res 12(1 Pt 2):505–519PubMedPubMedCentralGoogle Scholar
  741. Stamm S, Ben-Ari S, Rafalska I, Tang Y, Zhang Z, Toiber D, Thanaraj TA, Soreq H (2005) Function of alternative splicing. Gene 344:1–20PubMedPubMedCentralGoogle Scholar
  742. Steinberg MH, Rodgers GP (2001) Pathophysiology of sickle cell disease: role of cellular and genetic modifiers. Semin Hematol 38(4):299–306PubMedPubMedCentralGoogle Scholar
  743. Steitz JA, Jakes K (1975) How ribosomes select initiator regions in mRNA: base pair formation between the 3′ terminus of 16S rRNA and the mRNA during initiation of protein synthesis in Escherichia coli. Proc Natl Acad Sci U S A 72(12):4734–4738PubMedPubMedCentralGoogle Scholar
  744. Stepankiw N, Raghavan M, Fogarty EA, Grimson A, Pleiss JA (2015) Widespread alternative and aberrant splicing revealed by lariat sequencing. Nucleic Acids Res 43(17):8488–8501PubMedPubMedCentralGoogle Scholar
  745. Stingl K, Uhlemann Em EM, Deckers-Hebestreit G, Schmid R, Bakker EP, Altendorf K (2001) Prolonged survival and cytoplasmic pH homeostasis of Helicobacter pylori at pH 1. Infect Immun 69(2):1178–1180PubMedPubMedCentralGoogle Scholar
  746. Stingl K, Altendorf K, Bakker EP (2002a) Acid survival of Helicobacter pylori: how does urease activity trigger cytoplasmic pH homeostasis? Trends Microbiol 10(2):70–74PubMedPubMedCentralGoogle Scholar
  747. Stingl K, Uhlemann E-M, Schmid R, Altendorf K, Bakker EP (2002b) Energetics of Helicobacter pylori and its implications for the mechanism of urease-dependent acid tolerance at pH 1. J Bacteriol 184(11):3053–3060PubMedPubMedCentralGoogle Scholar
  748. Stormo GD, Schneider TD, Gold L, Ehrenfeucht A (1982a) Use of the ‘Perceptron’ algorithm to distinguish translational initiation sites in E. coli. Nucleic Acids Res 10(9):2997–3011PubMedPubMedCentralGoogle Scholar
  749. Stormo GD, Schneider TD, Gold LM (1982b) Characterization of translational initiation sites in E. coli. Nucleic Acids Res 10(9):2971–2996PubMedPubMedCentralGoogle Scholar
  750. Stormo GD, Schneider TD, Gold L (1986) Quantitative analysis of the relationship between nucleotide sequence and functional activity. Nucleic Acids Res 14(16):6661–6679PubMedPubMedCentralGoogle Scholar
  751. Stoye J, Moulton V, Dress AW (1997) DCA: an efficient implementation of the divide-and-conquer approach to simultaneous multiple sequence alignment. Comput Appl Biosci 13(6):625–626Google Scholar
  752. Strebel K (2005) APOBEC3G & HTLV-1: inhibition without deamination. Retrovirology 2(1):37PubMedPubMedCentralGoogle Scholar
  753. Strigini P, Brickman E (1973) Analysis of specific misreading in Escherichia coli. J Mol Biol 75(4):659–672Google Scholar
  754. Su HL, Liao CL, Lin YL (2002) Japanese encephalitis virus infection initiates endoplasmic reticulum stress and an unfolded protein response. J Virol 76(9):4162–4171PubMedPubMedCentralGoogle Scholar
  755. Sueoka N (1964) On the evolution of informational macromolecules. Academic, New YorkGoogle Scholar
  756. Suerbaum S, Smith JM, Bapumia K, Morelli G, Smith NH, Kunstmann E, Dyrek I, Achtman M (1998) Free recombination within Helicobacter pylori. Proc Natl Acad Sci U S A 95(21):12619–12624PubMedPubMedCentralGoogle Scholar
  757. Suerbaum S, Josenhans C, Sterzenbach T, Drescher B, Brandt P, Bell M, Droge M, Fartmann B, Fischer HP, Ge Z et al (2003) The complete genome sequence of the carcinogenic bacterium Helicobacter hepaticus. Proc Natl Acad Sci U S A 100(13):7901–7906PubMedPubMedCentralGoogle Scholar
  758. Sun XY, Yang Q, Xia X (2013) An improved implementation of effective Number of Codons (Nc). Mol Biol Evol 30:191–196Google Scholar
  759. Sund J, Ander M, Aqvist J (2010) Principles of stop-codon reading on the ribosome. Nature 465(7300):947–950Google Scholar
  760. Supek F, Smuc T (2010) On relevance of codon usage to expression of synthetic and natural genes in Escherichia coli. Genetics 185(3):1129–1134PubMedPubMedCentralGoogle Scholar
  761. Sutton CW, Pemberton KS, Cottrell JS, Corbett JM, Wheeler CH, Dunn MJ, Pappin DJ (1995) Identification of myocardial proteins from two-dimensional gels by peptide mass fingerprinting. Electrophoresis 16(3):308–316PubMedPubMedCentralGoogle Scholar
  762. Sved J, Bird A (1990) The expected equilibrium of the CpG dinucleotide in vertebrate genomes under a mutation model. Proc Natl Acad Sci U S A 87:4692–4696PubMedPubMedCentralGoogle Scholar
  763. Svitkin YV, Imataka H, Khaleghpour K, Kahvejian A, Liebig HD, Sonenberg N (2001) Poly(A)-binding protein interaction with elF4G stimulates picornavirus IRES-dependent translation. RNA 7(12):1743–1752PubMedPubMedCentralGoogle Scholar
  764. Swofford D (1993) Phylogenetic analysis using parsimony. Illinois Natural History Survey, ChampaignGoogle Scholar
  765. Tajima F (1993) Unbiased estimation of evolutionary distance between nucleotide sequences. Mol Biol Evol 10(3):677–688PubMedPubMedCentralGoogle Scholar
  766. Tajima F, Nei M (1984) Estimation of evolutionary distance between nucleotide sequences. Mol Biol Evol 1(3):269–285PubMedPubMedCentralGoogle Scholar
  767. Takezaki N, Nei M (1994) Inconsistency of the maximum parsimony method when the rate of nucleotide substitution is constant. J Mol Evol 39(2):210–218PubMedPubMedCentralGoogle Scholar
  768. Takezaki N, Rzhetsky A, Nei M (1995) Phylogenetic test of the molecular clock and linearized trees. Mol Biol Evol 12(5):823–833PubMedPubMedCentralGoogle Scholar
  769. Tamai I, Sai Y, Kobayashi H, Kamata M, Wakamiya T, Tsuji A (1997) Structure-internalization relationship for adsorptive-mediated endocytosis of basic peptides at the blood-brain barrier. J Pharmacol Exp Ther 280(1):410–415PubMedPubMedCentralGoogle Scholar
  770. Tamura K, Kumar S (2002) Evolutionary distance estimation under heterogeneous substitution pattern among lineages. Mol Biol Evol 19(10):1727–1736PubMedPubMedCentralGoogle Scholar
  771. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526Google Scholar
  772. Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A 101(30):11030–11035PubMedPubMedCentralGoogle Scholar
  773. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599PubMedPubMedCentralGoogle Scholar
  774. Tanabe M, Kanehisa M (2012) Using the KEGG database resource. Curr Protoc Bioinformatics Chapter 1:Unit1 12Google Scholar
  775. Tanaka M, Ozawa T (1994) Strand asymmetry in human mitochondrial DNA mutations. Genomics 22(2):327–335PubMedPubMedCentralGoogle Scholar
  776. Tang N, Tornatore P, Weinberger SR (2004) Current developments in SELDI affinity technology. Mass Spectrom Rev 23(1):34–44PubMedPubMedCentralGoogle Scholar
  777. Tang Y, Gao XD, Wang Y, Yuan BF, Feng YQ (2012) Widespread existence of cytosine methylation in yeast DNA measured by gas chromatography/mass spectrometry. Anal Chem 84(16):7249–7255PubMedPubMedCentralGoogle Scholar
  778. Taniguchi T, Weissmann C (1978) Inhibition of Qbeta RNA 70S ribosome initiation complex formation by an oligonucleotide complementary to the 3′ terminal region of E. coli 16S ribosomal RNA. Nature 275(5682):770–772Google Scholar
  779. Tao H, Bausch C, Richmond C, Blattner FR, Conway T (1999) Functional genomics: expression analysis of Escherichia coli growing on minimal and rich media. J Bacteriol 181(20):6425–6440PubMedPubMedCentralGoogle Scholar
  780. Taramelli R, Kioussis D, Vanin E, Bartram K, Groffen J, Hurst J, Grosveld FG (1986) Gamma delta beta-thalassaemias 1 and 2 are the result of a 100 kbp deletion in the human beta-globin cluster. Nucleic Acids Res 14(17):7017–7029PubMedPubMedCentralGoogle Scholar
  781. Tate WP, Brown CM (1992) Translational termination: “stop” for protein synthesis or “pause” for regulation of gene expression. Biochemistry (Mosc) 31(9):2443–2450Google Scholar
  782. Tate WP, Mannering SA (1996) Three, four or more: the translational stop signal at length. Mol Microbiol 21(2):213–219Google Scholar
  783. Tate WP, Mansell JB, Mannering SA, Irvine JH, Major LL, Wilson DN (1999) UGA: a dual signal for ‘stop’ and for recoding in protein synthesis. Biochemistry (Mosc) 64(12):1342–1353Google Scholar
  784. Tavaré S (1986) Some probabilistic and statistical problems in the analysis of DNA sequences. In: Miura RM (ed) Some mathematical questions in biology – DNA sequence analysis. American Mathematical Society, Providence, pp 57–86Google Scholar
  785. Team GE (2011) Closure of the NCBI SRA and implications for the long-term future of genomics data storage. Genome Biol 12(3):402Google Scholar
  786. Tech M, Merkl R (2003) YACOP: enhanced gene prediction obtained by a combination of existing methods. In Silico Biol 3(4):441–451Google Scholar
  787. Terasaki T, Deguchi Y, Sato H, K-i H, Tsuji A (1991) In vivo transport of a Dynorphin-like analgesic peptide, E-2078, through the blood–brain barrier: an application of brain microdialysis. Pharm Res 8(7):815PubMedPubMedCentralGoogle Scholar
  788. Terenin IM, Dmitriev SE, Andreev DE, Royall E, Belsham GJ, Roberts LO, Shatsky IN (2005) A cross-kingdom internal ribosome entry site reveals a simplified mode of internal ribosome entry. Mol Cell Biol 25(17):7879–7888PubMedPubMedCentralGoogle Scholar
  789. Thijs G, Lescot M, Marchal K, Rombauts S, De Moor B, Rouze P, Moreau Y (2001) A higher-order background model improves the detection of promoter regulatory elements by Gibbs sampling. Bioinformatics 17(12):1113–1122Google Scholar
  790. Thijs G, Marchal K, Lescot M, Rombauts S, De Moor B, Rouze P, Moreau Y (2002a) A Gibbs sampling method to detect overrepresented motifs in the upstream regions of coexpressed genes. J Comput Biol 9(2):447–464Google Scholar
  791. Thijs G, Moreau Y, De Smet F, Mathys J, Lescot M, Rombauts S, Rouze P, De Moor B, Marchal K (2002b) INCLUSive: integrated clustering, upstream sequence retrieval and motif sampling. Bioinformatics 18(2):331–332Google Scholar
  792. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedPubMedCentralGoogle Scholar
  793. Thompson W, Rouchka EC, Lawrence CE (2003) Gibbs recursive sampler: finding transcription factor binding sites. Nucleic Acids Res 31(13):3580–3585PubMedPubMedCentralGoogle Scholar
  794. Thompson W, Palumbo MJ, Wasserman WW, Liu JS, Lawrence CE (2004) Decoding human regulatory circuits. Genome Res 14(10A):1967–1974PubMedPubMedCentralGoogle Scholar
  795. Thorne JL, Kishino H (1992) Freeing phylogenies from artifacts of alignment. Mol Biol Evol 9(6):1148–1162PubMedPubMedCentralGoogle Scholar
  796. Thorne JL, Kishino H (2005) Estimation of divergence times from molecular sequence data. In: Nielsen R (ed) Statistical methods in molecular evolution. Springer, New York, pp 233–256Google Scholar
  797. Tinn O, Oakley TH (2008) Erratic rates of molecular evolution and incongruence of fossil and molecular divergence time estimates in Ostracoda (Crustacea). Mol Phylogenet Evol 48(1):157–167PubMedPubMedCentralGoogle Scholar
  798. Tjaden B (2015) De novo assembly of bacterial transcriptomes from RNA-seq data. Genome Biol 16:1PubMedPubMedCentralGoogle Scholar
  799. Tolhuis B, Palstra RJ, Splinter E, Grosveld F, de Laat W (2002) Looping and interaction between hypersensitive sites in the active beta-globin locus. Mol Cell 10(6):1453–1465Google Scholar
  800. Tomatsu S, Orii KO, Bi Y, Gutierrez MA, Nishioka T, Yamaguchi S, Kondo N, Orii T, Noguchi A, Sly WS (2004) General implications for CpG hot spot mutations: methylation patterns of the human iduronate-2-sulfatase gene locus. Hum Mutat 23(6):590–598Google Scholar
  801. Tomb JF, White O, Kerlavage AR, Clayton RA, Sutton GG, Fleischmann RD, Ketchum KA, Klenk HP, Gill S, Dougherty BA et al (1997) The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388(6642):539–547PubMedGoogle Scholar
  802. Toronen P, Kolehmainen M, Wong G, Castren E (1999) Analysis of gene expression data using self-organizing maps. FEBS Lett 451(2):142–146Google Scholar
  803. Trapnell C (2015) Defining cell types and states with single-cell genomics. Genome Res 25(10):1491–1498PubMedPubMedCentralGoogle Scholar
  804. Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25(9):1105–1111PubMedPubMedCentralGoogle Scholar
  805. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28(5):511–515PubMedPubMedCentralGoogle Scholar
  806. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7(3):562–578PubMedPubMedCentralGoogle Scholar
  807. Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L (2013) Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotechnol 31(1):46–53Google Scholar
  808. Trudel MV, Vincent AT, Attere SA, Labbe M, Derome N, Culley AI, Charette SJ (2016) Diversity of antibiotic-resistance genes in Canadian isolates of Aeromonas salmonicida subsp. salmonicida: dominance of pSN254b and discovery of pAsa8. Sci Rep 6:35617PubMedPubMedCentralGoogle Scholar
  809. Trutschl M, Dinkova TD, Rhoads RE (2005) Application of machine learning and visualization of heterogeneous datasets to uncover relationships between translation and developmental stage expression of C. elegans mRNAs. Physiol Genomics 21(2):264–273Google Scholar
  810. Tuller T, Waldman YY, Kupiec M, Ruppin E (2010) Translation efficiency is determined by both codon bias and folding energy. Proc Natl Acad Sci U S A 107(8):3645–3650PubMedPubMedCentralGoogle Scholar
  811. Valenzuela M, Cerda O, Toledo H (2003) Overview on chemotaxis and acid resistance in Helicobacter pylori. Biol Res 36(3–4):429–436PubMedGoogle Scholar
  812. Van de Peer Y, Neefs JM, De Rijk P, De Wachter R (1993) Reconstructing evolution from eukaryotic small-ribosomal-subunit RNA sequences: calibration of the molecular clock. J Mol Evol 37(2):221–232PubMedGoogle Scholar
  813. Van Dooren S, Pybus OG, Salemi M, Liu HF, Goubau P, Remondegui C, Talarmin A, Gotuzzo E, Alcantara LC, Galvao-Castro B et al (2004) The low evolutionary rate of human T-cell lymphotropic virus type-1 confirmed by analysis of vertical transmission chains. Mol Biol Evol 21(3):603–611PubMedGoogle Scholar
  814. Van Esch H, Devriendt K (2001) Transcription factor GATA3 and the human HDR syndrome. Cell Mol Life Sci 58(9):1296–1300Google Scholar
  815. van Hemert FJ, Berkhout B (1995) The tendency of lentiviral open reading frames to become A-rich: constraints imposed by viral genome organization and cellular tRNA availability. J Mol Evol 41(2):132–140PubMedGoogle Scholar
  816. van Weringh A, Ragonnet-Cronin M, Pranckeviciene E, Pavon-Eternod M, Kleiman L, Xia X (2011) HIV-1 modulates the tRNA pool to improve translation efficiency. Mol Biol Evol 28(6):1827–1834PubMedPubMedCentralGoogle Scholar
  817. Vartanian J-P, Henry M, Wain-Hobson S (2002) Sustained G->A hypermutation during reverse transcription of an entire human immunodeficiency virus type 1 strain Vau group O genome. J Gen Virol 83(4):801–805PubMedGoogle Scholar
  818. Vasilescu J, Figeys D (2006) Mapping protein-protein interactions by mass spectrometry. Curr Opin Biotechnol 17(4):394–399Google Scholar
  819. Vazquez-Pianzola P, Hernandez G, Suter B, Rivera-Pomar R (2007) Different modes of translation for hid, grim and sickle mRNAs in Drosophila. Cell Death Differ 14(2):286–295PubMedGoogle Scholar
  820. Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Science 270(5235):484–487PubMedPubMedCentralGoogle Scholar
  821. Velculescu VE, Zhang L, Zhou W, Vogelstein J, Basrai MA, Bassett DE Jr, Hieter P, Vogelstein B, Kinzler KW (1997) Characterization of the yeast transcriptome. Cell 88(2):243–251PubMedPubMedCentralGoogle Scholar
  822. Velculescu VE, Madden SL, Zhang L, Lash AE, Yu J, Rago C, Lal A, Wang CJ, Beaudry GA, Ciriello KM et al (1999) Analysis of human transcriptomes. Nat Genet 23(4):387–388PubMedPubMedCentralGoogle Scholar
  823. Velculescu VE, Vogelstein B, Kinzler KW (2000) Analysing uncharted transcriptomes with SAGE. Trends Genet 16(10):423–425Google Scholar
  824. Vellanoweth RL, Rabinowitz JC (1992) The influence of ribosome-binding-site elements on translational efficiency in Bacillus subtilis and Escherichia coli in vivo. Mol Microbiol 6(9):1105–1114PubMedGoogle Scholar
  825. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA et al (2001) The sequence of the human genome. Science 291(5507):1304–1351Google Scholar
  826. Vert JP (2002) Support vector machine prediction of signal peptide cleavage site using a new class of kernels for strings. Pac Symp Biocomput 7:649–660Google Scholar
  827. Vestergaard B, Van LB, Andersen GR, Nyborg J, Buckingham RH, Kjeldgaard M (2001) Bacterial polypeptide release factor RF2 is structurally distinct from eukaryotic eRF1. Mol Cell 8(6):1375–1382PubMedPubMedCentralGoogle Scholar
  828. Vestergaard B, Sanyal S, Roessle M, Mora L, Buckingham RH, Kastrup JS, Gajhede M, Svergun DI, Ehrenberg M (2005) The SAXS solution structure of RF1 differs from its crystal structure and is similar to its ribosome bound cryo-EM structure. Mol Cell 20(6):929–938PubMedPubMedCentralGoogle Scholar
  829. Viterbi AJ (1967) Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Trans Inf Theory 13(2):260–269Google Scholar
  830. Vlasschaert C, Xia X, Coulombe J, Gray DA (2015) Evolution of the highly networked deubiquitinating enzymes USP4, USP15, and USP11. BMC Evol Biol 15:230PubMedPubMedCentralGoogle Scholar
  831. Vlasschaert C, Xia X, Gray DA (2016) Selection preserves Ubiquitin Specific Protease 4 alternative exon skipping in therian mammals. Sci Rep 6:20039PubMedPubMedCentralGoogle Scholar
  832. Vlasschaert C, Cook D, Xia X, Gray DA (2017) The evolution and functional diversification of the deubiquitinating enzyme superfamily. Genome Biol Evol 9(3):558–573PubMedCentralGoogle Scholar
  833. Voelter-Mahlknecht S (2016) Epigenetic associations in relation to cardiovascular prevention and therapeutics. Clin Epigenetics 8:4PubMedPubMedCentralGoogle Scholar
  834. Waddell PJ, Steel MA (1997a) General time-reversible distances with unequal rates across sites: mixing gamma and inverse Gaussian distributions with invariant sites. Mol Phylogenet Evol 8(3):398–414PubMedGoogle Scholar
  835. Waddell PJ, Steel MA (1997b) General time-reversible distances with unequal rates across sites: mixing lambda and inverse Gaussian distributions with invariant sites. Mol Phylogenet Evol 8(3):398–414PubMedGoogle Scholar
  836. Wade PA, Wolffe AP (2001) ReCoGnizing methylated DNA. Nat Struct Biol 8(7):575–577PubMedPubMedCentralGoogle Scholar
  837. Walsh D, Arias C, Perez C, Halladin D, Escandon M, Ueda T, Watanabe-Fukunaga R, Fukunaga R, Mohr I (2008) Eukaryotic translation initiation factor 4F architectural alterations accompany translation initiation factor redistribution in poxvirus-infected cells. Mol Cell Biol 28(8):2648–2658PubMedPubMedCentralGoogle Scholar
  838. Wang HC, Hickey DA (2002) Evidence for strong selective constraint acting on the nucleotide composition of 16S ribosomal RNA genes. Nucleic Acids Res 30(11):2501–2507PubMedPubMedCentralGoogle Scholar
  839. Wang G, Humayun MZ, Taylor DE (1999) Mutation as an origin of genetic variability in Helicobacter pylori. Trends Microbiol 7(12):488–493PubMedGoogle Scholar
  840. Wang J, Delabie J, Aasheim H, Smeland E, Myklebost O (2002) Clustering of the SOM easily reveals distinct gene expression patterns: results of a reanalysis of lymphoma study. BMC Bioinform 3:36Google Scholar
  841. Wang HC, Xia X, Hickey DA (2006) Thermal adaptation of ribosomal RNA genes: a comparative study. J Mol Evol 63(1):120–126Google Scholar
  842. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63PubMedPubMedCentralGoogle Scholar
  843. Wang X, Kim Y, Ma Q, Hong SH, Pokusaeva K, Sturino JM, Wood TK (2010) Cryptic prophages help bacteria cope with adverse environments. Nat Commun 1:147PubMedPubMedCentralGoogle Scholar
  844. Wang M, Weiss M, Simonovic M, Haertinger G, Schrimpf SP, Hengartner MO, von Mering C (2012) PaxDb, a database of protein abundance averages across all three domains of life. Mol Cell Proteomics 11(8):492–500PubMedPubMedCentralGoogle Scholar
  845. Washburn MP, Wolters D, Yates JR 3rd (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19(3):242–247Google Scholar
  846. Waterfield MD, Scrace GT, Whittle N, Stroobant P, Johnsson A, Wasteson A, Westermark B, Heldin CH, Huang JS, Deuel TF (1983) Platelet-derived growth factor is structurally related to the putative transforming protein p28sis of simian sarcoma virus. Nature 304(5921):35–39Google Scholar
  847. Waterman MS, Vingron M (1994) Rapid and accurate estimates of statistical significance for sequence data base searches. Proc Natl Acad Sci U S A 91(11):4625–4628PubMedPubMedCentralGoogle Scholar
  848. Webster J, Oxley D (2005) Peptide mass fingerprinting: protein identification using MALDI-TOF mass spectrometry. Methods Mol Biol 310:227–240PubMedGoogle Scholar
  849. Weeks DL, Eskandari S, Scott DR, Sachs G (2000) A H+−gated urea channel: the link between Helicobacter pylori urease and gastric colonization. Science 287(5452):482–485PubMedGoogle Scholar
  850. Wei Y, Xia X (2017) The role of +4U as an extended translation termination signal in bacteria. Genetics 205(2):539–549PubMedPubMedCentralGoogle Scholar
  851. Wei Y, Wang J, Xia X (2016) Coevolution between stop codon usage and release factors in bacterial species. Mol Biol Evol 33(9):2357–2367PubMedPubMedCentralGoogle Scholar
  852. Wei Y, Silke JR, Xia X (2017) Elucidating the 16S rRNA 3′ boundaries and defining optimal SD/aSD pairing in Escherichia coli and Bacillus subtilis using RNA-Seq data. Sci Rep.  https://doi.org/10.1038/s41598-017-17918-6
  853. Weigert MG, Garen A (1965) Base composition of nonsense codons in E. coli. evidence from amino-acid substitutions at a tryptophan site in alkaline phosphatase. Nature 206(988):992–994Google Scholar
  854. Weiner AM, Weber K (1973) A single UGA codon functions as a natural termination signal in the coliphage q beta coat protein cistron. J Mol Biol 80(4):837–855PubMedPubMedCentralGoogle Scholar
  855. Weir BS (1990) Genetic data analysis. Sinauer Associates, SunderlandGoogle Scholar
  856. Weiss RB, Dunn DM, Dahlberg AE, Atkins JF, Gesteland RF (1988) Reading frame switch caused by base-pair formation between the 3′ end of 16S rRNA and the mRNA during elongation of protein synthesis in Escherichia coli. EMBO J 7(5):1503–1507PubMedPubMedCentralGoogle Scholar
  857. Wen Y, Marcus EA, Matrubutham U, Gleeson MA, Scott DR, Sachs G (2003) Acid-adaptive genes of Helicobacter pylori. Infect Immun 71(10):5921–5939PubMedPubMedCentralGoogle Scholar
  858. Wenthzel AM, Stancek M, Isaksson LA (1998) Growth phase dependent stop codon readthrough and shift of translation reading frame in Escherichia coli. FEBS Lett 421(3):237–242PubMedPubMedCentralGoogle Scholar
  859. Wilks SS (1938) The large-sample distribution of the likelihood ratio for testing composite hypotheses. Annals Math Stat 9:60–62Google Scholar
  860. Williams CL, Preston T, Hossack M, Slater C, McColl KE (1996) Helicobacter pylori utilises urea for amino acid synthesis. FEMS Immunol Med Microbiol 13(1):87–94PubMedGoogle Scholar
  861. Williams KP, Sobral BW, Dickerman AW (2007) A robust species tree for the alphaproteobacteria. J Bacteriol 189(13):4578–4586PubMedPubMedCentralGoogle Scholar
  862. Wilson DS, Nock S (2002) Functional protein microarrays. Curr Opin Chem Biol 6(1):81–85Google Scholar
  863. Wilson KS, von Hippel PH (1995) Transcription termination at intrinsic terminators: the role of the RNA hairpin. Proc Natl Acad Sci U S A 92(19):8793–8797PubMedPubMedCentralGoogle Scholar
  864. Winston F, Botstein D, Miller JH (1979) Characterization of amber and ochre suppressors in Salmonella typhimurium. J Bacteriol 137(1):433–439PubMedPubMedCentralGoogle Scholar
  865. Wolfe KH, Li WH, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast and nuclear DNAs. Proc Natl Acad Sci U S A 84:9054–9058PubMedPubMedCentralGoogle Scholar
  866. Wong KM, Suchard MA, Huelsenbeck JP (2008) Alignment uncertainty and genomic analysis. Science 319(5862):473–476PubMedGoogle Scholar
  867. Wright F (1990) The ‘effective number of codons’ used in a gene. Gene 87(1):23–29Google Scholar
  868. Wright GL Jr (2002) SELDI proteinchip MS: a platform for biomarker discovery and cancer diagnosis. Expert Rev Mol Diagn 2(6):549–563PubMedGoogle Scholar
  869. Wu J, Bag J (1998) Negative control of the poly(A)-binding protein mRNA translation is mediated by the adenine-rich region of its 5′-untranslated region. J Biol Chem 273(51):34535–34542PubMedGoogle Scholar
  870. Wu CI, Li WH (1985) Evidence for higher rates of nucleotide substitution in rodents than in man. Proc Natl Acad Sci U S A 82(6):1741–1745PubMedPubMedCentralGoogle Scholar
  871. Wu J, Tzanakakis ES (2013) Deconstructing stem cell population heterogeneity: single-cell analysis and modeling approaches. Biotechnol Adv 31(7):1047–1062PubMedPubMedCentralGoogle Scholar
  872. Xia X (1996) Maximizing transcription efficiency causes codon usage bias. Genetics 144:1309–1320PubMedPubMedCentralGoogle Scholar
  873. Xia X (1998a) How optimized is the translational machinery in Escherichia coli, Salmonella typhimurium and Saccharomyces cerevisiae? Genetics 149(1):37–44PubMedPubMedCentralGoogle Scholar
  874. Xia X (1998b) The rate heterogeneity of nonsynonymous substitutions in mammalian mitochondrial genes. Mol Biol Evol 15:336–344Google Scholar
  875. Xia X (2000) Phylogenetic relationship among horseshoe crab species: the effect of substitution models on phylogenetic analyses. Syst Biol 49:87–100Google Scholar
  876. Xia X (2001) Data analysis in molecular biology and evolution. Kluwer Academic Publishers, BostonGoogle Scholar
  877. Xia X (2003) DNA methylation and mycoplasma genomes. J Mol Evol 57:S21–S28PubMedPubMedCentralGoogle Scholar
  878. Xia X (2005) Mutation and selection on the anticodon of tRNA genes in vertebrate mitochondrial genomes. Gene 345(1):13–20Google Scholar
  879. Xia X (2006) Topological bias in distance-based phylogenetic methods: problems with over- and underestimated genetic distances. Evol Bioinforma 2:375–387Google Scholar
  880. Xia X (2007a) The +4G site in Kozak consensus is not related to the efficiency of translation initiation. PLoS One 2:e188PubMedPubMedCentralGoogle Scholar
  881. Xia X (2007b) Bioinformatics and the cell: modern computational approaches in genomics, proteomics and transcriptomics. Springer US, New YorkGoogle Scholar
  882. Xia X (2007c) An improved implementation of codon adaptation index. Evol Bioinforma 3:53–58Google Scholar
  883. Xia X (2008) The cost of wobble translation in fungal mitochondrial genomes: integration of two traditional hypotheses. BMC Evol Biol 8:211PubMedPubMedCentralGoogle Scholar
  884. Xia X (2009) Information-theoretic indices and an approximate significance test for testing the molecular clock hypothesis with genetic distances. Mol Phylogenet Evol 52:665–676PubMedPubMedCentralGoogle Scholar
  885. Xia X (2012a) DNA replication and strand asymmetry in prokaryotic and mitochondrial genomes. Curr Genomics 13(1):16–27PubMedPubMedCentralGoogle Scholar
  886. Xia X (2012b). Position Weight Matrix, Gibbs Sampler, and the associated significance tests in motif characterization and prediction. Scientifica 2012: Article ID 917540, 15 ppGoogle Scholar
  887. Xia X (2012c) Rapid evolution of animal mitochondria. In: Singh RS, Xu J, Kulathinal RJ (eds) Evolution in the fast lane: rapidly evolving genes and genetic systems. Oxford University Press, Oxford, pp 73–82Google Scholar
  888. Xia X (2013) DAMBE5: a comprehensive software package for data analysis in molecular biology and evolution. Mol Biol Evol 30:1720–1728PubMedPubMedCentralGoogle Scholar
  889. Xia X (2014) Phylogenetic bias in the likelihood method caused by missing data coupled with among-site rate variation: an analytical approach. In: Basu M, Pan Y, Wang J (eds) Bioinformatics research and applications. Springer, New York, pp 12–23Google Scholar
  890. Xia X (2015) A major controversy in codon-anticodon adaptation resolved by a new codon usage index. Genetics 199:573–579PubMedPubMedCentralGoogle Scholar
  891. Xia X (2016) PhyPA: phylogenetic method with pairwise sequence alignment outperforms likelihood methods in phylogenetics involving highly diverged sequences. Mol Phylogenet Evol 102:331–343Google Scholar
  892. Xia X (2017a) ARSDA: a new approach for storing, transmitting and analyzing transcriptomic data. G3: Genes|Genomes|Genetics.  https://doi.org/10.1101/114470PubMedPubMedCentralGoogle Scholar
  893. Xia X (2017b) Bioinformatics and drug discovery. Curr Top Med Chem 17(15):1709–1726PubMedPubMedCentralGoogle Scholar
  894. Xia X (2017c) DAMBE6: new tools for microbial genomics, phylogenetics and molecular evolution. J Hered 108(4):431–437.  https://doi.org/10.1093/jhered/esx033CrossRefPubMedPubMedCentralGoogle Scholar
  895. Xia X (2017d) Self-organizing map for characterizing heterogeneous nucleotide and amino acid sequence motifs. Computation 5(4):43Google Scholar
  896. Xia X, Holcik M (2009) Strong eukaryotic IRESs have weak secondary structure. PLoS One 4(1):e4136PubMedPubMedCentralGoogle Scholar
  897. Xia X, Kumar S (2006) Codon-based detection of positive selection can be biased by heterogeneous distribution of polar amino acids along protein sequences. In: Markstein P, Xu Y (eds) Computational systems bioinformatics: proceedings of the conference CSB 2006. Imperial College Press, London, pp 335–340Google Scholar
  898. Xia X, Lemey P (2009) Assessing substitution saturation with DAMBE. In: Lemey P, Salemi M, Vandamme AM (eds) The phylogenetic handbook, 2nd edn. Cambridge University Press, Cambridge, pp 615–630Google Scholar
  899. Xia X, Li WH (1998) What amino acid properties affect protein evolution? J Mol Evol 47(5):557–564Google Scholar
  900. Xia X, Palidwor G (2005) Genomic adaptation to acidic environment: evidence from Helicobacter pylori. Am Nat 166(6):776–784PubMedPubMedCentralGoogle Scholar
  901. Xia X, Xie Z (2001a) AMADA: analysis of microarray data. Bioinformatics 17:569–570