Nucleotide Substitution Models and Evolutionary Distances

  • Xuhua Xia


Genomes change over time, so are the interactions of genes and gene products that breathe life into a genome. To have the most advantageous view of genomes, genes and their interactions, we need to see things from the very beginning. Substitution models enable us to trace history back to the very early forms of life, by reconstructing the genomic “books” erased and obliterated by billions of years of mutations. This chapter focuses on nucleotide-based substitution models, presenting three different ways of deriving, for various substitution models, transition probability matrices that are needed to compute evolutionary distances and to compute likelihood of a tree. These three different ways should allow students of different mathematical background to understand substitution models and their uses in phylogenetics. Almost all frequently used substitution models are nested models with the simple one being a special case of the more general one. The likelihood ratio test, as well as the information-theoretic indices as an alternative approach to model selection, is numerically illustrated in choosing the substitution model that best describes the aligned sequences.


  1. Abdel-Hameed EA, Ji H, Shata MT (2016) HIV-induced epigenetic alterations in host cells. Adv Exp Med Biol 879:27–38CrossRefPubMedGoogle Scholar
  2. Abolbaghaei A, Silke JR, Xia X (2017) How changes in anti-SD sequences would affect SD sequences in Escherichia coli and Bacillus subtilis. G3 (Bethesda, Md) 7(5):1607–1615CrossRefGoogle Scholar
  3. Abraham EP, Chain E (1940) An enzyme from bacteria able to destroy penicillin. Rev Infect Dis 10(4):677–678Google Scholar
  4. Abraham EP, Chain E, Fletcher CM, Florey HW, Gardner AD, Heatley NG, Jennings MA (1941) Further observations on penicillin. Lancet 238(6155):177–189CrossRefGoogle Scholar
  5. Abraham JM, Feagin JE, Stuart K (1988) Characterization of cytochrome c oxidase III transcripts that are edited only in the 3′ region. Cell 55(2):267–272CrossRefPubMedGoogle Scholar
  6. Adamski FM, McCaughan KK, Jorgensen F, Kurland CG, Tate WP (1994) The concentration of polypeptide chain release factors 1 and 2 at different growth rates of Escherichia coli. J Mol Biol 238(3):302–308PubMedPubMedCentralCrossRefGoogle Scholar
  7. Aerts S, Van Loo P, Thijs G, Mayer H, de Martin R, Moreau Y, De Moor B (2005) TOUCAN 2: the all-inclusive open source workbench for regulatory sequence analysis. Nucleic Acids Res 33(Web Server):W393–W396CrossRefPubMedPubMedCentralGoogle Scholar
  8. Aerts S, van Helden J, Sand O, Hassan BA (2007) Fine-tuning enhancer models to predict transcriptional targets across multiple genomes. PLoS One 2(11):e1115CrossRefPubMedPubMedCentralGoogle Scholar
  9. Ahn BY, Jones EV, Moss B (1990) Identification of the vaccinia virus gene encoding an 18-kilodalton subunit of RNA polymerase and demonstration of a 5′ poly(A) leader on its early transcript. J Virol 64(6):3019–3024PubMedPubMedCentralGoogle Scholar
  10. Aird WC, Parvin JD, Sharp PA, Rosenberg RD (1994) The interaction of GATA-binding proteins and basal transcription factors with GATA box-containing core promoters. A model of tissue-specific gene expression. J Biol Chem 269(2):883–889PubMedGoogle Scholar
  11. Akaike H (1973) Information theory and an extension of maximum likelihood principle. In: Petrov BN, Csaki F (eds) Second international symposium on information theory. Akademiai Kiado, Budapest, pp 267–281Google Scholar
  12. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723CrossRefGoogle Scholar
  13. Akashi H (1994) Synonymous codon usage in Drosophila melanogaster: natural selection and translational accuracy. Genetics 136(3):927–935PubMedPubMedCentralGoogle Scholar
  14. Akashi H, Gojobori T (2002) Metabolic efficiency and amino acid composition in the proteomes of Escherichia coli and Bacillus subtilis. Proc Natl Acad Sci USA 99(6):3695–3700PubMedCrossRefGoogle Scholar
  15. Alatortsev VS, Cruz-Reyes J, Zhelonkina AG, Sollner-Webb B (2008) Trypanosoma brucei RNA editing: coupled cycles of U deletion reveal processive activity of the editing complex. Mol Cell Biol 28(7):2437–2445PubMedPubMedCentralCrossRefGoogle Scholar
  16. Alderwick LJ, Seidel M, Sahm H, Besra GS, Eggeling L (2006) Identification of a novel arabinofuranosyltransferase (AftA) involved in cell wall arabinan biosynthesis in Mycobacterium tuberculosis. J Biol Chem 281(23):15653–15661CrossRefPubMedGoogle Scholar
  17. Allen A, Flemstrom G, Garner A, Kivilaakso E (1993) Gastroduodenal mucosal protection. Physiol Rev 73(4):823–857PubMedCrossRefGoogle Scholar
  18. Alm RA, Trust TJ (1999) Analysis of the genetic diversity of Helicobacter pylori: the tale of two genomes. J Mol Med 77(12):834–846PubMedCrossRefGoogle Scholar
  19. Alm RA, Ling LS, Moir DT, King BL, Brown ED, Doig PC, Smith DR, Noonan B, Guild BC, deJonge BL et al (1999) Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397(6715):176–180PubMedCrossRefGoogle Scholar
  20. Alm RA, Bina J, Andrews BM, Doig P, Hancock RE, Trust TJ (2000) Comparative genomics of Helicobacter pylori: analysis of the outer membrane protein families. Infect Immun 68(7):4155–4168PubMedPubMedCentralCrossRefGoogle Scholar
  21. Althaus E, Caprara A, Lenhof HP, Reinert K (2002) Multiple sequence alignment with arbitrary gap costs: computing an optimal solution using polyhedral combinatorics. Bioinformatics 18(Suppl 2):S4–S16CrossRefPubMedGoogle Scholar
  22. Altschul SF (1996) Local alignment statistics. Meth Enzymol 274:460–480CrossRefGoogle Scholar
  23. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410CrossRefGoogle Scholar
  24. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedPubMedCentralCrossRefGoogle Scholar
  25. Anderson KP, Crable SC, Lingrel JB (1998) Multiple proteins binding to a GATA-E box-GATA motif regulate the erythroid Kruppel-like factor (EKLF) gene. J Biol Chem 273(23):14347–14354CrossRefPubMedGoogle Scholar
  26. Andersson DI, Kurland CG (1983) Ram ribosomes are defective proofreaders. Mol Gen Genet 191(3):378–381PubMedCrossRefGoogle Scholar
  27. Arava Y, Wang Y, Storey JD, Liu CL, Brown PO, Herschlag D (2003) Genome-wide analysis of mRNA translation profiles in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 100(7):3889–3894CrossRefPubMedGoogle Scholar
  28. Arbibe L, Sansonetti PJ (2007) Epigenetic regulation of host response to LPS: causing tolerance while avoiding toll errancy. Cell Host Microbe 1(4):244–246PubMedPubMedCentralCrossRefGoogle Scholar
  29. Arnqvist G (2006) Sensory exploitation and sexual conflict. Philos Trans R Soc Lond Ser B Biol Sci 361(1466):375–386CrossRefGoogle Scholar
  30. Arvaniti E, Moulos P, Vakrakou A, Chatziantoniou C, Chadjichristos C, Kavvadas P, Charonis A, Politis PK (2016) Whole-transcriptome analysis of UUO mouse model of renal fibrosis reveals new molecular players in kidney diseases. Sci Rep 6:26235PubMedPubMedCentralCrossRefGoogle Scholar
  31. Ast G (2004) How did alternative splicing evolve? Nat Rev Genet 5(10):773–782PubMedPubMedCentralCrossRefGoogle Scholar
  32. Auch AF, Henz SR, Holland BR, Goker M (2006) Genome BLAST distance phylogenies inferred from whole plastid and whole mitochondrion genome sequences. BMC Bioinform 7:350CrossRefGoogle Scholar
  33. Awan AR, Manfredo A, Pleiss JA (2013) Lariat sequencing in a unicellular yeast identifies regulated alternative splicing of exons that are evolutionarily conserved with humans. Proc Natl Acad Sci USA 110(31):12762–12767CrossRefPubMedGoogle Scholar
  34. Axon AT (1999) Are all helicobacters equal? Mechanisms of gastroduodenal pathology and their clinical implications. Gut 45(Suppl 1):I1–I4PubMedPubMedCentralCrossRefGoogle Scholar
  35. Bablanian R, Banerjee AK (1986) Poly(riboadenylic acid) preferentially inhibits in vitro translation of cellular mRNAs compared with vaccinia virus mRNAs: possible role in vaccinia virus cytopathology. Proc Natl Acad Sci USA 83(5):1290–1294PubMedCrossRefGoogle Scholar
  36. Bablanian R, Coppola G, Masters PS, Banerjee AK (1986) Characterization of vaccinia virus transcripts involved in selective inhibition of host protein synthesis. Virology 148(2):375–380PubMedCrossRefGoogle Scholar
  37. Bablanian R, Goswami SK, Esteban M, Banerjee AK (1987) Selective inhibition of protein synthesis by synthetic and vaccinia virus-core synthesized poly(riboadenylic acids). Virology 161(2):366–373PubMedCrossRefGoogle Scholar
  38. Bablanian R, Scribani S, Esteban M (1993) Amplification of polyadenylated nontranslated small RNA sequences (POLADS) during superinfection correlates with the inhibition of viral and cellular protein synthesis. Cell Mol Biol Res 39(3):243–255PubMedGoogle Scholar
  39. Bag J (2001) Feedback inhibition of poly(A)-binding protein mRNA translation. A possible mechanism of translation arrest by stalled 40 S ribosomal subunits. J Biol Chem 276(50):47352–47360PubMedCrossRefGoogle Scholar
  40. Bag J, Bhattacharjee RB (2010) Multiple levels of post-transcriptional control of expression of the poy (A)-binding protein. RNA Biol 7(1):5–12PubMedCrossRefGoogle Scholar
  41. Baik SC, Kim KM, Song SM, Kim DS, Jun JS, Lee SG, Song JY, Park JU, Kang HL, Lee WK et al (2004) Proteomic analysis of the sarcosine-insoluble outer membrane fraction of Helicobacter pylori strain 26695. J Bacteriol 186(4):949–955PubMedPubMedCentralCrossRefGoogle Scholar
  42. Bailey TL, Williams N, Misleh C, Li WW (2006) MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res 34(Web Server issue):W369–W373PubMedPubMedCentralCrossRefGoogle Scholar
  43. Baird SD, Turcotte M, Korneluk RG, Holcik M (2006) Searching for IRES. RNA 12(10):1755–1785PubMedPubMedCentralCrossRefGoogle Scholar
  44. Baird SD, Lewis SM, Turcotte M, Holcik M (2007) A search for structurally similar cellular internal ribosome entry sites. Nucleic Acids Res 35(14):4664–4677PubMedPubMedCentralCrossRefGoogle Scholar
  45. Baldi P, Brunak S (2001) Bioinformatics: the machine learning approach. The MIT Press, Cambridge, MAGoogle Scholar
  46. Bamford DH, Caldentey J, Bamford JK (1995) Bacteriophage PRD1: a broad host range DSDNA tectivirus with an internal membrane. Adv Virus Res 45:281–319PubMedCrossRefGoogle Scholar
  47. Bao J, Bedford MT (2016) Epigenetic regulation of the histone-to-protamine transition during spermiogenesis. Reproduction 151(5):R55–R70PubMedPubMedCentralCrossRefGoogle Scholar
  48. Baron D, Cocquet J, Xia X, Fellous M, Guiguen Y, Veitia RA (2004) An evolutionary and functional analysis of FoxL2 in rainbow trout gonad differentiation. J Mol Endocrinol 33:705–715PubMedCrossRefGoogle Scholar
  49. Bastianelli G, Bouillon A, Nguyen C, Crublet E, Petres S, Gorgette O, Le-Nguyen D, Barale JC, Nilges M (2011) Computational reverse-engineering of a spider-venom derived peptide active against Plasmodium falciparum SUB1. PLoS One 6(7):e21812PubMedPubMedCentralCrossRefGoogle Scholar
  50. Bauerfeind P, Garner R, Dunn BE, Mobley HL (1997) Synthesis and activity of Helicobacter pylori urease and catalase at low pH. Gut 40(1):25–30PubMedPubMedCentralCrossRefGoogle Scholar
  51. Baumgartner HK, Montrose MH (2004) Regulated alkali secretion acts in tandem with unstirred layers to regulate mouse gastric surface pH. Gastroenterology 126(3):774–783PubMedCrossRefGoogle Scholar
  52. Beier H, Grimm M (2001) Misreading of termination codons in eukaryotes by natural nonsense suppressor tRNAs. Nucleic Acids Res 29(23):4767–4782PubMedPubMedCentralCrossRefGoogle Scholar
  53. Bell D, Bell AH, Bondaruk J, Hanna EY, Weber RS (2016) In-depth characterization of the salivary adenoid cystic carcinoma transcriptome with emphasis on dominant cell type. Cancer 122(10):1513–1522CrossRefPubMedGoogle Scholar
  54. Ben-Gal I, Shani A, Gohr A, Grau J, Arviv S, Shmilovici A, Posch S, Grosse I (2005) Identification of transcription factor binding sites with variable-order Bayesian networks. Bioinformatics 21(11):2657–2666CrossRefPubMedGoogle Scholar
  55. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57(1):289–300Google Scholar
  56. Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple hypothesis testing under dependency. Ann Stat 29:1165–1188CrossRefGoogle Scholar
  57. Bennetzen JL, Hall BD (1982) Codon selection in yeast. J Biol Chem 257(6):3026–3031PubMedPubMedCentralGoogle Scholar
  58. Benoit G, Lemaitre C, Lavenier D, Drezen E, Dayris T, Uricaru R, Rizk G (2015) Reference-free compression of high throughput sequencing data with a probabilistic de Bruijn graph. BMC Bioinform 16:288CrossRefGoogle Scholar
  59. Benzer S, Champe SP (1962) A change from nonsense to sense in the genetic code. Proc Natl Acad Sci USA 48:1114–1121PubMedPubMedCentralCrossRefGoogle Scholar
  60. Berg JM, Tymoczko JL, Stryer L (2002) Biochemistry. W. H. Freeman and Co, New YorkGoogle Scholar
  61. Berger MF, Levin JZ, Vijayendran K, Sivachenko A, Adiconis X, Maguire J, Johnson LA, Robinson J, Verhaak RG, Sougnez C et al (2010) Integrative analysis of the melanoma transcriptome. Genome Res 20(4):413–427PubMedPubMedCentralCrossRefGoogle Scholar
  62. Bergsten E, Uutela M, Li X, Pietras K, Ostman A, Heldin CH, Alitalo K, Eriksson U (2001) PDGF-D is a specific, protease-activated ligand for the PDGF beta-receptor. Nat Cell Biol 3(5):512–516CrossRefPubMedGoogle Scholar
  63. Bertholet C, Van Meir E, ten Heggeler-Bordier B, Wittek R (1987) Vaccinia virus produces late mRNAs by discontinuous synthesis. Cell 50(2):153–162PubMedCrossRefGoogle Scholar
  64. Besemer J, Borodovsky M (2005) GeneMark: web software for gene finding in prokaryotes, eukaryotes and viruses. Nucleic Acids Res 33(Web Server issue):W451–W454PubMedPubMedCentralCrossRefGoogle Scholar
  65. Bestor TH, Coxon A (1993) The pros and cons of DNA methylation. Curr Biol 6:384–386CrossRefGoogle Scholar
  66. Betney R, de Silva E, Krishnan J, Stansfield I (2010) Autoregulatory systems controlling translation factor expression: thermostat-like control of translational accuracy. RNA 16(4):655–663PubMedPubMedCentralCrossRefGoogle Scholar
  67. Beznoskova P, Gunisova S, Valasek LS (2016) Rules of UGA-N decoding by near-cognate tRNAs and analysis of readthrough on short uORFs in yeast. RNA 22(3):456–466PubMedPubMedCentralCrossRefGoogle Scholar
  68. Bhagwat M, Aravind L (2007) PSI-BLAST tutorial. Methods Mol Biol 395:177–186PubMedPubMedCentralCrossRefGoogle Scholar
  69. Bhatia B, Ponia SS, Solanki AK, Dixit A, Garg LC (2014) Identification of glutamate ABC-transporter component in Clostridium perfringens as a putative drug target. Bioinformation 10(7):401–405PubMedPubMedCentralCrossRefGoogle Scholar
  70. Bibikova M, Barnes B, Tsan C, Ho V, Klotzle B, Le JM, Delano D, Zhang L, Schroth GP, Gunderson KL et al (2011) High density DNA methylation array with single CpG site resolution. Genomics 98(4):288–295PubMedPubMedCentralCrossRefGoogle Scholar
  71. Bickel DR (2003) Robust cluster analysis of microarray gene expression data with the number of clusters determined biologically. Bioinformatics 19(7):818–824CrossRefPubMedGoogle Scholar
  72. Bierne H, Hamon M, Cossart P (2012) Epigenetics and bacterial infections. Cold Spring Harb Perspect Med 2(12):a010272PubMedPubMedCentralCrossRefGoogle Scholar
  73. Bigaud E, Corrales FJ (2016) Methylthioadenosine (MTA) regulates liver cells proteome and methylproteome: implications in liver biology and disease. Mol Cell Proteomics 15(5):1498–1510PubMedPubMedCentralCrossRefGoogle Scholar
  74. Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR, Margulies EH, Weng Z, Snyder M, Dermitzakis ET, Thurman RE et al (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447(7146):799–816CrossRefPubMedGoogle Scholar
  75. Bjorkholm B, Lundin A, Sillen A, Guillemin K, Salama N, Rubio C, Gordon JI, Falk P, Engstrand L (2001) Comparison of genetic divergence and fitness between two subclones of Helicobacter pylori. Infect Immun 69(12):7832–7838PubMedPubMedCentralCrossRefGoogle Scholar
  76. Bjornsson A, Isaksson LA (1996) Accumulation of a mRNA decay intermediate by ribosomal pausing at a stop codon. Nucleic Acids Res 24(9):1753–1757PubMedPubMedCentralCrossRefGoogle Scholar
  77. Blackburne BP, Whelan S (2013) Class of multiple sequence alignment algorithm affects genomic analysis. Mol Biol Evol 30(3):642–653PubMedCrossRefGoogle Scholar
  78. Blakqori G, van Knippenberg I, Elliott RM (2009) Bunyamwera orthobunyavirus S-segment untranslated regions mediate poly(A) tail-independent translation. J Virol 83(8):3637–3646PubMedPubMedCentralCrossRefGoogle Scholar
  79. Blanchet S, Cornu D, Argentini M, Namy O (2014) New insights into the incorporation of natural suppressor tRNAs at stop codons in Saccharomyces cerevisiae. Nucleic Acids Res 42(15):10061–10072PubMedPubMedCentralCrossRefGoogle Scholar
  80. Blanchette M, Tompa M (2002) Discovery of regulatory elements by a computational method for phylogenetic footprinting. Genome Res 12(5):739–748PubMedPubMedCentralCrossRefGoogle Scholar
  81. Blanchette M, Bataille AR, Chen X, Poitras C, Laganiere J, Lefebvre C, Deblois G, Giguere V, Ferretti V, Bergeron D et al (2006) Genome-wide computational prediction of transcriptional regulatory modules reveals new insights into human gene expression. Genome Res 6(5):656–668CrossRefGoogle Scholar
  82. Boehringer D, Thermann R, Ostareck-Lederer A, Lewis JD, Stark H (2005) Structure of the hepatitis C virus IRES bound to the human 80S ribosome: remodeling of the HCV IRES. Structure 13(11):1695PubMedCrossRefGoogle Scholar
  83. Bogenhagen DF, Clayton DA (2003) The mitochondrial DNA replication bubble has not burst. Trends Biochem Sci 28(7):357–360PubMedPubMedCentralCrossRefGoogle Scholar
  84. Bolden JE, Peart MJ, Johnstone RW (2006) Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 5(9):769–784PubMedPubMedCentralCrossRefGoogle Scholar
  85. Borodovsky M, McIninch J (1993) GENMARK: parallel gene recognition for both DNA strands. Comput Chem 17:123–133CrossRefGoogle Scholar
  86. Bossi L (1983) Context effects: translation of UAG codon by suppressor tRNA is affected by the sequence following UAG in the message. J Mol Biol 164(1):73–87PubMedPubMedCentralCrossRefGoogle Scholar
  87. Bossi L, Ruth JR (1980) The influence of codon context on genetic code translation. Nature 286(5769):123–127PubMedPubMedCentralCrossRefGoogle Scholar
  88. Brauch H, Weirich G, Brieger J, Glavac D, Rodl H, Eichinger M, Feurer M, Weidt E, Puranakanitstha C, Neuhaus C et al (2000) VHL alterations in human clear cell renal cell carcinoma: association with advanced tumor stage and a novel hot spot mutation. Cancer Res 60(7):1942–1948PubMedPubMedCentralGoogle Scholar
  89. Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, Aach J, Ansorge W, Ball CA, Causton HC et al (2001) Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet 29(4):365–371CrossRefPubMedPubMedCentralGoogle Scholar
  90. Britten RJ (1986) Rates of DNA sequence evolution differ between taxonomic groups. Science 231:1393–1398PubMedCrossRefGoogle Scholar
  91. Brooks DR, McLennan DA (1991) Phylogeny, ecology and behavior: a research program in comparative biology. University of Chicago Press, ChicagoGoogle Scholar
  92. Brown CM, Stockwell PA, Trotman CN, Tate WP (1990) Sequence analysis suggests that tetra-nucleotides signal the termination of protein synthesis in eukaryotes. Nucleic Acids Res 18(21):6339–6345PubMedPubMedCentralCrossRefGoogle Scholar
  93. Brown M, Hughey R, Krogh A, Mian IS, Sjolander K, Haussler D (1993) Using Dirichlet mixture priors to derive hidden Markov models for protein families. Proc Int Conf Intell Syst Mol Biol 1:47–55PubMedGoogle Scholar
  94. Brown TA, Cecconi C, Tkachuk AN, Bustamante C, Clayton DA (2005) Replication of mitochondrial DNA occurs by strand displacement with alternative light-strand origins, not via a strand-coupled mechanism. Genes Dev 19(20):2466–2476PubMedPubMedCentralCrossRefGoogle Scholar
  95. Brumme ZL, Dong WW, Yip B, Wynhoven B, Hoffman NG, Swanstrom R, Jensen MA, Mullins JI, Hogg RS, Montaner JS et al (2004) Clinical and immunological impact of HIV envelope V3 sequence variation after starting initial triple antiretroviral therapy. AIDS 18(4):F1–F9CrossRefPubMedGoogle Scholar
  96. Bucklew JA (1990) Large deviation techniques in decision, simulation, and estimation. Wiley, New YorkGoogle Scholar
  97. Bulmer M (1990) The effect of context on synonymous codon usage in genes with low codon usage bias. Nucleic Acids Res 18(10):2869–2873PubMedPubMedCentralCrossRefGoogle Scholar
  98. Bulmer M (1991) The selection-mutation-drift theory of synonymous codon usage. Genetics 129:897–907PubMedPubMedCentralGoogle Scholar
  99. Bumann D, Aksu S, Wendland M, Janek K, Zimny-Arndt U, Sabarth N, Meyer TF, Jungblut PR (2002) Proteome analysis of secreted proteins of the gastric pathogen Helicobacter pylori. Infect Immun 70(7):3396–3403PubMedPubMedCentralCrossRefGoogle Scholar
  100. Burge C, Karlin S (1997) Prediction of complete gene structures in human genomic DNA. J Mol Biol 268:78–94CrossRefPubMedGoogle Scholar
  101. Burge CB, Karlin S (1998) Finding the genes in genomic DNA. Curr Opin Struct Biol 8(3):346–354PubMedPubMedCentralCrossRefGoogle Scholar
  102. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New YorkGoogle Scholar
  103. Bury-Mone S, Skouloubris S, Labigne A, De Reuse H (2001) The Helicobacter pylori UreI protein: role in adaptation to acidity and identification of residues essential for its activity and for acid activation. Mol Microbiol 42(4):1021–1034PubMedPubMedCentralCrossRefGoogle Scholar
  104. Calderone TL, Stevens RD, Oas TG (1996) High-level misincorporation of lysine for arginine at AGA codons in a fusion protein expressed in Escherichia coli. J Mol Biol 262(4):407–412PubMedPubMedCentralCrossRefGoogle Scholar
  105. Cao Y, Janke A, Waddell PJ, Westerman M, Takenaka O, Murata S, Okada N, Paabo S, Hasegawa M (1998) Conflict among individual mitochondrial proteins in resolving the phylogeny of eutherian orders. J Mol Evol 47(3):307–322PubMedPubMedCentralCrossRefGoogle Scholar
  106. Capecchi MR (1967) Polypeptide chain termination in vitro: isolation of a release factor. Proc Natl Acad Sci USA 58(3):1144–1151PubMedPubMedCentralCrossRefGoogle Scholar
  107. Capuano F, Mulleder M, Kok R, Blom HJ, Ralser M (2014) Cytosine DNA methylation is found in Drosophila melanogaster but absent in Saccharomyces cerevisiae, Schizosaccharomyces pombe, and other yeast species. Anal Chem 86(8):3697–3702PubMedPubMedCentralCrossRefGoogle Scholar
  108. Cardon LR, Burge C, Clayton DA, Karlin S (1994) Pervasive CpG suppression in animal mitochondrial genomes. Proc Natl Acad Sci USA 91:3799–3803PubMedPubMedCentralCrossRefGoogle Scholar
  109. Carlini DB (2005) Context-dependent codon bias and messenger RNA longevity in the yeast transcriptome. Mol Biol Evol 22(6):1403–1411PubMedPubMedCentralCrossRefGoogle Scholar
  110. Carroll J, Fearnley IM, Shannon RJ, Hirst J, Walker JE (2003) Analysis of the subunit composition of complex I from bovine heart mitochondria. Mol Cell Proteomics 2(2):117–126PubMedPubMedCentralCrossRefGoogle Scholar
  111. Carullo M, Xia X (2008) An extensive study of mutation and selection on the wobble nucleotide in tRNA anticodons in fungal mitochondrial genomes. J Mol Evol 66(5):484–493PubMedPubMedCentralCrossRefGoogle Scholar
  112. Censini S, Lange C, Xiang Z, Crabtree JE, Ghiara P, Borodovsky M, Rappuoli R, Covacci A (1996) Cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Proc Natl Acad Sci USA 93(25):14648–14653PubMedPubMedCentralCrossRefGoogle Scholar
  113. Cesar Sanchez J, Padron G, Santana H, Herrera L (1998) Elimination of an HuIFN alpha 2b readthrough species, produced in Escherichia coli, by replacing its natural translational stop signal. J Biotechnol 63(3):179–186PubMedPubMedCentralCrossRefGoogle Scholar
  114. Chakrabarti S, Lanczycki CJ (2007) Analysis and prediction of functionally important sites in proteins. Protein Sci 16(1):4–13PubMedPubMedCentralCrossRefGoogle Scholar
  115. Chakraborty R (1977) Estimation of time of divergence from phylogenetic studies. Can J Genet Cytol 19:217–223PubMedPubMedCentralCrossRefGoogle Scholar
  116. Chambaud I, Heilig R, Ferris S, Barbe V, Samson D, Galisson F, Moszer I, Dybvig K, Wroblewski H, Viari A et al (2001) The complete genome sequence of the murine respiratory pathogen Mycoplasma pulmonis. Nucleic Acids Res 29(10):2145–2153PubMedPubMedCentralCrossRefGoogle Scholar
  117. Chan S-W, Egan P (2009) Effects of hepatitis C virus envelope glycoprotein unfolded protein response activation on translation and transcription. Arch Virol 154(10):1631–1640PubMedPubMedCentralCrossRefGoogle Scholar
  118. Chan PP, Lowe TM (2009) GtRNAdb: a database of transfer RNA genes detected in genomic sequence. Nucleic Acids Res 37(Database issue):D93–D97PubMedPubMedCentralCrossRefGoogle Scholar
  119. Chang SY, McGary EC, Chang S (1989) Methionine aminopeptidase gene of Escherichia coli is essential for cell growth. J Bacteriol 171(7):4071–4072PubMedPubMedCentralCrossRefGoogle Scholar
  120. Charig CR, Webb DR, Payne SR, Wickham JE (1986) Comparison of treatment of renal calculi by open surgery, percutaneous nephrolithotomy, and extracorporeal shockwave lithotripsy. Br Med J (Clin Res Ed) 292(6524):879–882CrossRefGoogle Scholar
  121. Chen JJ, Peck K, Hong TM, Yang SC, Sher YP, Shih JY, Wu R, Cheng JL, Roffler SR, Wu CW et al (2001) Global analysis of gene expression in invasion by a lung cancer model. Cancer Res 61(13):5223–5230PubMedGoogle Scholar
  122. Chen Q, Yan M, Cao Z, Li X, Zhang Y, Shi J, Feng GH, Peng H, Zhang X, Qian J et al (2016) Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science 351(6271):397–400PubMedPubMedCentralCrossRefGoogle Scholar
  123. Chilingaryan A, Gevorgyan N, Vardanyan A, Jones D, Szabo A (2002) Multivariate approach for selecting sets of differentially expressed genes. Math Biosci 176(1):59–69CrossRefPubMedGoogle Scholar
  124. Chithambaram S, Prabhakaran R, Xia X (2014a) Differential codon adaptation between dsDNA and ssDNA phages in escherichia coli. Mol Biol Evol 31(6):1606–1617PubMedPubMedCentralCrossRefGoogle Scholar
  125. Chithambaram S, Prabhakaran R, Xia X (2014b) The effect of mutation and selection on codon adaptation in escherichia coli bacteriophage. Genetics 197(1):301–315PubMedPubMedCentralCrossRefGoogle Scholar
  126. Cho RJ, Campbell MJ, Winzeler EA, Steinmetz L, Conway A, Wodicka L, Wolfsberg TG, Gabrielian AE, Landsman D, Lockhart DJ et al (1998) A genome-wide transcriptional analysis of the mitotic cell cycle. Mol Cell 2(1):65–73CrossRefPubMedGoogle Scholar
  127. Chou PY, Fasman GD (1978a) Empirical predictions of protein conformation. Annu Rev Biochem 47:251–276PubMedPubMedCentralCrossRefGoogle Scholar
  128. Chou PY, Fasman GD (1978b) Prediction of the secondary structure of proteins from their amino acid sequence. Adv Enzymol Relat Areas Mol Biol 47:45–148PubMedGoogle Scholar
  129. Chu C, Qu K, Zhong FL, Artandi SE, Chang HY (2011) Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Mol Cell 44(4):667–678PubMedPubMedCentralCrossRefGoogle Scholar
  130. Chu C, Quinn J, Chang HY (2012) Chromatin isolation by RNA purification (ChIRP). J Vis Exp 61:e3912Google Scholar
  131. Chuang SE, Daniels DL, Blattner FR (1993) Global regulation of gene expression in Escherichia coli. J Bacteriol 175(7):2026–2036PubMedPubMedCentralCrossRefGoogle Scholar
  132. Clark AT (2015) DNA methylation remodeling in vitro and in vivo. Curr Opin Genet Dev 34:82–87PubMedPubMedCentralCrossRefGoogle Scholar
  133. Claverie JM (1994) Some useful statistical properties of position-weight matrices. Comput Chem 18(3):287–294CrossRefPubMedGoogle Scholar
  134. Claverie JM, Audic S (1996) The statistical significance of nucleotide position-weight matrix matches. Comput Appl Biosci 12(5):431–439PubMedGoogle Scholar
  135. Clayton DA (1982) Replication of animal mitochondrial DNA. Cell 28(4):693–705PubMedPubMedCentralCrossRefGoogle Scholar
  136. Clayton DA (2000) Transcription and replication of mitochondrial DNA. Hum Reprod 15(Suppl 2):11–17PubMedPubMedCentralCrossRefGoogle Scholar
  137. Cocquet J, De Baere E, Gareil M, Pannetier M, Xia X, Fellous M, Veitia RA (2003) Structure, evolution and expression of the FOXL2 transcription unit. Cytogenet Genome Res 101:206–211PubMedPubMedCentralCrossRefGoogle Scholar
  138. Coessens B, Thijs G, Aerts S, Marchal K, De Smet F, Engelen K, Glenisson P, Moreau Y, Mathys J, De Moor B (2003) INCLUSive: a web portal and service registry for microarray and regulatory sequence analysis. Nucleic Acids Res 31(13):3468–3470PubMedPubMedCentralCrossRefGoogle Scholar
  139. Coghlan A, Wolfe KH (2000) Relationship of codon bias to mRNA concentration and protein length in Saccharomyces cerevisiae. Yeast 16(12):1131–1145PubMedPubMedCentralCrossRefGoogle Scholar
  140. Comeron JM, Aguade M (1998) An evaluation of measures of synonymous codon usage bias. J Mol Evol 47(3):268–274PubMedPubMedCentralCrossRefGoogle Scholar
  141. Correa P (1997) Helicobacter pylori as a pathogen and carcinogen. J Physiol Pharmacol 48(Suppl 4):19–24PubMedPubMedCentralGoogle Scholar
  142. Cottrell JS (1994) Protein identification by peptide mass fingerprinting. Pept Res 7(3):115–124PubMedPubMedCentralGoogle Scholar
  143. Cottrell JS, Sutton CW (1996) The identification of electrophoretically separated proteins by peptide mass fingerprinting. Methods Mol Biol 61:67–82PubMedPubMedCentralGoogle Scholar
  144. Covacci A, Falkow S, Berg DE, Rappuoli R (1997) Did the inheritance of a pathogenicity island modify the virulence of Helicobacter pylori? Trends Microbiol 5(5):205–208CrossRefPubMedGoogle Scholar
  145. Covell DG, Wallqvist A, Rabow AA, Thanki N (2003) Molecular classification of cancer: unsupervised self-organizing map analysis of gene expression microarray data. Mol Cancer Ther 2(3):317–332PubMedGoogle Scholar
  146. Cox SS, van der Giezen M, Tarr SJ, Crompton MR, Tovar J (2006) Evidence from bioinformatics, expression and inhibition studies of phosphoinositide-3 kinase signalling in Giardia intestinalis. BMC Microbiol 6:45PubMedPubMedCentralCrossRefGoogle Scholar
  147. Craigen WJ, Caskey CT (1986) Expression of peptide chain release factor 2 requires high-efficiency frameshift. Nature 322(6076):273–275PubMedPubMedCentralCrossRefGoogle Scholar
  148. Craigen WJ, Caskey CT (1987) The function, structure and regulation of E. coli peptide chain release factors. Biochimie 69(10):1031–1041PubMedPubMedCentralCrossRefGoogle Scholar
  149. Craigen WJ, Cook RG, Tate WP, Caskey CT (1985) Bacterial peptide chain release factors: conserved primary structure and possible frameshift regulation of release factor 2. Proc Natl Acad Sci USA 82(11):3616–3620PubMedPubMedCentralCrossRefGoogle Scholar
  150. Craigen WJ, Lee CC, Caskey CT (1990) Recent advances in peptide chain termination. Mol Microbiol 4(6):861–865PubMedPubMedCentralCrossRefGoogle Scholar
  151. Crick FH (1966) Codon—anticodon pairing: the wobble hypothesis. J Mol Biol 19(2):548–555PubMedPubMedCentralCrossRefGoogle Scholar
  152. Curran JF, Yarus M (1988) Use of tRNA suppressors to probe regulation of Escherichia coli release factor 2. J Mol Biol 203(1):75–83PubMedPubMedCentralCrossRefGoogle Scholar
  153. Czerwoniec A, Dunin-Horkawicz S, Purta E, Kaminska KH, Kasprzak JM, Bujnicki JM, Grosjean H, Rother K (2009) MODOMICS: a database of RNA modification pathways. 2008 update. Nucleic Acids Res 37(Database issue):D118–D121PubMedPubMedCentralCrossRefGoogle Scholar
  154. Danchin A (2002) The Delphic boat : what genomes tell us. Harvard University Press, Cambridge, MAGoogle Scholar
  155. David E, Tramontin T, Zemmel R (2009) Pharmaceutical R&D: the road to positive returns. Nat Rev Drug Discov 8(8):609–610CrossRefPubMedGoogle Scholar
  156. Davies J, Jones DS, Khorana HG (1966) A further study of misreading of codons induced by streptomycin and neomycin using ribopolynucleotides containing two nucleotides in alternating sequence as templates. J Mol Biol 18(1):48–57PubMedPubMedCentralCrossRefGoogle Scholar
  157. Dayhoff MO, Schwartz RM, Orcutt BC (1978) A model of evolutionary change in proteins. In: Dayhoff MO (ed) Atlas of protein sequence and structure. National Biomedical Research Foundation, Washington, DC, pp 345–352Google Scholar
  158. Delorenzi M, Speed T (2002) An HMM model for coiled-coil domains and a comparison with PSSM-based predictions. Bioinformatics 18(4):617–625CrossRefPubMedGoogle Scholar
  159. Deng R, Huang M, Wang J, Huang Y, Yang J, Feng J, Wang X (2006) PTreeRec: phylogenetic tree reconstruction based on genome BLAST distance. Comput Biol Chem 30(4):300–302CrossRefPubMedGoogle Scholar
  160. Deng W, Lee J, Wang H, Miller J, Reik A, Gregory PD, Dean A, Blobel GA (2012) Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor. Cell 149(6):1233–1244PubMedPubMedCentralCrossRefGoogle Scholar
  161. Deng Q, Ramskold D, Reinius B, Sandberg R (2014a) Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science 343(6167):193–196CrossRefPubMedGoogle Scholar
  162. Deng W, Rupon JW, Krivega I, Breda L, Motta I, Jahn KS, Reik A, Gregory PD, Rivella S, Dean A et al (2014b) Reactivation of developmentally silenced globin genes by forced chromatin looping. Cell 158(4):849–860PubMedPubMedCentralCrossRefGoogle Scholar
  163. Desper R, Gascuel O (2002) Fast and accurate phylogeny reconstruction algorithms based on the minimum-evolution principle. J Comput Biol 9(5):687–705CrossRefPubMedGoogle Scholar
  164. Dewey CN, Rogozin IB, Koonin EV (2006) Compensatory relationship between splice sites and exonic splicing signals depending on the length of vertebrate introns. BMC Genomics 7:311PubMedPubMedCentralCrossRefGoogle Scholar
  165. Diehn M, Eisen MB, Botstein D, Brown PO (2000) Large-scale identification of secreted and membrane-associated gene products using DNA microarrays. Nat Genet 25(1):58–62PubMedPubMedCentralCrossRefGoogle Scholar
  166. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21PubMedPubMedCentralCrossRefGoogle Scholar
  167. Dobzhansky T (1973) Nothing in biology makes sense except in the light of evolution. Am Biol Teach 35:125–129CrossRefGoogle Scholar
  168. Donly BC, Edgar CD, Adamski FM, Tate WP (1990) Frameshift autoregulation in the gene for Escherichia coli release factor 2: partly functional mutants result in frameshift enhancement. Nucleic Acids Res 18(22):6517–6522PubMedPubMedCentralCrossRefGoogle Scholar
  169. Doolittle RF, Hunkapiller MW, Hood LE, Devare SG, Robbins KC, Aaronson SA, Antoniades HN (1983) Simian sarcoma virus onc gene, v-sis, is derived from the gene (or genes) encoding a platelet-derived growth factor. Science 221(4607):275–277PubMedPubMedCentralCrossRefGoogle Scholar
  170. Dorokhov YL, Skulachev MV, Ivanov PA, Zvereva SD, Tjulkina LG, Merits A, Gleba YY, Hohn T, Atabekov JG (2002) Polypurine (A)-rich sequences promote cross-kingdom conservation of internal ribosome entry. Proc Natl Acad Sci USA 99(8):5301–5306PubMedPubMedCentralCrossRefGoogle Scholar
  171. dos Reis M, Savva R, Wernisch L (2004) Solving the riddle of codon usage preferences: a test for translational selection. Nucleic Acids Res 32(17):5036–5044 Print 2004PubMedPubMedCentralCrossRefGoogle Scholar
  172. Doudna JA, Sarnow P (2007) Translation initiation by viral internal ribosome entry sites. In: Mathews MB, Sonenberg N, Hershey J (eds) Translational control in biology and medicine. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 129–154Google Scholar
  173. Drews J, Ryser S (1997) The role of innovation in drug development. Nat Biotechnol 15(13):1318–1319PubMedPubMedCentralCrossRefGoogle Scholar
  174. Drouin G, Daoud H, Xia J (2008) Relative rates of synonymous substitutions in the mitochondrial, chloroplast and nuclear genomes of seed plants. Mol Phylogenet Evol 49(3):827–831PubMedPubMedCentralCrossRefGoogle Scholar
  175. Drummond A, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7(1):214PubMedPubMedCentralCrossRefGoogle Scholar
  176. Drummond A, Rodrigo AG (2000) Reconstructing genealogies of serial samples under the assumption of a molecular clock using serial-sample UPGMA. Mol Biol Evol 17(12):1807–1815PubMedCrossRefGoogle Scholar
  177. Drummond A, Forsberg R, Rodrigo AG (2001) The inference of stepwise changes in substitution rates using serial sequence samples. Mol Biol Evol 18(7):1365–1371PubMedCrossRefGoogle Scholar
  178. Drummond AJ, Pybus OG, Rambaut A, Forsberg R, Rodrigo AG (2003a) Measurably evolving populations. Trends Ecol Evol 18(9):481–488CrossRefGoogle Scholar
  179. Drummond A, Pybus OG, Rambaut A (2003b) Inference of viral evolutionary rates from molecular sequences. Adv Parasitol 54:331–358PubMedCrossRefGoogle Scholar
  180. Durbin R (1998) Biological sequence analysis : probabilistic models of proteins and nucleic acids. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  181. Duret L, Mouchiroud D (1999) Expression pattern and, surprisingly, gene length shape codon usage in Caenorhabditis, Drosophila, and Arabidopsis. Proc Natl Acad Sci USA 96(8):4482–4487PubMedCrossRefGoogle Scholar
  182. DuRose JB, Scheuner D, Kaufman RJ, Rothblum LI, Niwa M (2009) Phosphorylation of eukaryotic translation initiation factor 2alpha coordinates rRNA transcription and translation inhibition during endoplasmic reticulum stress. Mol Cell Biol 29(15):4295–4307PubMedPubMedCentralCrossRefGoogle Scholar
  183. Duval M, Korepanov A, Fuchsbauer O, Fechter P, Haller A, Fabbretti A, Choulier L, Micura R, Klaholz BP, Romby P et al (2013) Escherichia coli Ribosomal protein S1 unfolds structured mRNAs onto the ribosome for active translation initiation. PLoS Biol 11(12):e1001731PubMedPubMedCentralCrossRefGoogle Scholar
  184. Eckhardt F, Lewin J, Cortese R, Rakyan VK, Attwood J, Burger M, Burton J, Cox TV, Davies R, Down TA et al (2006) DNA methylation profiling of human chromosomes 6, 20 and 22. Nat Genet 38(12):1378–1385PubMedPubMedCentralCrossRefGoogle Scholar
  185. Eddy SR (1996) Hidden Markov models. Curr Opin Struct Biol 6(3):361–365PubMedPubMedCentralCrossRefGoogle Scholar
  186. Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14(9):755–763PubMedPubMedCentralCrossRefGoogle Scholar
  187. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797PubMedPubMedCentralCrossRefGoogle Scholar
  188. Edgar RC, Batzoglou S (2006) Multiple sequence alignment. Curr Opin Struct Biol 16(3):368–373PubMedCrossRefGoogle Scholar
  189. Efron B (1982) The jackknife, the bootstrap and other resampling plans. Society for Industrial and Applied Mathematics, PhiladelphiaCrossRefGoogle Scholar
  190. Ehnman M, Missiaglia E, Folestad E, Selfe J, Strell C, Thway K, Brodin B, Pietras K, Shipley J, Ostman A et al (2013) Distinct effects of ligand-induced PDGFRalpha and PDGFRbeta signaling in the human rhabdomyosarcoma tumor cell and stroma cell compartments. Cancer Res 73(7):2139–2149PubMedPubMedCentralCrossRefGoogle Scholar
  191. Ehrenberg M, Tenson T (2002) A new beginning of the end of translation. Nat Struct Biol 9(2):85–87PubMedPubMedCentralCrossRefGoogle Scholar
  192. Einstein A, Russell B, Dewey J, Millikan RA, Dreiser T, Wells HG, Nansen F, Jeans SJ, Babbitt I, Keith SA et al (1931) Living philosophies. Simon and Schuster, New YorkGoogle Scholar
  193. Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 95(25):14863–14868PubMedPubMedCentralCrossRefGoogle Scholar
  194. Elf J, Nilsson D, Tenson T, Ehrenberg M (2003) Selective charging of tRNA isoacceptors explains patterns of codon usage. Science 300(5626):1718–1722PubMedCrossRefGoogle Scholar
  195. Elroy-Stein O, Merrick W (2007) Translation initiation via cellular internal ribosome entry sites. In: Mathews MB, Sonenberg N, Hershey J (eds) Translational control in biology and medicine. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 155–172Google Scholar
  196. Engel E, Peskoff A, Kauffman GL Jr, Grossman MI (1984) Analysis of hydrogen ion concentration in the gastric gel mucus layer. Am J Phys 247(4 Pt 1):G321–G338Google Scholar
  197. Engelberg-Kulka H (1981) UGA suppression by normal tRNA Trp in Escherichia coli: codon context effects. Nucleic Acids Res 9(4):983–991PubMedPubMedCentralCrossRefGoogle Scholar
  198. Epstein CB, Butow RA (2000) Microarray technology – enhanced versatility, persistent challenge. Curr Opin Biotechnol 11(1):36–41PubMedPubMedCentralCrossRefGoogle Scholar
  199. Eswarappa SM, Potdar AA, Koch WJ, Fan Y, Vasu K, Lindner D, Willard B, Graham LM, DiCorleto PE, Fox PL (2014) Programmed translational readthrough generates antiangiogenic VEGF-Ax. Cell 157(7):1605–1618PubMedPubMedCentralCrossRefGoogle Scholar
  200. Evans T, Felsenfeld G, Reitman M (1990) Control of globin gene transcription. Annu Rev Cell Biol 6:95–124CrossRefPubMedGoogle Scholar
  201. Eyre-Walker A (1996) The close proximity of Escherichia coli genes: consequences for stop codon and synonymous codon use. J Mol Evol 42(2):73–78PubMedPubMedCentralCrossRefGoogle Scholar
  202. Eyre-Walker A, Bulmer M (1993) Reduced synonymous substitution rate at the start of enterobacterial genes. Nucleic Acids Res 21:4599–4603PubMedPubMedCentralCrossRefGoogle Scholar
  203. Ezzell C (2002) Proteins rule. Sci Am 286(4):40–47CrossRefPubMedGoogle Scholar
  204. Farazi TA, Waksman G, Gordon JI (2001) The biology and enzymology of protein N-myristoylation. J Biol Chem 276(43):39501–39504PubMedPubMedCentralCrossRefGoogle Scholar
  205. Farnham PJ, Platt T (1981) Rho-independent termination: dyad symmetry in DNA causes RNA polymerase to pause during transcription in vitro. Nucleic Acids Res 9(3):563–577PubMedPubMedCentralCrossRefGoogle Scholar
  206. Fasman GD, Chou PY (1974) Prediction of protein conformation: consequences and aspirations. In: Blout ER, Bovey FA, Goodman M, Latan N (eds) Peptides, polypeptides and proteins. Wiley, New York, pp 114–125Google Scholar
  207. Fatemi M, Hermann A, Pradhan S, Jeltsch A (2001) The activity of the murine DNA methyltransferase Dnmt1 is controlled by interaction of the catalytic domain with the N-terminal part of the enzyme leading to an allosteric activation of the enzyme after binding to methylated DNA. J Mol Biol 309(5):1189–1199PubMedPubMedCentralCrossRefGoogle Scholar
  208. Felsenstein J (1973) Maximum-likelihood and minimum-steps methods for estimating evolutionary trees from data on discrete characters. Syst Zool 22:240–249CrossRefGoogle Scholar
  209. Felsenstein J (1978a) Cases in which parsimony and compatibility methods will be positively misleading. Syst Zool 27:401–410CrossRefGoogle Scholar
  210. Felsenstein J (1978b) The number of evolutionary trees. Syst Zool 27:27–33CrossRefGoogle Scholar
  211. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376CrossRefPubMedGoogle Scholar
  212. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  213. Felsenstein J (2004) Inferring phylogenies. Sinauer, SunderlandGoogle Scholar
  214. Felsenstein J, Churchill GA (1996) A Hidden Markov Model approach to variation among sites in rate of evolution. Mol Biol Evol 13(1):93–104CrossRefPubMedGoogle Scholar
  215. Feng DF, Doolittle RF (1987) Progressive sequence alignment as a prerequisite to correct phylogenetic trees. J Mol Evol 25(4):351–360CrossRefPubMedGoogle Scholar
  216. Feng DF, Doolittle RF (1990) Progressive alignment and phylogenetic tree construction of protein sequences. Methods Enzymol 183:375–387PubMedPubMedCentralCrossRefGoogle Scholar
  217. Fernandez-Pinar R, Lo Sciuto A, Rossi A, Ranucci S, Bragonzi A, Imperi F (2015) In vitro and in vivo screening for novel essential cell-envelope proteins in Pseudomonas aeruginosa. Sci Rep 5:17593PubMedPubMedCentralCrossRefGoogle Scholar
  218. Fickett JW (1996) Quantitative discrimination of MEF2 sites. Mol Cell Biol 16(1):437–441PubMedPubMedCentralCrossRefGoogle Scholar
  219. Figeys D (2002) Adapting arrays and lab-on-a-chip technology for proteomics. Proteomics 2(4):373–382CrossRefPubMedGoogle Scholar
  220. Figeys D (2003a) Novel approaches to map protein interactions. Curr Opin Biotechnol 14(1):119–125CrossRefPubMedGoogle Scholar
  221. Figeys D (2003b) Proteomics in 2002: a year of technical development and wide-ranging applications. Anal Chem 75(12):2891–2905CrossRefPubMedGoogle Scholar
  222. Fisher RA (1926) The arrangement of field experiments. J Minist Agric 33:503–513Google Scholar
  223. Fisher RA (1936) The use of multiple measurements in taxonomic problems. Ann Eugenics 7:179–188CrossRefGoogle Scholar
  224. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416CrossRefGoogle Scholar
  225. Fitch WM, Margoliash E (1967) Construction of phylogenetic trees. Science 155:279–284PubMedPubMedCentralCrossRefGoogle Scholar
  226. Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM et al (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269(5223):496–512CrossRefPubMedPubMedCentralGoogle Scholar
  227. Fong TC, Emerson BM (1992) The erythroid-specific protein cGATA-1 mediates distal enhancer activity through a specialized beta-globin TATA box. Genes Dev 6(4):521–532CrossRefPubMedGoogle Scholar
  228. Forde CE, McCutchen-Maloney SL (2002) Characterization of transcription factors by mass spectrometry and the role of SELDI-MS. Mass Spectrom Rev 21(6):419–439PubMedPubMedCentralCrossRefGoogle Scholar
  229. Forrester WC, Epner E, Driscoll MC, Enver T, Brice M, Papayannopoulou T, Groudine M (1990) A deletion of the human beta-globin locus activation region causes a major alteration in chromatin structure and replication across the entire beta-globin locus. Genes Dev 4(10):1637–1649PubMedPubMedCentralCrossRefGoogle Scholar
  230. Frank C, Makkonen H, Dunlop TW, Matilainen M, Vaisanen S, Carlberg C (2005) Identification of pregnane X receptor binding sites in the regulatory regions of genes involved in bile acid homeostasis. J Mol Biol 346(2):505–519CrossRefPubMedGoogle Scholar
  231. Fraser CM, Gocayne JD, White O, Adams MD, Clayton RA, Fleischmann RD, Bult CJ, Kerlavage AR, Sutton G, Kelley JM et al (1995) The minimal gene complement of Mycoplasma genitalium. Science 270(5235):397–403CrossRefPubMedPubMedCentralGoogle Scholar
  232. Frederico LA, Kunkel TA, Shaw BR (1990) A sensitive genetic assay for the detection of cytosine deamination: determination of rate constants and the activation energy. Biochemistry (Mosc) 29(10):2532–2537CrossRefGoogle Scholar
  233. Frishman D, Mironov A, Mewes HW, Gelfand M (1998) Combining diverse evidence for gene recognition in completely sequenced bacterial genomes. Nucleic Acids Res 26(12):2941–2947PubMedPubMedCentralCrossRefGoogle Scholar
  234. Frolova LY, Tsivkovskii RY, Sivolobova GF, Oparina NY, Serpinsky OI, Blinov VM, Tatkov SI, Kisselev LL (1999) Mutations in the highly conserved GGQ motif of class 1 polypeptide release factors abolish ability of human eRF1 to trigger peptidyl-tRNA hydrolysis. RNA 5(8):1014–1020PubMedPubMedCentralCrossRefGoogle Scholar
  235. Frottin F, Martinez A, Peynot P, Mitra S, Holz RC, Giglione C, Meinnel T (2006) The proteomics of N-terminal methionine cleavage. Mol Cell Proteomics 5(12):2336–2349PubMedPubMedCentralCrossRefGoogle Scholar
  236. Furukawa R, Hachiya T, Ohmomo H, Shiwa Y, Ono K, Suzuki S, Satoh M, Hitomi J, Sobue K, Shimizu A (2016) Intraindividual dynamics of transcriptome and genome-wide stability of DNA methylation. Sci Rep 6:26424PubMedPubMedCentralCrossRefGoogle Scholar
  237. Futcher B, Latter GI, Monardo P, McLaughlin CS, Garrels JI (1999) A sampling of the yeast proteome. Mol Cell Biol 19(11):7357–7368PubMedPubMedCentralCrossRefGoogle Scholar
  238. Gaasterland T, Bekiranov S (2000) Making the most of microarray data [news]. Nat Genet 24(3):204–206PubMedPubMedCentralCrossRefGoogle Scholar
  239. Gallie DR, Tanguay R (1994) Poly(A) binds to initiation factors and increases cap-dependent translation in vitro. J Biol Chem 269(25):17166–17173PubMedPubMedCentralGoogle Scholar
  240. Gal-Mor O, Finlay BB (2006) Pathogenicity islands: a molecular toolbox for bacterial virulence. Cell Microbiol 8(11):1707–1719CrossRefPubMedGoogle Scholar
  241. Galtier N, Lobry JR (1997) Relationships between genomic G+C content, RNA secondary structures, and optimal growth temperature in prokaryotes. J Mol Evol 44(6):632–636CrossRefPubMedGoogle Scholar
  242. Gao L, Qi J (2007) Whole genome molecular phylogeny of large dsDNA viruses using composition vector method. BMC Evol Biol 7:41PubMedPubMedCentralCrossRefGoogle Scholar
  243. Gapp K, Jawaid A, Sarkies P, Bohacek J, Pelczar P, Prados J, Farinelli L, Miska E, Mansuy IM (2014) Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat Neurosci 17(5):667–669PubMedPubMedCentralCrossRefGoogle Scholar
  244. Gascuel O, Steel M (2006) Neighbor-joining revealed. Mol Biol Evol 23(11):1997–2000PubMedPubMedCentralCrossRefGoogle Scholar
  245. Ge Y, Sealfon SC, Speed TP (2008) Some step-down procedures controlling the false discovery rate under dependence. Stat Sin 18(3):881–904PubMedPubMedCentralGoogle Scholar
  246. Geller AI, Rich A (1980) A UGA termination suppression tRNATrp active in rabbit reticulocytes. Nature 283(5742):41–46PubMedPubMedCentralCrossRefGoogle Scholar
  247. Geman S, Geman D (1984) Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell 6:721–741CrossRefPubMedGoogle Scholar
  248. Ghaemmaghami S, Huh WK, Bower K, Howson RW, Belle A, Dephoure N, O’Shea EK, Weissman JS (2003) Global analysis of protein expression in yeast. Nature 425(6959):737–741PubMedPubMedCentralCrossRefGoogle Scholar
  249. Gibbs JB (2000) Mechanism-based target identification and drug discovery in cancer research. Science 287(5460):1969–1973CrossRefPubMedGoogle Scholar
  250. Giglione C, Vallon O, Meinnel T (2003) Control of protein life-span by N-terminal methionine excision. EMBO J 22(1):13–23PubMedPubMedCentralCrossRefGoogle Scholar
  251. Giglione C, Boularot A, Meinnel T (2004) Protein N-terminal methionine excision. Cell Mol Life Sci 61(12):1455–1474PubMedPubMedCentralCrossRefGoogle Scholar
  252. Gilbert WV (2010) Alternative ways to think about cellular internal ribosome entry. J Biol Chem 285(38):29033–29038PubMedPubMedCentralCrossRefGoogle Scholar
  253. Gilbert WV, Zhou K, Butler TK, Doudna JA (2007) Cap-independent translation is required for starvation-induced differentiation in yeast. Science 317(5842):1224–1227CrossRefPubMedGoogle Scholar
  254. Gillespie JH (1991) The causes of molecular evolution. Oxford University Press, OxfordGoogle Scholar
  255. Gojobori T, Li WH, Graur D (1982) Patterns of nucleotide substitution in pseudogenes and functional genes. J Mol Evol 18(5):360–369PubMedPubMedCentralCrossRefGoogle Scholar
  256. Gonzalez B, Ceciliani F, Galizzi A (2003) Growth at low temperature suppresses readthrough of the UGA stop codon during the expression of Bacillus subtilis flgM gene in Escherichia coli. J Biotechnol 101(2):173–180PubMedPubMedCentralCrossRefGoogle Scholar
  257. Gorodkin J, Heyer LJ, Brunak S, Stormo GD (1997) Displaying the information contents of structural RNA alignments: the structure logos. Comput Appl Biosci 13(6):583–586PubMedGoogle Scholar
  258. Goto M, Washio T, Tomita M (2000) Causal analysis of CpG suppression in the Mycoplasma genome. Microb Comp Genomics 5(1):51–58PubMedPubMedCentralCrossRefGoogle Scholar
  259. Gotoh O (1982) An improved algorithm for matching biological sequences. J Mol Biol 162(3):705–708CrossRefPubMedGoogle Scholar
  260. Gould SJ, Vrba ES (1982) Exaptation – a missing term in the science of form. Paleobiology 8:4–15CrossRefGoogle Scholar
  261. Gouy M (1987) Codon contexts in enterobacterial and coliphage genes. Mol Biol Evol 4(4):426–444PubMedPubMedCentralGoogle Scholar
  262. Gouy M, Gautier C (1982) Codon usage in bacteria: correlation with gene expressivity. Nucleic Acids Res 10:7055–7064PubMedPubMedCentralCrossRefGoogle Scholar
  263. Gowri-Shankar V, Rattray M (2007) A reversible jump method for Bayesian phylogenetic inference with a nonhomogeneous substitution model. Mol Biol Evol 24(6):1286–1299CrossRefPubMedGoogle Scholar
  264. Grahn AM, Butcher SJ, Bamford JKH, Bamford DH (2006) PRD1: dissecting the genome, structure and entry. In: Calendar R (ed) The bacteriophages. Oxford University Press, Oxford, pp 176–185Google Scholar
  265. Gramm J, Niedermeier R (2002) Breakpoint medians and breakpoint phylogenies: a fixed-parameter approach. Bioinformatics 18(Suppl 2):S128–S139PubMedPubMedCentralCrossRefGoogle Scholar
  266. Grantham R (1974) Amino acid difference formula to help explain protein evolution. Science 185:862–864CrossRefPubMedGoogle Scholar
  267. Graveley BR (2005) Mutually exclusive splicing of the insect Dscam pre-mRNA directed by competing intronic RNA secondary structures. Cell 123(1):65–73PubMedPubMedCentralCrossRefGoogle Scholar
  268. Grech B, Maetschke S, Mathews S, Timms P (2007) Genome-wide analysis of chlamydiae for promoters that phylogenetically footprint. Res Microbiol 158(8–9):685–693CrossRefPubMedGoogle Scholar
  269. Grigg GW (1996) Sequencing 5-methylcytosine residues by the bisulphite method. DNA Seq 6(4):189–198PubMedPubMedCentralCrossRefGoogle Scholar
  270. Grigg G, Clark S (1994) Sequencing 5-methylcytosine residues in genomic DNA. BioEssays 16(6):431–436PubMedPubMedCentralCrossRefGoogle Scholar
  271. Grosjean H, Marck C, de Crecy-Lagard V (2007) The various strategies of codon decoding in organisms of the three domains of life: evolutionary implications. Nucleic Acids Symp Ser (Oxf) 51:15–16CrossRefGoogle Scholar
  272. Grosjean H, de Crecy-Lagard V, Marck C (2010) Deciphering synonymous codons in the three domains of life: co-evolution with specific tRNA modification enzymes. FEBS Lett 584(2):252–264PubMedPubMedCentralCrossRefGoogle Scholar
  273. Grossi de Sa MF, Standart N, Martins de Sa C, Akhayat O, Huesca M, Scherrer K (1988) The poly(A)-binding protein facilitates in vitro translation of poly(A)-rich mRNA. Eur J Biochem 176(3):521–526PubMedPubMedCentralCrossRefGoogle Scholar
  274. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59(3):307–321CrossRefGoogle Scholar
  275. Gumbel EJ (1958) Statistics of extremes. Columbia University Press, New YorkGoogle Scholar
  276. Gupta SK, Kececioglu JD, Schaffer AA (1995) Improving the practical space and time efficiency of the shortest-paths approach to sum-of-pairs multiple sequence alignment. J Comput Biol 2(3):459–472CrossRefPubMedGoogle Scholar
  277. Gusfield D (1997) Algorithms on strings, trees, and sequences : computer science and computational biology. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  278. Gygi SP, Rochon Y, Franza BR, Aebersold R (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19(3):1720–1730PubMedPubMedCentralCrossRefGoogle Scholar
  279. Haas J, Park E-C, Seed B (1996) Codon usage limitation in the expression of HIV-1 envelope glycoprotein. Curr Biol 6(3):315–324PubMedPubMedCentralCrossRefGoogle Scholar
  280. Hacker J, Kaper JB (2000) Pathogenicity islands and the evolution of microbes. Annu Rev Microbiol 54:641–679CrossRefPubMedGoogle Scholar
  281. Hacker J, Blum-Oehler G, Muhldorfer I, Tschape H (1997) Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution. Mol Microbiol 23(6):1089–1097CrossRefPubMedGoogle Scholar
  282. Hamajima N, Goto Y, Nishio K, Tanaka D, Kawai S, Sakakibara H, Kondo T (2004) Helicobacter pylori eradication as a preventive tool against gastric cancer. Asian Pac J Cancer Prev 5(3):246–252PubMedPubMedCentralGoogle Scholar
  283. Hanada K, Suzuki Y, Gojobori T (2004) A large variation in the rates of synonymous substitution for RNA viruses and its relationship to a diversity of viral infection and transmission modes. Mol Biol Evol 21(6):1074–1080PubMedPubMedCentralCrossRefGoogle Scholar
  284. Hartigan JA (1975) Clustering algorithms. Wiley, New YorkGoogle Scholar
  285. Hasegawa M, Kishino H (1989) Heterogeneity of tempo and mode of mitochondrial DNA evolution among mammalian orders. Jpn J Genet 64(4):243–258PubMedPubMedCentralCrossRefGoogle Scholar
  286. Hasegawa M, Kishino H, Yano T (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22(2):160–174PubMedPubMedCentralCrossRefGoogle Scholar
  287. Haustead DJ, Stevenson A, Saxena V, Marriage F, Firth M, Silla R, Martin L, Adcroft KF, Rea S, Day PJ et al (2016) Transcriptome analysis of human ageing in male skin shows mid-life period of variability and central role of NF-kappaB. Sci Rep 6:26846PubMedPubMedCentralCrossRefGoogle Scholar
  288. Hayes WS, Borodovsky M (1998) How to interpret an anonymous bacterial genome: machine learning approach to gene identification. Genome Res 8(11):1154–1171PubMedPubMedCentralCrossRefGoogle Scholar
  289. Heath JR, Ribas A, Mischel PS (2016) Single-cell analysis tools for drug discovery and development. Nat Rev Drug Discov 15(3):204–216PubMedPubMedCentralCrossRefGoogle Scholar
  290. Hein J (1990) A unified approach to phylogenies and alignments. Methods Enzymol 183:625–644Google Scholar
  291. Hein J (1994) TreeAlign. Methods Mol Biol 25:349–364PubMedGoogle Scholar
  292. Hendy MD, Penny D (1982) Branch and bound algorithms to determine minimal evolutionary trees. Math Biosci 60:133–142CrossRefGoogle Scholar
  293. Hendy MD, Penny D (1989) A framework for the quantitative study of evolutionary trees. Syst Zool 38:297–309CrossRefGoogle Scholar
  294. Henikoff S, Henikoff JG (1992) Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci U S A 89:10915–10919PubMedPubMedCentralCrossRefGoogle Scholar
  295. Henz SR, Huson DH, Auch AF, Nieselt-Struwe K, Schuster SC (2005) Whole-genome prokaryotic phylogeny. Bioinformatics 21(10):2329–2335PubMedPubMedCentralCrossRefGoogle Scholar
  296. Herman JL, Challis CJ, Novak A, Hein J, Schmidler SC (2014) Simultaneous Bayesian estimation of alignment and phylogeny under a joint model of protein sequence and structure. Mol Biol Evol 31(9):2251–2266PubMedPubMedCentralCrossRefGoogle Scholar
  297. Hernández G (2008) Was the initiation of translation in early eukaryotes IRES-driven? Trends Biochem Sci 33(2):58PubMedPubMedCentralCrossRefGoogle Scholar
  298. Hernandez G, Vazquez-Pianzola P, Sierra JM, Rivera-Pomar R (2004) Internal ribosome entry site drives cap-independent translation of reaper and heat shock protein 70 mRNAs in Drosophila embryos. RNA 10(11):1783–1797PubMedPubMedCentralCrossRefGoogle Scholar
  299. Herniou EA, Luque T, Chen X, Vlak JM, Winstanley D, Cory JS, O’Reilly DR (2001) Use of whole genome sequence data to infer baculovirus phylogeny. J Virol 75(17):8117–8126PubMedPubMedCentralCrossRefGoogle Scholar
  300. Hertz GZ, Stormo GD (1999) Identifying DNA and protein patterns with statistically significant alignments of multiple sequences. Bioinformatics 15(7–8):563–577CrossRefPubMedGoogle Scholar
  301. Hertz GZ, Hartzell GW 3rd, Stormo GD (1990) Identification of consensus patterns in unaligned DNA sequences known to be functionally related. Comput Appl Biosci 6(2):81–92PubMedGoogle Scholar
  302. Hertzberg L, Izraeli S, Domany E (2007) STOP: searching for transcription factor motifs using gene expression. Bioinformatics 23(14):1737–1743CrossRefPubMedGoogle Scholar
  303. Hiard S, Maree R, Colson S, Hoskisson PA, Titgemeyer F, van Wezel GP, Joris B, Wehenkel L, Rigali S (2007) PREDetector: a new tool to identify regulatory elements in bacterial genomes. Biochem Biophys Res Commun 357(4):861–864CrossRefPubMedGoogle Scholar
  304. Hickson RE, Simon C, Perrey SW (2000) The performance of several multiple-sequence alignment programs in relation to secondary-structure features for an rRNA sequence. Mol Biol Evol 17(4):530–539CrossRefPubMedGoogle Scholar
  305. Higashi K, Kashiwagi K, Taniguchi S, Terui Y, Yamamoto K, Ishihama A, Igarashi K (2006) Enhancement of +1 frameshift by polyamines during translation of polypeptide release factor 2 in Escherichia coli. J Biol Chem 281(14):9527–9537CrossRefPubMedGoogle Scholar
  306. Higgins DG (1994) CLUSTAL V: multiple alignment of DNA and protein sequences. Methods Mol Biol 25:307–318PubMedGoogle Scholar
  307. Higgs PG, Attwood TK (2005) Bioinformatics and molecular evolution. Blackwell, MaldenGoogle Scholar
  308. Higgs PG, Ran W (2008) Coevolution of codon usage and tRNA genes leads to alternative stable states of biased codon usage. Mol Biol Evol 25(11):2279–2291PubMedPubMedCentralCrossRefGoogle Scholar
  309. Hiller K, Grote A, Scheer M, Munch R, Jahn D (2004) PrediSi: prediction of signal peptides and their cleavage positions. Nucleic Acids Res 32(Web Server issue):W375–W379PubMedPubMedCentralCrossRefGoogle Scholar
  310. Hirao I, Kimoto M (2010) Expansion of the genetic alphabet in nucleic acids by creating new base pairs. In: Mayer G (ed) The chemical biology of nucleic acids. Wiley, Chichester, pp 39–62CrossRefGoogle Scholar
  311. Hirsh D, Gold L (1971) Translation of the UGA triplet in vitro by tryptophan transfer RNA’s. J Mol Biol 58(2):459–468PubMedPubMedCentralCrossRefGoogle Scholar
  312. Hirst JD, Sternberg MJ (1991) Prediction of ATP/GTP-binding motif: a comparison of a perceptron type neural network and a consensus sequence method [corrected]. Protein Eng 4(6):615–623CrossRefPubMedGoogle Scholar
  313. Hoagland MB, Stephenson ML, Scott JF, Hecht LI, Zamecnik PC (1958) A soluble ribonucleic acid intermediate in protein synthesis. J Biol Chem 231(1):241–257PubMedPubMedCentralGoogle Scholar
  314. Hobolth A, Christensen OF, Mailund T, Schierup MH (2007) Genomic relationships and speciation times of human, chimpanzee, and gorilla inferred from a coalescent hidden Markov model. PLoS Genet 3(2):e7PubMedPubMedCentralCrossRefGoogle Scholar
  315. Hofacker IL (2003) Vienna RNA secondary structure server. Nucleic Acids Res 31(13):3429–3431PubMedPubMedCentralCrossRefGoogle Scholar
  316. Hofacker IL, Fekete M, Stadler PF (2002) Secondary structure prediction for aligned RNA sequences. J Mol Biol 319(5):1059–1066PubMedPubMedCentralCrossRefGoogle Scholar
  317. Hofer A, Steverding D, Chabes A, Brun R, Thelander L (2001) Trypanosoma brucei CTP synthetase: a target for the treatment of African sleeping sickness. Proc Natl Acad Sci U S A 98(11):6412–6416PubMedPubMedCentralCrossRefGoogle Scholar
  318. Hogeweg P, Hesper aB (1984) The alignment of sets of sequences and the construction of phylogenetic trees: an integrated method. J Mol Evol 20:175–186CrossRefPubMedGoogle Scholar
  319. Holmes I, Bruno WJ (2001) Evolutionary HMMs: a Bayesian approach to multiple alignment. Bioinformatics 17(9):803–820CrossRefPubMedGoogle Scholar
  320. Holstege FC, Jennings EG, Wyrick JJ, Lee TI, Hengartner CJ, Green MR, Golub TR, Lander ES, Young RA (1998) Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95(5):717–728 Transcriptomic data at Scholar
  321. Hou C, Zhao H, Tanimoto K, Dean A (2008) CTCF-dependent enhancer-blocking by alternative chromatin loop formation. Proc Natl Acad Sci U S A 105(51):20398–20403PubMedPubMedCentralCrossRefGoogle Scholar
  322. Hua S, Sun Z (2001) Support vector machine approach for protein subcellular localization prediction. Bioinformatics 17(8):721–728CrossRefPubMedGoogle Scholar
  323. Hudson RR (1992) Gene trees, species trees and the segregation of ancestral alleles. Genetics 131(2):509–513PubMedPubMedCentralGoogle Scholar
  324. Huelsenbeck JP, Larget B, Alfaro ME (2004) Bayesian phylogenetic model selection using reversible jump Markov chain Monte Carlo. Mol Biol Evol 21(6):1123–1133PubMedPubMedCentralCrossRefGoogle Scholar
  325. Hughes D (1987) Mutant forms of tufA and tufB independently suppress nonsense mutations. J Mol Biol 197(4):611–615CrossRefPubMedGoogle Scholar
  326. Hui A, de Boer HA (1987) Specialized ribosome system: preferential translation of a single mRNA species by a subpopulation of mutated ribosomes in Escherichia coli. Proc Natl Acad Sci U S A 84(14):4762–4766PubMedPubMedCentralCrossRefGoogle Scholar
  327. Hunt RH (2004) Will eradication of Helicobacter pylori infection influence the risk of gastric cancer? Am J Med 117(Suppl 5A):86S–91SPubMedPubMedCentralGoogle Scholar
  328. Hurst LD, Merchant AR (2001) High guanine-cytosine content is not an adaptation to high temperature: a comparative analysis amongst prokaryotes. Proc R Soc Lond B 268:493–497CrossRefGoogle Scholar
  329. Huynen M, Dandekar T, Bork P (1998) Differential genome analysis applied to the species-specific features of Helicobacter pylori. FEBS Lett 426(1):1–5PubMedPubMedCentralCrossRefGoogle Scholar
  330. Hwang S, Gou Z, Kuznetsov IB (2007) DP-Bind: a web server for sequence-based prediction of DNA-binding residues in DNA-binding proteins. Bioinformatics 23(5):634–636CrossRefPubMedGoogle Scholar
  331. Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform 11:119CrossRefGoogle Scholar
  332. Igarashi K, Kashiwagi K (2006) Polyamine Modulon in Escherichia coli: genes involved in the stimulation of cell growth by polyamines. J Biochem 139(1):11–16CrossRefPubMedPubMedCentralGoogle Scholar
  333. Ikemura T (1981a) Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes. J Mol Biol 146:1–21PubMedPubMedCentralCrossRefGoogle Scholar
  334. Ikemura T (1981b) Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes: a proposal for a synonymous codon choice that is optimal for the E coli translational system. J Mol Biol 151:389–409PubMedPubMedCentralCrossRefGoogle Scholar
  335. Ikemura T (1982) Correlation between the abundance of yeast transfer RNAs and the occurrence of the respective codons in protein genes. Differences in synonymous codon choice patterns of yeast and Escherichia coli with reference to the abundance of isoaccepting transfer RNAs. J Mol Biol 158(4):573–597PubMedPubMedCentralCrossRefGoogle Scholar
  336. Ikemura T (1985) Codon usage and tRNA content in unicellular and multicellular organisms. Mol Biol Evol 2:13–34PubMedPubMedCentralGoogle Scholar
  337. Ikemura T (1992) Correlation between codon usage and tRNA content in microorganisms. In: Hatfield DL, Lee BJ, Pirtle RM (eds) Transfer RNA in protein synthesis. CRC Press, Boca Raton, pp 87–111Google Scholar
  338. Ilkow CS, Mancinelli V, Beatch MD, Hobman TC (2008) Rubella virus capsid protein interacts with poly(a)-binding protein and inhibits translation. J Virol 82(9):4284–4294PubMedPubMedCentralCrossRefGoogle Scholar
  339. Ingolia NT (2010) Genome-wide translational profiling by ribosome footprinting. Methods Enzymol 470:119–142CrossRefPubMedGoogle Scholar
  340. Ingolia NT (2014) Ribosome profiling: new views of translation, from single codons to genome scale. Nat Rev Genet 15(3):205–213CrossRefPubMedGoogle Scholar
  341. Ingolia NT (2016) Ribosome footprint profiling of translation throughout the Genome. Cell 165(1):22–33PubMedPubMedCentralCrossRefGoogle Scholar
  342. Ingolia NT, Ghaemmaghami S, Newman JRS, Weissman JS (2009) Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324(5924):218–223PubMedPubMedCentralCrossRefGoogle Scholar
  343. Ingolia NT, Lareau LF, Weissman JS (2011) Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell 147(4):789–802PubMedPubMedCentralCrossRefGoogle Scholar
  344. Ingolia NT, Brar GA, Stern-Ginossar N, Harris MS, Talhouarne GJ, Jackson SE, Wills MR, Weissman JS (2014) Ribosome profiling reveals pervasive translation outside of annotated protein-coding genes. Cell Rep 8(5):1365–1379PubMedPubMedCentralCrossRefGoogle Scholar
  345. Ingram VM (1956) A specific chemical difference between the globins of normal human and sickle-cell anaemia haemoglobin. Nature 178(4537):792–794CrossRefPubMedGoogle Scholar
  346. Ingram VM (1957) Gene mutations in human haemoglobin: the chemical difference between normal and sickle cell haemoglobin. Nature 180(4581):326–328CrossRefPubMedGoogle Scholar
  347. Ingrosso D, Perna AF (2009) Epigenetics in hyperhomocysteinemic states. A special focus on uremia. Biochim Biophys Acta 1790(9):892–899PubMedPubMedCentralCrossRefGoogle Scholar
  348. Ingrosso D, Cimmino A, Perna AF, Masella L, De Santo NG, De Bonis ML, Vacca M, D’Esposito M, D’Urso M, Galletti P et al (2003) Folate treatment and unbalanced methylation and changes of allelic expression induced by hyperhomocysteinaemia in patients with uraemia. Lancet 361(9370):1693–1699PubMedPubMedCentralCrossRefGoogle Scholar
  349. Ink BS, Pickup DJ (1990) Vaccinia virus directs the synthesis of early mRNAs containing 5′ poly(A) sequences. Proc Natl Acad Sci U S A 87(4):1536–1540PubMedPubMedCentralCrossRefGoogle Scholar
  350. Insinga A, Minucci S, Pelicci PG (2005a) Mechanisms of selective anticancer action of histone deacetylase inhibitors. Cell Cycle 4(6):741–743PubMedPubMedCentralCrossRefGoogle Scholar
  351. Insinga A, Monestiroli S, Ronzoni S, Gelmetti V, Marchesi F, Viale A, Altucci L, Nervi C, Minucci S, Pelicci PG (2005b) Inhibitors of histone deacetylases induce tumor-selective apoptosis through activation of the death receptor pathway. Nat Med 11(1):71–76PubMedPubMedCentralCrossRefGoogle Scholar
  352. Ito T, Bulger M, Pazin MJ, Kobayashi R, Kadonaga JT (1997) ACF, an ISWI-containing and ATP-utilizing chromatin assembly and remodeling factor. Cell 90(1):145–155PubMedPubMedCentralCrossRefGoogle Scholar
  353. Ito K, Uno M, Nakamura Y (2000) A tripeptide ‘anticodon’ deciphers stop codons in messenger RNA. Nature 403(6770):680–684PubMedPubMedCentralCrossRefGoogle Scholar
  354. Jackson RJ, Hellen CU, Pestova TV (2010) The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 11(2):113–127PubMedPubMedCentralCrossRefGoogle Scholar
  355. Jacob F (1982) The possible and the actual. University of Washington Press, Seattle, p 70Google Scholar
  356. Jacob F (1988) The statue within: an autobiography. Basic Books, Inc., New YorkGoogle Scholar
  357. Jacob F, Monod J (1961) Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3:318–356CrossRefPubMedPubMedCentralGoogle Scholar
  358. Jacobson A, Favreau M (1983) Possible involvement of poly(A) in protein synthesis. Nucleic Acids Res 11(18):6353–6368PubMedPubMedCentralCrossRefGoogle Scholar
  359. James P, Quadroni M, Carafoli E, Gonnet G (1994) Protein identification in DNA databases by peptide mass fingerprinting. Protein Sci 3(8):1347–1350PubMedPubMedCentralCrossRefGoogle Scholar
  360. Jan E, Sarnow P (2002) Factorless ribosome assembly on the internal ribosome entry site of cricket paralysis virus. J Mol Biol 324(5):889–902PubMedPubMedCentralCrossRefGoogle Scholar
  361. Jan E, Thompson SR, Wilson JE, Pestova TV, Hellen CU, Sarnow P (2001) Initiator Met-tRNA-independent translation mediated by an internal ribosome entry site element in cricket paralysis virus-like insect viruses. Cold Spring Harb Symp Quant Biol 66:285–292PubMedPubMedCentralCrossRefGoogle Scholar
  362. Janin L, Schulz-Trieglaff O, Cox AJ (2014) BEETL-fastq: a searchable compressed archive for DNA reads. Bioinformatics 30(19):2796–2801PubMedPubMedCentralCrossRefGoogle Scholar
  363. Jank P, Shindo-Okada N, Nishimura S, Gross HJ (1977) Rabbit liver tRNA1Val:I. Primary structure and unusual codon recognition. Nucleic Acids Res 4(6):1999–2008PubMedPubMedCentralCrossRefGoogle Scholar
  364. Jayaswal V, Jermiin LS, Robinson J (2005) Estimation of phylogeny using a general markov model. Evol Bioinform Online 1:62–80CrossRefGoogle Scholar
  365. Jenkins GM, Holmes EC (2003) The extent of codon usage bias in human RNA viruses and its evolutionary origin. Virus Res 92(1):1–7PubMedPubMedCentralCrossRefGoogle Scholar
  366. Jensen JL, Hein J (2005) Gibbs sampler for statistical multiple alignment. Stat Sin 15:889–907Google Scholar
  367. Jia W, Higgs PG (2008) Codon usage in mitochondrial genomes: distinguishing context-dependent mutation from translational selection. Mol Biol Evol 25(2):339–351PubMedPubMedCentralCrossRefGoogle Scholar
  368. Jin P, Alisch RS, Warren ST (2004a) RNA and microRNAs in fragile X mental retardation. Nat Cell Biol 6(11):1048–1053PubMedPubMedCentralCrossRefGoogle Scholar
  369. Jin VX, Leu YW, Liyanarachchi S, Sun H, Fan M, Nephew KP, Huang TH, Davuluri RV (2004b) Identifying estrogen receptor alpha target genes using integrated computational genomics and chromatin immunoprecipitation microarray. Nucleic Acids Res 32(22):6627–6635PubMedPubMedCentralCrossRefGoogle Scholar
  370. Jin VX, O’Geen H, Iyengar S, Green R, Farnham PJ (2007) Identification of an OCT4 and SRY regulatory module using integrated computational and experimental genomics approaches. Genome Res 17(6):807–817PubMedPubMedCentralCrossRefGoogle Scholar
  371. Johnston TC, Parker J (1985) Streptomycin-induced, third-position misreading of the genetic code. J Mol Biol 181(2):313–315PubMedPubMedCentralCrossRefGoogle Scholar
  372. Johnston TC, Borgia PT, Parker J (1984) Codon specificity of starvation induced misreading. Mol Gen Genet MGG 195(3):459–465PubMedPubMedCentralCrossRefGoogle Scholar
  373. Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282PubMedPubMedCentralGoogle Scholar
  374. Jorgensen F, Adamski FM, Tate WP, Kurland CG (1993) Release factor-dependent false stops are infrequent in Escherichia coli. J Mol Biol 230(1):41–50PubMedPubMedCentralCrossRefGoogle Scholar
  375. Josse J, Kaiser AD, Kornberg A (1961) Enzymatic synthesis of deoxyribonucleic acid VII. Frequencies of nearest neighbor base-sequences in deoxyribonucleic acid. J Biol Chem 236:864–875PubMedPubMedCentralGoogle Scholar
  376. Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic, New York, pp 21–123CrossRefGoogle Scholar
  377. Kaishima M, Ishii J, Matsuno T, Fukuda N, Kondo A (2016) Expression of varied GFPs in Saccharomyces cerevisiae: codon optimization yields stronger than expected expression and fluorescence intensity. Sci Rep 6:35932PubMedPubMedCentralCrossRefGoogle Scholar
  378. Kamalakaran S, Radhakrishnan SK, Beck WT (2005) Identification of estrogen-responsive genes using a genome-wide analysis of promoter elements for transcription factor binding sites. J Biol Chem 280(22):21491–21497CrossRefPubMedGoogle Scholar
  379. Kanehisa M (2013) Molecular network analysis of diseases and drugs in KEGG. Methods Mol Biol 939:263–275PubMedPubMedCentralCrossRefGoogle Scholar
  380. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M (2016) KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 44(D1):D457–D462PubMedPubMedCentralCrossRefGoogle Scholar
  381. Kaneko T, Tanaka A, Sato S, Kotani H, Sazuka T, Miyajima N, Sugiura M, Tabata S (1995) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. I. Sequence features in the 1 Mb region from map positions 64% to 92% of the genome. DNA Res 2(4):153–166 191-8CrossRefPubMedGoogle Scholar
  382. Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E, Nakamura Y, Miyajima N, Hirosawa M, Sugiura M, Sasamoto S et al (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3(3):109–136CrossRefPubMedGoogle Scholar
  383. Karlin S, Burge C (1995) Dinucleotide relative abundance extremes: a genomic signature. TIG 11(7):283–290PubMedPubMedCentralCrossRefGoogle Scholar
  384. Katsafanas GC, Moss B (2007a) Colocalization of transcription and translation within cytoplasmic poxvirus factories coordinates viral expression and subjugates host functions. Cell Host Microbe 2(4):221PubMedPubMedCentralCrossRefGoogle Scholar
  385. Karlin S, Mrazek J (1996) What drives codon choices in human genes. J Mol Biol 262:459–472CrossRefPubMedGoogle Scholar
  386. Kass RE, Raftery AE (1995) Bayes factors. J Am Stat Assoc 90(430):773–795CrossRefGoogle Scholar
  387. Katoh K, Toh H (2008) Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 9(4):286–298CrossRefPubMedGoogle Scholar
  388. Katoh K, Toh H (2010) Parallelization of the MAFFT multiple sequence alignment program. Bioinformatics 26(15):1899–1900PubMedPubMedCentralCrossRefGoogle Scholar
  389. Katoh K, Kuma K, Toh H, Miyata T (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 33(2):511–518PubMedPubMedCentralCrossRefGoogle Scholar
  390. Katoh K, Asimenos G, Toh H (2009) Multiple alignment of DNA sequences with MAFFT. Methods Mol Biol 537:39–64PubMedPubMedCentralCrossRefGoogle Scholar
  391. Katsafanas GC, Moss B (2007b) Colocalization of transcription and translation within cytoplasmic poxvirus factories coordinates viral expression and subjugates host functions. Cell Host Microbe 2(4):221PubMedPubMedCentralCrossRefGoogle Scholar
  392. Kawashima T, Douglass S, Gabunilas J, Pellegrini M, Chanfreau GF (2014) Widespread use of non-productive alternative splice sites in Saccharomyces cerevisiae. PLoS Genet 10(4):e1004249PubMedPubMedCentralCrossRefGoogle Scholar
  393. Kazan K (2003) Alternative splicing and proteome diversity in plants: the tip of the iceberg has just emerged. Trends Plant Sci 8(10):468–471PubMedPubMedCentralCrossRefGoogle Scholar
  394. Keeling PJ, Doolittle WF (1996) A non-canonical genetic code in an early diverging eukaryotic lineage. EMBO J 15(9):2285–2290PubMedPubMedCentralCrossRefGoogle Scholar
  395. Kersulyte D, Chalkauskas H, Berg DE (1999) Emergence of recombinant strains of Helicobacter pylori during human infection. Mol Microbiol 31(1):31–43PubMedPubMedCentralCrossRefGoogle Scholar
  396. Kim H, Park H (2004) Prediction of protein relative solvent accessibility with support vector machines and long-range interaction 3D local descriptor. Proteins 54(3):557–562CrossRefPubMedGoogle Scholar
  397. Kim DW, Lee KH, Lee D (2005) Detecting clusters of different geometrical shapes in microarray gene expression data. Bioinformatics 21(9):1927–1934CrossRefPubMedGoogle Scholar
  398. Kimura M (1968) Evolutionary rate at the molecular level. Nature 217:624–626PubMedPubMedCentralCrossRefGoogle Scholar
  399. Kimura M (1977) Preponderance of synonymous changes as evidence for the neutral theory of molecular evolution. Nature 267:275–276PubMedPubMedCentralCrossRefGoogle Scholar
  400. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120PubMedPubMedCentralCrossRefGoogle Scholar
  401. Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  402. Kimura M, Ohta T (1972) On the stochastic model for estimation of mutational distance between homologous proteins. J Mol Evol 2:87–90PubMedPubMedCentralCrossRefGoogle Scholar
  403. King MC, Jukes TH (1969) Non-Darwinian evolution. Science 164:788–798PubMedPubMedCentralCrossRefGoogle Scholar
  404. Kingsford C, Patro R (2015) Reference-based compression of short-read sequences using path encoding. Bioinformatics 31(12):1920–1928PubMedPubMedCentralCrossRefGoogle Scholar
  405. Kioussis D, Vanin E, deLange T, Flavell RA, Grosveld FG (1983) Beta-globin gene inactivation by DNA translocation in gamma beta-thalassaemia. Nature 306(5944):662–666CrossRefPubMedGoogle Scholar
  406. Kishino H, Hasegawa M (1989) Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. J Mol Evol 29:170–179CrossRefPubMedGoogle Scholar
  407. Kishino H, Hasegawa M (1990) Converting distance to time: application to human evolution. Methods Enzymol 183:550–570PubMedPubMedCentralCrossRefGoogle Scholar
  408. Kjer KM (1995) Use of ribosomal-RNA secondary structure in phylogenetic studies to identify homologous positions – an example of alignment and data presentation from the frogs. Mol Phylogenet Evol 4(3):314–330CrossRefPubMedGoogle Scholar
  409. Kliman RM, Bernal CA (2005) Unusual usage of AGG and TTG codons in humans and their viruses. Gene 352:92PubMedPubMedCentralCrossRefGoogle Scholar
  410. Kobayashi H, Akitomi J, Fujii N, Kobayashi K, Altaf-Ul-Amin M, Kurokawa K, Ogasawara N, Kanaya S (2007) The entire organization of transcription units on the Bacillus subtilis genome. BMC Genomics 8:197PubMedPubMedCentralCrossRefGoogle Scholar
  411. Kodama Y, Shumway M, Leinonen R (2012) The sequence read archive: explosive growth of sequencing data. Nucleic Acids Res 40(Database issue):D54–D56CrossRefPubMedGoogle Scholar
  412. Kohonen T (2001) Self-organizing maps. Springer, BerlinCrossRefGoogle Scholar
  413. Komar AA, Hatzoglou M (2005) Internal ribosome entry sites in cellular mRNAs: mystery of their existence. J Biol Chem 280(25):23425–23428PubMedPubMedCentralCrossRefGoogle Scholar
  414. Korenke GC, Fuchs S, Krasemann E, Doerr HG, Wilichowski E, Hunneman DH, Hanefeld F (1996) Cerebral adrenoleukodystrophy (ALD) in only one of monozygotic twins with an identical ALD genotype. Ann Neurol 40(2):254–257PubMedPubMedCentralCrossRefGoogle Scholar
  415. Korkmaz G, Holm M, Wiens T, Sanyal S (2014) Comprehensive analysis of stop codon usage in bacteria and its correlation with release factor abundance. J Biol Chem 289(44):30334–30342PubMedPubMedCentralCrossRefGoogle Scholar
  416. Kornblihtt AR (2005) Promoter usage and alternative splicing. Curr Opin Cell Biol 17(3):262–268PubMedPubMedCentralCrossRefGoogle Scholar
  417. Kozak M (1978) How do eucaryotic ribosomes select initiation regions in messenger RNA? Cell 15(4):1109–1123PubMedPubMedCentralCrossRefGoogle Scholar
  418. Kozak M (1980a) Evaluation of the “scanning model” for initiation of protein synthesis in eucaryotes. Cell 22(1 Pt 1):7–8PubMedPubMedCentralCrossRefGoogle Scholar
  419. Kozak M (1980b) Influence of mRNA secondary structure on binding and migration of 40S ribosomal subunits. Cell 19(1):79–90PubMedPubMedCentralCrossRefGoogle Scholar
  420. Kozak M (1981) Possible role of flanking nucleotides in recognition of the AUG initiator codon by eukaryotic ribosomes. Nucleic Acids Res 9(20):5233–5252PubMedPubMedCentralCrossRefGoogle Scholar
  421. Kozak M (1986) Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44(2):283–292PubMedPubMedCentralCrossRefGoogle Scholar
  422. Kozak M (1991) Effects of long 5′ leader sequences on initiation by eukaryotic ribosomes in vitro. Gene Expr 1(2):117–125PubMedGoogle Scholar
  423. Kozak M (1997) Recognition of AUG and alternative initiator codons is augmented by G in position +4 but is not generally affected by the nucleotides in positions +5 and +6. EMBO J 16(9):2482–2492PubMedPubMedCentralCrossRefGoogle Scholar
  424. Kozak M (1999) Initiation of translation in prokaryotes and eukaryotes. Gene 234(2):187–208CrossRefPubMedGoogle Scholar
  425. Kozak M (2005) A second look at cellular mRNA sequences said to function as internal ribosome entry sites. Nucleic Acids Res 33(20):6593–6602PubMedPubMedCentralCrossRefGoogle Scholar
  426. Kozak M (2007) Some thoughts about translational regulation: forward and backward glances. J Cell Biochem 102(2):280–290PubMedPubMedCentralCrossRefGoogle Scholar
  427. Krasemann EW, Meier V, Korenke GC, Hunneman DH, Hanefeld F (1996) Identification of mutations in the ALD-gene of 20 families with adrenoleukodystrophy/adrenomyeloneuropathy. Hum Genet 97(2):194–197PubMedPubMedCentralCrossRefGoogle Scholar
  428. Kreutzer DA, Essigmann JM (1998) Oxidized, deaminated cytosines are a source of C --> T transitions in vivo. Proc Natl Acad Sci U S A 95(7):3578–3582PubMedPubMedCentralCrossRefGoogle Scholar
  429. Krogh A, Mian IS, Haussler D (1994) A hidden Markov model that finds genes in E. coli DNA. Nucleic Acids Res 22(22):4768–4778PubMedPubMedCentralCrossRefGoogle Scholar
  430. Kudla G, Murray AW, Tollervey D, Plotkin JB (2009) Coding-sequence determinants of gene expression in escherichia coli. Science 324(5924):255–258PubMedPubMedCentralCrossRefGoogle Scholar
  431. Kullback S (1959) Information theory and statistics. Wiley, New YorkGoogle Scholar
  432. Kullback S (1987) The Kullback-Leibler distance. Am Stat 41:340–341Google Scholar
  433. Kullback S, Leibler RA (1951) On information and sufficiency. Ann Math Stat 22:79–86CrossRefGoogle Scholar
  434. Kumar S, Filipski A (2007) Multiple sequence alignment: in pursuit of homologous DNA positions. Genome Res 17(2):127–135PubMedPubMedCentralCrossRefGoogle Scholar
  435. Kumar KK, Shelokar PS (2008) An SVM method using evolutionary information for the identification of allergenic proteins. Bioinformation 2(6):253–256PubMedPubMedCentralCrossRefGoogle Scholar
  436. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874PubMedPubMedCentralCrossRefGoogle Scholar
  437. Kungulovski G, Jeltsch A (2016) Epigenome editing: state of the art, concepts, and perspectives. Trends Genet 32(2):101–113PubMedPubMedCentralCrossRefGoogle Scholar
  438. Kurland CG (1987) Strategies for efficiency and accuracy in gene expression. Trends Biochem Sci 12:126CrossRefGoogle Scholar
  439. Kutlar A (2007) Sickle cell disease: a multigenic perspective of a single gene disorder. Hemoglobin 31(2):209–224CrossRefPubMedGoogle Scholar
  440. Kuznetsov IB, Gou Z, Li R, Hwang S (2006) Using evolutionary and structural information to predict DNA-binding sites on DNA-binding proteins. Proteins 64(1):19–27CrossRefPubMedGoogle Scholar
  441. Kypr J, Mrazek JAN (1987) Unusual codon usage of HIV. Nature 327(6117):20PubMedPubMedCentralCrossRefGoogle Scholar
  442. Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132CrossRefPubMedPubMedCentralGoogle Scholar
  443. Lacerda R, Menezes J, Romao L (2016) More than just scanning: the importance of cap-independent mRNA translation initiation for cellular stress response and cancer. Cell Mol Life Sci 74(9):1659–1680PubMedPubMedCentralCrossRefGoogle Scholar
  444. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nat Biotechnol 227:680–685Google Scholar
  445. Lake JA (1994) Reconstructing evolutionary trees from DNA and protein sequences: paralinear distances. Proc Natl Acad Sci U S A 91:1455–1459PubMedPubMedCentralCrossRefGoogle Scholar
  446. Lamendola DE, Duan Z, Yusuf RZ, Seiden MV (2003) Molecular description of evolving paclitaxel resistance in the SKOV-3 human ovarian carcinoma cell line. Cancer Res 63(9):2200–2205PubMedGoogle Scholar
  447. Lamond AI (1988) RNA editing and the mysterious undercover genes of trypanosomatid mitochondria. Trends Biochem Sci 13(8):283–284CrossRefPubMedGoogle Scholar
  448. Lanave C, Preparata G, Saccone C, Serio G (1984) A new method for calculating evolutionary substitution rates. J Mol Evol 20(1):86–93PubMedPubMedCentralCrossRefGoogle Scholar
  449. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W et al (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921PubMedPubMedCentralCrossRefGoogle Scholar
  450. Lang BF, Burger G, O’Kelly CJ, Cedergren R, Golding GB, Lemieux C, Sankoff D, Turmel M, Gray MW (1997) An ancestral mitochondrial DNA resembling a eubacterial genome in miniature. Nature 387(6632):493–497PubMedPubMedCentralCrossRefGoogle Scholar
  451. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359PubMedPubMedCentralCrossRefGoogle Scholar
  452. Langmead B, Schatz MC, Lin J, Pop M, Salzberg SL (2009a) Searching for SNPs with cloud computing. Genome Biol 10(11):R134PubMedPubMedCentralCrossRefGoogle Scholar
  453. Langmead B, Trapnell C, Pop M, Salzberg SL (2009b) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10(3):R25PubMedPubMedCentralCrossRefGoogle Scholar
  454. Langmead B, Hansen KD, Leek JT (2010) Cloud-scale RNA-sequencing differential expression analysis with Myrna. Genome Biol 11(8):R83PubMedPubMedCentralCrossRefGoogle Scholar
  455. Lawrence CE, Altschul SF, Boguski MS, Liu JS, Neuwald AF, Wootton JC (1993) Detecting subtle sequence signals: a Gibbs sampling strategy for multiple alignment. Science 262(5131):208–214PubMedPubMedCentralCrossRefGoogle Scholar
  456. Lee C, Wang Q (2005) Bioinformatics analysis of alternative splicing. Brief Bioinform 6(1):23–33PubMedPubMedCentralCrossRefGoogle Scholar
  457. Leinonen R, Sugawara H, Shumway M (2011) The sequence read archive. Nucleic Acids Res 39(Database):D19–D21PubMedPubMedCentralCrossRefGoogle Scholar
  458. Lemay DG, Hwang DH (2006) Genome-wide identification of peroxisome proliferator response elements using integrated computational genomics. J Lipid Res 47(7):1583–1587CrossRefPubMedGoogle Scholar
  459. Lesk AM (2004) Introduction to protein science: architecture, function and genomics. Oxford University Press, New YorkGoogle Scholar
  460. Li CC (1976) First course in population genetics. The Boxwood Press, Pacific GroveGoogle Scholar
  461. Li W-H (1983) Evolution of duplicate genes and pseudogenes. Sinauer, SunderlandGoogle Scholar
  462. Li W-H (1997) Molecular evolution. Sinauer, SunderlandGoogle Scholar
  463. Li X, Chang YH (1995) Amino-terminal protein processing in Saccharomyces cerevisiae is an essential function that requires two distinct methionine aminopeptidases. Proc Natl Acad Sci U S A 92(26):12357–12361PubMedPubMedCentralCrossRefGoogle Scholar
  464. Li GL, Leong TY (2005) Feature selection for the prediction of translation initiation sites. Genomics Proteomics Bioinformatics 3(2):73–83PubMedPubMedCentralCrossRefGoogle Scholar
  465. Li W-H, Tanimura M (1987) The molecular clock runs more slowly in man than in apes and monkeys. Nature 326:93–96PubMedPubMedCentralCrossRefGoogle Scholar
  466. Li WH, Wu CI (1987) Rates of nucleotide substitution are evidently higher in rodents than in man. Mol Biol Evol 4(1):74–82PubMedPubMedCentralGoogle Scholar
  467. Li WH, Gojobori T, Nei M (1981) Pseudogenes as a paradigm of neutral evolution. Nature 292(5820):237–239PubMedPubMedCentralCrossRefGoogle Scholar
  468. Li W-H, Wolfe KH, Sourdis J, Sharp PM (1987) Reconstruction of phylogenetic trees and estimation of divergence times under nonconstant rates of evolution. Cold Spring Harb Symp Quant Biol 52:847–856PubMedPubMedCentralCrossRefGoogle Scholar
  469. Li F, Ge P, Hui WH, Atanasov I, Rogers K, Guo Q, Osato D, Falick AM, Zhou ZH, Simpson L (2009) Structure of the core editing complex (L-complex) involved in uridine insertion/deletion RNA editing in trypanosomatid mitochondria. Proc Natl Acad Sci U S A 106(30):12306–12310PubMedPubMedCentralCrossRefGoogle Scholar
  470. Liang KC, Wang X, Anastassiou D (2008) A profile-based deterministic sequential Monte Carlo algorithm for motif discovery. Bioinformatics 24(1):46–55CrossRefPubMedGoogle Scholar
  471. Liberman N, Gandin V, Svitkin YV, David M, Virgili G, Jaramillo M, Holcik M, Nagar B, Kimchi A, Sonenberg N (2015) DAP5 associates with eIF2beta and eIF4AI to promote Internal Ribosome Entry Site driven translation. Nucleic Acids Res 43(7):3764–3775PubMedPubMedCentralCrossRefGoogle Scholar
  472. Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO et al (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326(5950):289–293PubMedPubMedCentralCrossRefGoogle Scholar
  473. Liebler DC, TBDC L III., fb JRY, Publisher : c (2002) Introduction to proteomics: tools for the new biology. Humana Press, TotowaGoogle Scholar
  474. Liljenstrom H, von Heijne G (1987) Translation rate modification by preferential codon usage: intragenic position effects. J Theor Biol 124(1):43–55PubMedPubMedCentralCrossRefGoogle Scholar
  475. Lim VI (1994) Analysis of action of wobble nucleoside modifications on codon-anticodon pairing within the ribosome. J Mol Biol 240(1):8–19PubMedPubMedCentralCrossRefGoogle Scholar
  476. Lin JP, Aker M, Sitney KC, Mortimer RK (1986) First position wobble in codon-anticodon pairing: amber suppression by a yeast glutamine tRNA. Gene 49(3):383–388PubMedPubMedCentralCrossRefGoogle Scholar
  477. Lin HC, Tsai K, Chang BL, Liu J, Young M, Hsu W, Louie S, Nicholas HB Jr, Rosenquist GL (2003) Prediction of tyrosine sulfation sites in animal viruses. Biochem Biophys Res Commun 312(4):1154–1158CrossRefPubMedGoogle Scholar
  478. Lin GN, Cai Z, Lin G, Chakraborty S, Xu D (2009) ComPhy: prokaryotic composite distance phylogenies inferred from whole-genome gene sets. BMC Bioinform 10(Suppl 1):S5CrossRefGoogle Scholar
  479. Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362:709–715PubMedPubMedCentralCrossRefGoogle Scholar
  480. Lipman DJ, Pearson WR (1985) Rapid and sensitive protein similarity searches. Science 227(4693):1435–1441CrossRefPubMedGoogle Scholar
  481. Lipman DJ, Altschul SF, Kececioglu JD (1989) A tool for multiple sequence alignment. Proc Natl Acad Sci U S A 86(12):4412–4415PubMedPubMedCentralCrossRefGoogle Scholar
  482. Lipscombe D (2005) Neuronal proteins custom designed by alternative splicing. Curr Opin Neurobiol 15(3):358–363PubMedPubMedCentralCrossRefGoogle Scholar
  483. Lithwick G, Margalit H (2005) Relative predicted protein levels of functionally associated proteins are conserved across organisms. Nucleic Acids Res 33(3):1051–1057PubMedPubMedCentralCrossRefGoogle Scholar
  484. Liu J, Louie S, Hsu W, Yu KM, Nicholas HB Jr, Rosenquist GL (2008) Tyrosine sulfation is prevalent in human chemokine receptors important in lung disease. Am J Respir Cell Mol Biol 38(6):738–743PubMedPubMedCentralCrossRefGoogle Scholar
  485. Liu X, Jiang H, Gu Z, Roberts JW (2013) High-resolution view of bacteriophage lambda gene expression by ribosome profiling. Proc Natl Acad Sci U S A 110(29):11928–11933PubMedPubMedCentralCrossRefGoogle Scholar
  486. Livesey R (2002) Have microarrays failed to deliver for developmental biology? Genome Biol 3(9):comment2009CrossRefGoogle Scholar
  487. Lobry JR (1996) Asymmetric substitution patterns in the two DNA strands of bacteria. Mol Biol Evol 13(5):660–665PubMedPubMedCentralCrossRefGoogle Scholar
  488. Lockhart PJ, Steel MA, Hendy MD, Penny D (1994) Recovering evolutionary trees under a more realistic model of sequence evolution. Mol Biol Evol 11:605–612PubMedPubMedCentralGoogle Scholar
  489. Lodish HF, Nathan DG (1972) Regulation of hemoglobin synthesis. Preferential inhibition of and globin synthesis. J Biol Chem 247(23):7822–7829PubMedPubMedCentralGoogle Scholar
  490. Lopez P, Philippe H, Myllykallio H, Forterre P (1999) Identification of putative chromosomal origins of replication in Archaea. Mol Microbiol 32(4):883–886PubMedPubMedCentralCrossRefGoogle Scholar
  491. Lowry JA, Atchley WR (2000) Molecular evolution of the GATA family of transcription factors: conservation within the DNA-binding domain. J Mol Evol 50(2):103–115CrossRefPubMedGoogle Scholar
  492. Lu C, Bablanian R (1996) Characterization of small nontranslated polyadenylylated RNAs in vaccinia virus-infected cells. Proc Natl Acad Sci U S A 93(5):2037–2042PubMedPubMedCentralCrossRefGoogle Scholar
  493. Lunter G, Rocco A, Mimouni N, Heger A, Caldeira A, Hein J (2008) Uncertainty in homology inferences: assessing and improving genomic sequence alignment. Genome Res 18(2):298–309PubMedPubMedCentralCrossRefGoogle Scholar
  494. Lustig F, Boren T, Guindy YS, Elias P, Samuelsson T, Gehrke CW, Kuo KC, Lagerkvist U (1989) Codon discrimination and anticodon structural context. Proc Natl Acad Sci U S A 86(18):6873–6877PubMedPubMedCentralCrossRefGoogle Scholar
  495. Ma B, Nussinov R (2004) Release factors eRF1 and RF2: a universal mechanism controls the large conformational changes. J Biol Chem 279(51):53875–53885PubMedPubMedCentralCrossRefGoogle Scholar
  496. Ma P, Xia X (2011) Factors affecting splicing strength of yeast genes. Comp Funct Genomics:Article ID 212146, 13 pagesGoogle Scholar
  497. Ma S, Musa T, Bag J (2006) Reduced stability of mitogen-activated protein kinase kinase-2 mRNA and phosphorylation of poly(A)-binding protein (PABP) in cells overexpressing PABP. J Biol Chem 281(6):3145–3156PubMedPubMedCentralCrossRefGoogle Scholar
  498. MacKay VL, Li X, Flory MR, Turcott E, Law GL, Serikawa KA, Xu XL, Lee H, Goodlett DR, Aebersold R et al (2004) Gene expression analyzed by high-resolution state array analysis and quantitative proteomics: response of yeast to mating pheromone. Mol Cell Proteomics 3(5):478–489CrossRefPubMedGoogle Scholar
  499. Madden SL, Galella EA, Zhu J, Bertelsen AH, Beaudry GA (1997) SAGE transcript profiles for p53-dependent growth regulation. Oncogene 15(9):1079–1085CrossRefPubMedGoogle Scholar
  500. Maher CA, Kumar-Sinha C, Cao X, Kalyana-Sundaram S, Han B, Jing X, Sam L, Barrette T, Palanisamy N, Chinnaiyan AM (2009) Transcriptome sequencing to detect gene fusions in cancer. Nature 458(7234):97–101PubMedPubMedCentralCrossRefGoogle Scholar
  501. Mannella CA, Neuwald AF, Lawrence CE (1996) Detection of likely transmembrane beta strand regions in sequences of mitochondrial pore proteins using the Gibbs sampler. J Bioenerg Biomembr 28(2):163–169CrossRefPubMedGoogle Scholar
  502. Marck C, Grosjean H (2002) tRNomics: analysis of tRNA genes from 50 genomes of Eukarya, Archaea, and Bacteria reveals anticodon-sparing strategies and domain-specific features. RNA 8(10):1189–1232PubMedPubMedCentralCrossRefGoogle Scholar
  503. Marin A, Xia X (2008) GC skew in protein-coding genes between the leading and lagging strands in bacterial genomes: new substitution models incorporating strand bias. J Theor Biol 253(3):508–513PubMedPubMedCentralCrossRefGoogle Scholar
  504. Martinez MA, Vartanian J-P, Simon W-H (1994) Hypermutagenesis of RNA using human immunodeficiency virus type 1 reverse transcriptase and biased dNTP concentrations. Proc Natl Acad Sci U S A 91(25):11787–11791PubMedPubMedCentralCrossRefGoogle Scholar
  505. Matin A, Zychlinsky E, Keyhan M, Sachs G (1996) Capacity of Helicobacter pylori to generate ionic gradients at low pH is similar to that of bacteria which grow under strongly acidic conditions. Infect Immun 64(4):1434–1436PubMedPubMedCentralGoogle Scholar
  506. McNulty DE, Claffee BA, Huddleston MJ, Porter ML, Cavnar KM, Kane JF (2003) Mistranslational errors associated with the rare arginine codon CGG in Escherichia coli. Protein Expr Purif 27(2):365–374CrossRefPubMedGoogle Scholar
  507. McPherson DT (1988) Codon preference reflects mistranslational constraints: a proposal. Nucleic Acids Res 16(9):4111–4120PubMedPubMedCentralCrossRefGoogle Scholar
  508. Medawar PB, Medawar JS (1983) Aristotle to zoos: a philosophical dictionary of biology. Harvard University Press, Cambridge, MAGoogle Scholar
  509. Meinnel T, Mechulam Y, Blanquet S (1993) Methionine as translation start signal: a review of the enzymes of the pathway in Escherichia coli. Biochimie 75(12):1061–1075PubMedPubMedCentralCrossRefGoogle Scholar
  510. Melo EO, de Melo Neto OP, Martins de Sa C (2003a) Adenosine-rich elements present in the 5′-untranslated region of PABP mRNA can selectively reduce the abundance and translation of CAT mRNAs in vivo. FEBS Lett 546(2–3):329–334PubMedPubMedCentralCrossRefGoogle Scholar
  511. Melo EO, Dhalia R, Martins de Sa C, Standart N, de Melo Neto OP (2003b) Identification of a C-terminal poly(A)-binding protein (PABP)-PABP interaction domain: role in cooperative binding to poly (A) and efficient cap distal translational repression. J Biol Chem 278(47):46357–46368PubMedPubMedCentralCrossRefGoogle Scholar
  512. Menaker RJ, Sharaf AA, Jones NL (2004) Helicobacter pylori infection and gastric cancer: host, bug, environment, or all three? Curr Gastroenterol Rep 6(6):429–435PubMedPubMedCentralCrossRefGoogle Scholar
  513. Mendz GL, Hazell SL (1996) The urea cycle of Helicobacter pylori. Microbiology 142(Pt 10):2959–2967PubMedPubMedCentralCrossRefGoogle Scholar
  514. Meng SY, Hui JO, Haniu M, Tsai LB (1995) Analysis of translational termination of recombinant human methionyl-neurotrophin 3 in Escherichia coli. Biochem Biophys Res Commun 211(1):40–48PubMedPubMedCentralCrossRefGoogle Scholar
  515. Metropolis N (1987) The beginnning of the Monte Carlo method. Los Alamos Sci 15(Special issue):125–130Google Scholar
  516. Meyer IM, Durbin R (2004) Gene structure conservation aids similarity based gene prediction. Nucleic Acids Res 32(2):776–783PubMedPubMedCentralCrossRefGoogle Scholar
  517. Miller JH, Albertini AM (1983) Effects of surrounding sequence on the suppression of nonsense codons. J Mol Biol 164(1):59–71PubMedPubMedCentralCrossRefGoogle Scholar
  518. Miller CG, Kukral AM, Miller JL, Movva NR (1989) pepM is an essential gene in Salmonella typhimurium. J Bacteriol 171(9):5215–5217PubMedPubMedCentralCrossRefGoogle Scholar
  519. Milman G, Goldstein J, Scolnick E, Caskey T (1969) Peptide chain termination. 3. Stimulation of in vitro termination. Proc Natl Acad Sci U S A 63(1):183–190PubMedPubMedCentralCrossRefGoogle Scholar
  520. Min Jou W, Haegeman G, Ysebaert M, Fiers W (1972) Nucleotide sequence of the gene coding for the bacteriophage MS2 coat protein. Nature 237(5350):82–88PubMedPubMedCentralCrossRefGoogle Scholar
  521. Minakshi R, Padhan K, Rani M, Khan N, Ahmad F, Jameel S (2009) The SARS coronavirus 3a protein causes endoplasmic reticulum stress and induces ligand-independent downregulation of the type 1 interferon receptor. PLoS One 4(12):e8342PubMedPubMedCentralCrossRefGoogle Scholar
  522. Mine T, Muraoka H, Saika T, Kobayashi I (2005) Characteristics of a clinical isolate of urease-negative Helicobacter pylori and its ability to induce gastric ulcers in Mongolian gerbils. Helicobacter 10(2):125–131PubMedPubMedCentralCrossRefGoogle Scholar
  523. Mitra SK, Lustig F, Akesson B, Lagerkvist U (1977) Codon-acticodon recognition in the valine codon family. J Biol Chem 252(2):471–478PubMedPubMedCentralGoogle Scholar
  524. Miura F, Kawaguchi N, Sese J, Toyoda A, Hattori M, Morishita S, Ito T (2006) A large-scale full-length cDNA analysis to explore the budding yeast transcriptome. Proc Natl Acad Sci 103(47):17846–17851PubMedPubMedCentralCrossRefGoogle Scholar
  525. Miyata T, Yasunaga T (1980) Molecular evolution of mRNA: a method for estimating evolutionary rates of synonymous and amino acid substitutions from homologous nucleotide sequences and its application. J Mol Evol 16(1):23–36PubMedPubMedCentralCrossRefGoogle Scholar
  526. Miyata T, Miyazawa S, Yasunaga T (1979) Two types of amino acid substitutions in protein evolution. J Mol Evol 12(3):219–236CrossRefPubMedGoogle Scholar
  527. Mlera L, Lam J, Offerdahl DK, Martens C, Sturdevant D, Turner CV, Porcella SF, Bloom ME (2016) Transcriptome analysis reveals a signature profile for tick-borne Flavivirus persistence in HEK 293T cells. MBio 7(3):e00314–e00316PubMedPubMedCentralCrossRefGoogle Scholar
  528. Mobley HL, Hu LT, Foxal PA (1991) Helicobacter pylori urease: properties and role in pathogenesis. Scand J Gastroenterol 187(Supplement):39–46CrossRefGoogle Scholar
  529. Moerschell RP, Hosokawa Y, Tsunasawa S, Sherman F (1990) The specificities of yeast methionine aminopeptidase and acetylation of amino-terminal methionine in vivo. Processing of altered iso-1-cytochromes c created by oligonucleotide transformation. J Biol Chem 265(32):19638–19643PubMedGoogle Scholar
  530. Moffat JG, Rudolph J, Bailey D (2014) Phenotypic screening in cancer drug discovery – past, present and future. Nat Rev Drug Discov 13(8):588–602CrossRefPubMedGoogle Scholar
  531. Moi P, Loudianos G, Lavinha J, Murru S, Cossu P, Casu R, Oggiano L, Longinotti M, Cao A, Pirastu M (1992) Delta-thalassemia due to a mutation in an erythroid-specific binding protein sequence 3′ to the delta-globin gene. Blood 79(2):512–516PubMedGoogle Scholar
  532. Monteiro PT, Mendes ND, Teixeira MC, d’Orey S, Tenreiro S, Mira NP, Pais H, Francisco AP, Carvalho AM, Lourenco AB et al (2008) YEASTRACT-DISCOVERER: new tools to improve the analysis of transcriptional regulatory associations in Saccharomyces cerevisiae. Nucleic Acids Res 36(Database issue):D132–D136PubMedGoogle Scholar
  533. Mora L, Heurgue-Hamard V, Champ S, Ehrenberg M, Kisselev LL, Buckingham RH (2003) The essential role of the invariant GGQ motif in the function and stability in vivo of bacterial release factors RF1 and RF2. Mol Microbiol 47(1):267–275PubMedPubMedCentralCrossRefGoogle Scholar
  534. Mora L, Heurgue-Hamard V, de Zamaroczy M, Kervestin S, Buckingham RH (2007) Methylation of bacterial release factors RF1 and RF2 is required for normal translation termination in vivo. J Biol Chem 282(49):35638–35645PubMedPubMedCentralCrossRefGoogle Scholar
  535. Morin R, Bainbridge M, Fejes A, Hirst M, Krzywinski M, Pugh T, McDonald H, Varhol R, Jones S, Marra M (2008a) Profiling the HeLa S3 transcriptome using randomly primed cDNA and massively parallel short-read sequencing. BioTechniques 45(1):81–94PubMedPubMedCentralCrossRefGoogle Scholar
  536. Morin RD, O’Connor MD, Griffith M, Kuchenbauer F, Delaney A, Prabhu AL, Zhao Y, McDonald H, Zeng T, Hirst M et al (2008b) Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res 18(4):610–621PubMedPubMedCentralCrossRefGoogle Scholar
  537. Morita M, Shimozawa N, Kashiwayama Y, Suzuki Y, Imanaka T (2011) ABC subfamily D proteins and very long chain fatty acid metabolism as novel targets in adrenoleukodystrophy. Curr Drug Targets 12(5):694–706CrossRefPubMedGoogle Scholar
  538. Moriyama EN, Powell JR (1997) Codon usage bias and tRNA abundance in Drosophila. J Mol Evol 45(5):514–523PubMedPubMedCentralCrossRefGoogle Scholar
  539. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5(7):621–628CrossRefPubMedPubMedCentralGoogle Scholar
  540. Mottagui-Tabar S, Isaksson LA (1997) Only the last amino acids in the nascent peptide influence translation termination in Escherichia coli genes. FEBS Lett 414(1):165–170PubMedPubMedCentralCrossRefGoogle Scholar
  541. Moult J, Hubbard T, Fidelis K, Pedersen JT (1999) Critical assessment of methods of protein structure prediction (CASP): round III. Proteins 37(Suppl 3):2–6CrossRefGoogle Scholar
  542. Muller HJ, Altenburg E (1930) The frequency of translocations produced by X-rays in Drosophila. Genetics 15(4):283–311PubMedPubMedCentralGoogle Scholar
  543. Murphy J, Mahony J, Ainsworth S, Nauta A, van Sinderen D (2013) Bacteriophage orphan DNA methyltransferases: insights from their bacterial origin, function, and occurrence. Appl Environ Microbiol 79(24):7547–7555PubMedPubMedCentralCrossRefGoogle Scholar
  544. Murtagh F (1984) Complexities of hierarchic clustering algorithms: state of the art. Comput Stat Q 1:101–113Google Scholar
  545. Muto A, Osawa S (1987) The guanine and cytosine content of genomic DNA and bacterial evolution. Proc Natl Acad Sci U S A 84:166–169PubMedPubMedCentralCrossRefGoogle Scholar
  546. Nachman MW, Crowell SL (2000) Estimate of the mutation rate per nucleotide in humans. Genetics 156(1):297–304PubMedPubMedCentralGoogle Scholar
  547. Nakai K, Horton P (1999) PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem Sci 24(1):34–36PubMedPubMedCentralCrossRefGoogle Scholar
  548. Nakamoto T (2006) A unified view of the initiation of protein synthesis. Biochem Biophys Res Commun 341(3):675–678PubMedPubMedCentralCrossRefGoogle Scholar
  549. Nakamura Y, Ito K, Matsumura K, Kawazu Y, Ebihara K (1995) Regulation of translation termination: conserved structural motifs in bacterial and eukaryotic polypeptide release factors. Biochem Cell Biol 73(11–12):1113–1122CrossRefPubMedGoogle Scholar
  550. Nakamura Y, Ito K, Isaksson LA (1996) Emerging understanding of translation termination. Cell 87(2):147–150PubMedPubMedCentralCrossRefGoogle Scholar
  551. Nakamura Y, Gojobori T, Ikemura T (2000) Codon usage tabulated from international DNA sequence databases: status for the year 2000. Nucleic Acids Res 28(1):292PubMedPubMedCentralCrossRefGoogle Scholar
  552. Nakashima H, Fukuchi S, Nishikawa K (2003) Compositional changes in RNA, DNA and proteins for bacterial adaptation to higher and lower temperatures. J Biochem (Tokyo) 133(4):507–513CrossRefGoogle Scholar
  553. Nasvall SJ, Chen P, Bjork GR (2007) The wobble hypothesis revisited: uridine-5-oxyacetic acid is critical for reading of G-ending codons. RNA 13(12):2151–2164PubMedPubMedCentralCrossRefGoogle Scholar
  554. Needleman SB, Wunsch CD (1970) A general method applicable to the search of similarities in the amino acid sequence of two proteins. J Mol Biol 48:443–453CrossRefPubMedGoogle Scholar
  555. Nei M (1996) Phylogenetic analysis in molecular evolutionary genetics. Annu Rev Genet 30:371–403PubMedPubMedCentralCrossRefGoogle Scholar
  556. Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New YorkGoogle Scholar
  557. Neuwald AF, Liu JS, Lawrence CE (1995) Gibbs motif sampling: detection of bacterial outer membrane protein repeats. Protein Sci 4(8):1618–1632PubMedPubMedCentralCrossRefGoogle Scholar
  558. Ngumbela KC, Ryan KP, Sivamurthy R, Brockman MA, Gandhi RT, Bhardwaj N, Kavanagh DG (2008) Quantitative effect of suboptimal codon usage on translational efficiency of mRNA encoding HIV-1 gag in intact T cells. PLoS One 3(6):e2356PubMedPubMedCentralCrossRefGoogle Scholar
  559. Nicholas HB Jr, Chan SS, Rosenquist GL (1999) Reevaluation of the determinants of tyrosine sulfation. Endocrine 11(3):285–292CrossRefPubMedGoogle Scholar
  560. Nichols T, Hayasaka S (2003) Controlling the familywise error rate in functional neuroimaging: a comparative review. Stat Meth Med Res 12(5):419–446CrossRefGoogle Scholar
  561. Nicolae M, Pathak S, Rajasekaran S (2015) LFQC: a lossless compression algorithm for FASTQ files. Bioinformatics 31(20):3276–3281PubMedPubMedCentralCrossRefGoogle Scholar
  562. Nishimura S, Takahashi S, Kuroha T, Suwabe N, Nagasawa T, Trainor C, Yamamoto M (2000) A GATA box in the GATA-1 gene hematopoietic enhancer is a critical element in the network of GATA factors and sites that regulate this gene. Mol Cell Biol 20(2):713–723PubMedPubMedCentralCrossRefGoogle Scholar
  563. Nissen P, Kjeldgaard M, Thirup S, Polekhina G, Reshetnikova L, Clark BF, Nyborg J (1995) Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog. Science 270(5241):1464–1472PubMedPubMedCentralCrossRefGoogle Scholar
  564. Noedl H, Se Y, Schaecher K, Smith BL, Socheat D, Fukuda MM (2008) Evidence of artemisinin-resistant malaria in western Cambodia. N Engl J Med 359(24):2619–2620CrossRefPubMedGoogle Scholar
  565. Noedl H, Socheat D, Satimai W (2009) Artemisinin-resistant malaria in Asia. N Engl J Med 361(5):540–541CrossRefPubMedGoogle Scholar
  566. Noedl H, Se Y, Sriwichai S, Schaecher K, Teja-Isavadharm P, Smith B, Rutvisuttinunt W, Bethell D, Surasri S, Fukuda MM et al (2010) Artemisinin resistance in Cambodia: a clinical trial designed to address an emerging problem in Southeast Asia. Clin Infect Dis 51(11):e82–e89CrossRefPubMedGoogle Scholar
  567. Nomenclature Committee of the International Union of Biochemistry (1985) Nomenclature for incompletely specified bases in nucleic acid sequences. Recommendations 1984. Eur J Biochem 150:1–5CrossRefGoogle Scholar
  568. Notredame C, O’Brien EA, Higgins DG (1997) RAGA: RNA sequence alignment by genetic algorithm. Nucleic Acids Res 25(22):4570–4580PubMedPubMedCentralCrossRefGoogle Scholar
  569. Numanagic I, Bonfield JK, Hach F, Voges J, Ostermann J, Alberti C, Mattavelli M, Sahinalp SC (2016) Comparison of high-throughput sequencing data compression tools. Nat Methods 13(12):1005–1008PubMedPubMedCentralCrossRefGoogle Scholar
  570. Nur I, Szyf M, Razin A, Glaser G, Rottem S, Razin S (1985) Procaryotic and eucaryotic traits of DNA methylation in spiroplasmas (mycoplasmas). J Bacteriol 164(1):19–24PubMedPubMedCentralGoogle Scholar
  571. Nussinov R (1984) Doublet frequencies in evolutionary distinct groups. Nucleic Acids Res 12(3):1749–1763PubMedPubMedCentralCrossRefGoogle Scholar
  572. O’Brien JD, She ZS, Suchard MA (2008) Dating the time of viral subtype divergence. BMC Evol Biol 8:172PubMedPubMedCentralCrossRefGoogle Scholar
  573. Obenauer JC, Cantley LC, Yaffe MB (2003) Scansite 2.0: proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res 31(13):3635–3641PubMedPubMedCentralCrossRefGoogle Scholar
  574. Ohta T, Gray TA, Rogan PK, Buiting K, Gabriel JM, Saitoh S, Muralidhar B, Bilienska B, Krajewska-Walasek M, Driscoll DJ et al (1999) Imprinting-mutation mechanisms in Prader-Willi syndrome. Am J Hum Genet 64(2):397–413PubMedPubMedCentralCrossRefGoogle Scholar
  575. Ordway JM, Fenster SD, Ruan H, Curran T (2005) A transcriptome map of cellular transformation by the fos oncogene. Mol Cancer 4(1):19PubMedPubMedCentralCrossRefGoogle Scholar
  576. Orkin SH (1990) Globin gene regulation and switching: circa 1990. Cell 63(4):665–672CrossRefGoogle Scholar
  577. Orkin SH (1992) GATA-binding transcription factors in hematopoietic cells. Blood 80(3):575–581PubMedGoogle Scholar
  578. Osawa S, Jukes TH, Muto A, Yamao F, Ohama T, Andachi Y (1987) Role of directional mutation pressure in the evolution of the eubacterial genetic code. Cold Spring Harb Symp Quant Biol 52:777–789PubMedPubMedCentralCrossRefGoogle Scholar
  579. Osterman IA, Evfratov SA, Sergiev PV, Dontsova OA (2013) Comparison of mRNA features affecting translation initiation and reinitiation. Nucleic Acids Res 41(1):474–486PubMedPubMedCentralCrossRefGoogle Scholar
  580. Ostrin EJ, Li Y, Hoffman K, Liu J, Wang K, Zhang L, Mardon G, Chen R (2006) Genome-wide identification of direct targets of the Drosophila retinal determination protein Eyeless. Genome Res 16(4):466–476PubMedPubMedCentralCrossRefGoogle Scholar
  581. Ota S, Li WH (2000) NJML: a hybrid algorithm for the neighbor-joining and maximum-likelihood methods. Mol Biol Evol 17(9):1401–1409PubMedPubMedCentralCrossRefGoogle Scholar
  582. Ota S, Li WH (2001) NJML+: an extension of the NJML method to handle protein sequence data and computer software implementation. Mol Biol Evol 18(11):1983–1992PubMedPubMedCentralCrossRefGoogle Scholar
  583. Otu HH, Sayood K (2003) A new sequence distance measure for phylogenetic tree construction. Bioinformatics 19(16):2122–2130PubMedPubMedCentralCrossRefGoogle Scholar
  584. Palidwor GA, Perkins TJ, Xia X (2010) A general model of codon bias due to GC mutational bias. PLoS One 5(10):e13431PubMedPubMedCentralCrossRefGoogle Scholar
  585. Palstra RJ, Tolhuis B, Splinter E, Nijmeijer R, Grosveld F, de Laat W (2003) The beta-globin nuclear compartment in development and erythroid differentiation. Nat Genet 35(2):190–194PubMedPubMedCentralCrossRefGoogle Scholar
  586. Pandey RR, Mondal T, Mohammad F, Enroth S, Redrup L, Komorowski J, Nagano T, Mancini-Dinardo D, Kanduri C (2008) Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell 32(2):232–246PubMedPubMedCentralCrossRefGoogle Scholar
  587. Pappin DJ, Hojrup P, Bleasby AJ (1993) Rapid identification of proteins by peptide-mass fingerprinting. Curr Biol 3(6):327–332PubMedPubMedCentralCrossRefGoogle Scholar
  588. Park SY, Cromie MJ, Lee EJ, Groisman EA (2010) A bacterial mRNA leader that employs different mechanisms to sense disparate intracellular signals. Cell 142(5):737–748PubMedPubMedCentralCrossRefGoogle Scholar
  589. Parker J (1989) Errors and alternatives in reading the universal genetic code. Microbiol Rev 53(3):273–298PubMedPubMedCentralGoogle Scholar
  590. Patel GP, Bag J (2006) IMP1 interacts with poly(A)-binding protein (PABP) and the autoregulatory translational control element of PABP-mRNA through the KH III-IV domain. FEBS J 273(24):5678–5690PubMedPubMedCentralCrossRefGoogle Scholar
  591. Patel GP, Ma S, Bag J (2005) The autoregulatory translational control element of poly(A)-binding protein mRNA forms a heteromeric ribonucleoprotein complex. Nucleic Acids Res 33(22):7074–7089PubMedPubMedCentralCrossRefGoogle Scholar
  592. Pauling L, Itano HA, Singer SJ, Wells IC (1949) Sickle cell anemia a molecular disease. Science 110(2865):543–548PubMedPubMedCentralCrossRefGoogle Scholar
  593. Pazin MJ, Kamakaka RT, Kadonaga JT (1994) ATP-dependent nucleosome reconfiguration and transcriptional activation from preassembled chromatin templates. Science 266(5193):2007–2011PubMedPubMedCentralCrossRefGoogle Scholar
  594. Pazin MJ, Sheridan PL, Cannon K, Cao Z, Keck JG, Kadonaga JT, Jones KA (1996) NF-kappa B-mediated chromatin reconfiguration and transcriptional activation of the HIV-1 enhancer in vitro. Genes Dev 10(1):37–49PubMedPubMedCentralCrossRefGoogle Scholar
  595. Pazin MJ, Hermann JW, Kadonaga JT (1998) Promoter structure and transcriptional activation with chromatin templates assembled in vitro. A single Gal4-VP16 dimer binds to chromatin or to DNA with comparable affinity. J Biol Chem 273(51):34653–34660CrossRefPubMedGoogle Scholar
  596. Peabody MA, Laird MR, Vlasschaert C, Lo R, Brinkman FS (2016) PSORTdb: expanding the bacteria and archaea protein subcellular localization database to better reflect diversity in cell envelope structures. Nucleic Acids Res 44(D1):D663–D668PubMedPubMedCentralCrossRefGoogle Scholar
  597. Pearson WR (1990) Rapid and sensitive sequence comparison with FASTP and FASTA. Methods Enzymol 183:63–98CrossRefPubMedGoogle Scholar
  598. Pearson WR (1994) Using the FASTA program to search protein and DNA sequence databases. Methods Mol Biol 24:307–331PubMedGoogle Scholar
  599. Pearson WR (1998) Empirical statistical estimates for sequence similarity searches. J Mol Biol 276(1):71–84CrossRefPubMedGoogle Scholar
  600. Pearson WR, Lipman DJ (1988) Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A 85:2444–2448PubMedPubMedCentralCrossRefGoogle Scholar
  601. Pei J, Kim BH, Grishin NV (2008) PROMALS3D: a tool for multiple protein sequence and structure alignments. Nucleic Acids Res 36(7):2295–2300PubMedPubMedCentralCrossRefGoogle Scholar
  602. Percudani R, Pavesi A, Ottonello S (1997) Transfer RNA gene redundancy and translational selection in Saccharomyces cerevisiae. J Mol Biol 268(2):322–330PubMedCrossRefGoogle Scholar
  603. Pereira SL, Baker AJ (2006) A mitogenomic timescale for birds detects variable phylogenetic rates of molecular evolution and refutes the standard molecular clock. Mol Biol Evol 23(9):1731–1740PubMedCrossRefGoogle Scholar
  604. Pestova TV, Shatsky IN, Fletcher SP, Jackson RJ, Hellen CU (1998) A prokaryotic-like mode of cytoplasmic eukaryotic ribosome binding to the initiation codon during internal translation initiation of hepatitis C and classical swine fever virus RNAs. Genes Dev 12(1):67–83PubMedPubMedCentralCrossRefGoogle Scholar
  605. Pestova TV, Lomakin IB, Hellen CU (2004) Position of the CrPV IRES on the 40S subunit and factor dependence of IRES/80S ribosome assembly. EMBO Rep 5(9):906–913PubMedPubMedCentralCrossRefGoogle Scholar
  606. Petronis A (2004) The origin of schizophrenia: genetic thesis, epigenetic antithesis, and resolving synthesis. Biol Psychiatry 55(10):965–970PubMedPubMedCentralCrossRefGoogle Scholar
  607. Petronis A (2006) Epigenetics and twins: three variations on the theme. Trends Genet 22(7):347–350PubMedPubMedCentralCrossRefGoogle Scholar
  608. Petronis A, Gottesman II, Kan P, Kennedy JL, Basile VS, Paterson AD, Popendikyte V (2003) Monozygotic twins exhibit numerous epigenetic differences: clues to twin discordance? Schizophr Bull 29(1):169–178PubMedPubMedCentralCrossRefGoogle Scholar
  609. Petrullo LA, Gallagher PJ, Elseviers D (1983) The role of 2-methylthio-N6-isopentenyladenosine in readthrough and suppression of nonsense codons in Escherichia coli. Mol Gen Genet 190(2):289–294PubMedPubMedCentralCrossRefGoogle Scholar
  610. Petry S, Brodersen DE, FVt M, Dunham CM, Selmer M, Tarry MJ, Kelley AC, Ramakrishnan V (2005) Crystal structures of the ribosome in complex with release factors RF1 and RF2 bound to a cognate stop codon. Cell 123(7):1255–1266PubMedPubMedCentralCrossRefGoogle Scholar
  611. Pevzner PA (2000) Computational molecular biology: an algorithmic approach. The MIT Press, Cambridge, MAGoogle Scholar
  612. Pielou EC (1984) The interpretation of ecological data: a primer on classification and ordination. Wiley, New YorkGoogle Scholar
  613. Pietras K, Sjoblom T, Rubin K, Heldin CH, Ostman A (2003) PDGF receptors as cancer drug targets. Cancer Cell 3(5):439–443CrossRefPubMedGoogle Scholar
  614. Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-PLUS. Springer, Berlin/HeidelbergCrossRefGoogle Scholar
  615. Pleiss JA, Whitworth GB, Bergkessel M, Guthrie C (2007) Rapid, transcript-specific changes in splicing in response to environmental stress. Mol Cell 27(6):928–937PubMedPubMedCentralCrossRefGoogle Scholar
  616. Pobre V, Arraiano CM (2015) Next generation sequencing analysis reveals that the ribonucleases RNase II, RNase R and PNPase affect bacterial motility and biofilm formation in E. coli. BMC Genomics 16:72PubMedPubMedCentralCrossRefGoogle Scholar
  617. Poole ES, Brown CM, Tate WP (1995) The identity of the base following the stop codon determines the efficiency of in vivo translational termination in Escherichia coli. EMBO J 14(1):151–158PubMedPubMedCentralCrossRefGoogle Scholar
  618. Poole ES, Major LL, Mannering SA, Tate WP (1998) Translational termination in Escherichia coli: three bases following the stop codon crosslink to release factor 2 and affect the decoding efficiency of UGA-containing signals. Nucleic Acids Res 26(4):954–960PubMedPubMedCentralCrossRefGoogle Scholar
  619. Popa A, Lebrigand K, Barbry P, Waldmann R (2016) Pateamine A-sensitive ribosome profiling reveals the scope of translation in mouse embryonic stem cells. BMC Genomics 17:52PubMedPubMedCentralCrossRefGoogle Scholar
  620. Poulos MG, Batra R, Charizanis K, Swanson MS (2011) Developments in RNA splicing and disease. Cold Spring Harb Perspect Biol 3(1):a000778PubMedPubMedCentralCrossRefGoogle Scholar
  621. Povolotskaya IS, Kondrashov FA, Ledda A, Vlasov PK (2012) Stop codons in bacteria are not selectively equivalent. Biol Direct 7:30PubMedPubMedCentralCrossRefGoogle Scholar
  622. Prabhakaran R, Chithambaram S, Xia X (2015) Escherichia coli and Staphylococcus phages: effect of translation initiation efficiency on differential codon adaptation mediated by virulent and temperate lifestyles. J Gen Virol 96(Pt 5):1169–1179PubMedPubMedCentralGoogle Scholar
  623. Prensner JR, Iyer MK, Balbin OA, Dhanasekaran SM, Cao Q, Brenner JC, Laxman B, Asangani IA, Grasso CS, Kominsky HD et al (2011) Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression. Nat Biotechnol 29(8):742–749PubMedPubMedCentralCrossRefGoogle Scholar
  624. Press WH, Teukolsky SA, Tetterling WT, Flannery BP (1992) Numerical recipes in C: the art of scientifi computing. Cambridge University Press, CambridgeGoogle Scholar
  625. Prival MJ (1996) Isolation of glutamate-inserting ochre suppressor mutants of Salmonella typhimurium and Escherichia coli. J Bacteriol 178(10):2989–2990PubMedPubMedCentralCrossRefGoogle Scholar
  626. Ptashne M (1986) A genetic switch: gene control and phage lambda. Cell Press and Blackwell Scientific, Cambridge, MAGoogle Scholar
  627. Pure GA, Robinson GW, Naumovski L, Friedberg EC (1985) Partial suppression of an ochre mutation in Saccharomyces cerevisiae by multicopy plasmids containing a normal yeast tRNAGln gene. J Mol Biol 183(1):31–42CrossRefPubMedGoogle Scholar
  628. Pyronnet S, Pradayrol L, Sonenberg N (2000) A cell cycle-dependent internal ribosome entry site. Mol Cell 5(4):607–616PubMedCrossRefGoogle Scholar
  629. Qin ZS, McCue LA, Thompson W, Mayerhofer L, Lawrence CE, Liu JS (2003) Identification of co-regulated genes through Bayesian clustering of predicted regulatory binding sites. Nat Biotechnol 21(4):435–439CrossRefPubMedGoogle Scholar
  630. Qu K, McCue LA, Lawrence CE (1998) Bayesian protein family classifier. Proc Int Conf Intell Syst Mol Biol 6:131–139PubMedGoogle Scholar
  631. Raaum RL, Sterner KN, Noviello CM, Stewart C-B, Disotell TR (2005) Catarrhine primate divergence dates estimated from complete mitochondrial genomes: concordance with fossil and nuclear DNA evidence. J Hum Evol 48(3):237PubMedPubMedCentralCrossRefGoogle Scholar
  632. Rabiner LR (1989) A tutorial on hidden Markov models and selected applications in speech recognition. Proc IEEE 77(2):257–286CrossRefGoogle Scholar
  633. Rahi SJ, Pecani K, Ondracka A, Oikonomou C, Cross FR (2016) The CDK-APC/C oscillator predominantly entrains periodic cell-cycle transcription. Cell 165(2):475–487PubMedPubMedCentralCrossRefGoogle Scholar
  634. Rambaut A, Bromham L (1998) Estimating divergence dates from molecular sequences. Mol Biol Evol 15(4):442–448PubMedPubMedCentralCrossRefGoogle Scholar
  635. Ran W, Higgs PG (2012) Contributions of speed and accuracy to translational selection in bacteria. PLoS One 7(12):e51652PubMedPubMedCentralCrossRefGoogle Scholar
  636. Rannala B, Yang Z (2007) Inferring speciation times under an episodic molecular clock. Syst Biol 56(3):453–466PubMedPubMedCentralCrossRefGoogle Scholar
  637. Rashid M, Saha S, Raghava GP (2007) Support Vector Machine-based method for predicting subcellular localization of mycobacterial proteins using evolutionary information and motifs. BMC Bioinformatics 8:337PubMedPubMedCentralCrossRefGoogle Scholar
  638. Razin A, Razin S (1980) Methylated bases in mycoplasmal DNA. Nucleic Acids Res 8(6):1383–1390PubMedPubMedCentralCrossRefGoogle Scholar
  639. Regier JC, Shultz JW, Zwick A, Hussey A, Ball B, Wetzer R, Martin JW, Cunningham CW (2010) Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature 463(7284):1079–1083CrossRefPubMedGoogle Scholar
  640. Reinert K, Stoye J, Will T (2000) An iterative method for faster sum-of-pairs multiple sequence alignment. Bioinformatics 16(9):808–814CrossRefPubMedGoogle Scholar
  641. Rektorschek M, Buhmann A, Weeks D, Schwan D, Bensch KW, Eskandari S, Scott D, Sachs G, Melchers K (2000) Acid resistance of Helicobacter pylori depends on the UreI membrane protein and an inner membrane proton barrier. Mol Microbiol 36(1):141–152PubMedPubMedCentralCrossRefGoogle Scholar
  642. Rice P, Longden I, Bleasby A (2000) EMBOSS: the European molecular biology open software suite. Trends Genet 16(6):276–277PubMedPubMedCentralCrossRefGoogle Scholar
  643. Rideout WMI, Coetzee GA, Olumi AF, Jones PA (1990) 5-Methylcytosine as an endogenous mutagen in the human LDL receptor and p53 genes. Science 249:1288–1290PubMedPubMedCentralCrossRefGoogle Scholar
  644. Rimsky L, Hauber J, Dukovich M, Malim MH, Langlois A, Cullen BR, Greene WC (1988) Functional replacement of the HIV-1 rev protein by the HTLV-1 rex protein. Nature 335(6192):738–740PubMedPubMedCentralCrossRefGoogle Scholar
  645. Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough LH, Helms JA, Farnham PJ, Segal E et al (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129(7):1311–1323PubMedPubMedCentralCrossRefGoogle Scholar
  646. Ritland K, Clegg M (1990) Optimal DNA sequence divergence for testing phylogenetic hypotheses. In: Molecular evolution. Alan R. Liss, New York, pp 289–296Google Scholar
  647. Roberts A, Pachter L (2013) Streaming fragment assignment for real-time analysis of sequencing experiments. Nat Methods 10(1):71–73PubMedCentralCrossRefPubMedGoogle Scholar
  648. Roberts A, Trapnell C, Donaghey J, Rinn JL, Pachter L (2011) Improving RNA-Seq expression estimates by correcting for fragment bias. Genome Biol 12(3):R22PubMedPubMedCentralCrossRefGoogle Scholar
  649. Roberts A, Feng H, Pachter L (2013a) Fragment assignment in the cloud with eXpress-D. BMC Bioinform 14:358CrossRefGoogle Scholar
  650. Roberts A, Schaeffer L, Pachter L (2013b) Updating RNA-Seq analyses after re-annotation. Bioinformatics 29(13):1631–1637PubMedPubMedCentralCrossRefGoogle Scholar
  651. Robertson G, Hirst M, Bainbridge M, Bilenky M, Zhao Y, Zeng T, Euskirchen G, Bernier B, Varhol R, Delaney A et al (2007) Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat Methods 4(8):651–657CrossRefPubMedPubMedCentralGoogle Scholar
  652. Robinson M, Lilley R, Little S, Emtage JS, Yarranton G, Stephens P, Millican A, Eaton M, Humphreys G (1984) Codon usage can affect efficiency of translation of genes in Escherichia coli. Nucleic Acids Res 12(17):6663–6671PubMedPubMedCentralCrossRefGoogle Scholar
  653. Rodgers AB, Morgan CP, Leu NA, Bale TL (2015) Transgenerational epigenetic programming via sperm microRNA recapitulates effects of paternal stress. Proc Natl Acad Sci U S A 112(44):13699–13704PubMedPubMedCentralCrossRefGoogle Scholar
  654. Rogers MF, Thomas J, Reddy AS, Ben-Hur A (2012) SpliceGrapher: detecting patterns of alternative splicing from RNA-Seq data in the context of gene models and EST data. Genome Biol 13(1):R4PubMedPubMedCentralCrossRefGoogle Scholar
  655. Rogozin IB, Managadze D, Shabalina SA, Koonin EV (2014) Gene family level comparative analysis of gene expression in mammals validates the ortholog conjecture. Genome Biol Evol 6(4):754–762PubMedPubMedCentralCrossRefGoogle Scholar
  656. Rosenberg MS, Kumar S (2003) Heterogeneity of nucleotide frequencies among evolutionary lineages and phylogenetic inference. Mol Biol Evol 20(4):610–621PubMedPubMedCentralCrossRefGoogle Scholar
  657. Rosenblatt F (1958) The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev 65(6):386–408CrossRefPubMedGoogle Scholar
  658. Ross S, Giglione C, Pierre M, Espagne C, Meinnel T (2005) Functional and developmental impact of cytosolic protein N-terminal methionine excision in Arabidopsis. Plant Physiol 137(2):623–637PubMedPubMedCentralCrossRefGoogle Scholar
  659. Roth JR (1970) UGA nonsense mutations in Salmonella typhimurium. J Bacteriol 102(2):467–475PubMedPubMedCentralGoogle Scholar
  660. Rouchka EC (1997) A brief overview of Gibbs Sampling. IBC Statistics Study Group, Washington University, Institute for Biomedical ComputingGoogle Scholar
  661. Ruiz LM, Armengol G, Habeych E, Orduz S (2006) A theoretical analysis of codon adaptation index of the Boophilus microplus bm86 gene directed to the optimization of a DNA vaccine. J Theor Biol 239(4):445–449PubMedPubMedCentralCrossRefGoogle Scholar
  662. Ryan MJ, Fox JH, Wilczynski W, Rand AS (1990) Sexual selection for sensory exploitation in the frog Physalaemus pustulosus. Nature 343:66–67CrossRefPubMedGoogle Scholar
  663. Ryden SM, Isaksson LA (1984) A temperature-sensitive mutant of Escherichia coli that shows enhanced misreading of UAG/A and increased efficiency for some tRNA nonsense suppressors. Mol Gen Genet 193(1):38–45PubMedPubMedCentralCrossRefGoogle Scholar
  664. Rzhetsky A, Nei M (1994a) Unbiased estimates of the number of nucleotide substitutions when substitution rate varies among different sites. J Mol Evol 38(3):295–299PubMedPubMedCentralCrossRefGoogle Scholar
  665. Rzhetsky A, Nei M (1994b) Unbiased estimates of the number of nucleotide substitutions when substitution rate varies among different sites. J Mol Evol 38(3):295–299PubMedPubMedCentralCrossRefGoogle Scholar
  666. Rzhetsky A, Nei M (1995) Tests of applicability of several substitution models for DNA sequence data. Mol Biol Evol 12(1):131–151PubMedPubMedCentralCrossRefGoogle Scholar
  667. Saadatpour A, Lai S, Guo G, Yuan GC (2015) Single-cell analysis in cancer genomics. Trends Genet 31(10):576–586PubMedPubMedCentralCrossRefGoogle Scholar
  668. Sachs AB, Davis RW, Kornberg RD (1987) A single domain of yeast poly(A)-binding protein is necessary and sufficient for RNA binding and cell viability. Mol Cell Biol 7(9):3268–3276PubMedPubMedCentralCrossRefGoogle Scholar
  669. Sachs G, Meyer-Rosberg K, Scott DR, Melchers K (1996) Acid, protons and Helicobacter pylori. Yale J Biol Med 69(3):301–316PubMedPubMedCentralGoogle Scholar
  670. Sachs G, Weeks DL, Melchers K, Scott DR (2003) The gastric biology of Helicobacter pylori. Annu Rev Physiol 65(1):349–369PubMedPubMedCentralCrossRefGoogle Scholar
  671. Saha S, Sparks AB, Rago C, Akmaev V, Wang CJ, Vogelstein B, Kinzler KW, Velculescu VE (2002) Using the transcriptome to annotate the genome. Nat Biotechnol 20(5):508–512CrossRefPubMedGoogle Scholar
  672. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedPubMedCentralGoogle Scholar
  673. Sakaluk SK (2000) Sensory exploitation as an evolutionary origin to nuptial food gifts in insects. Proc Biol Sci 267(1441):339–343PubMedPubMedCentralCrossRefGoogle Scholar
  674. Salzberg SL, Delcher AL, Kasif S, White O (1998) Microbial gene identification using interpolated Markov models. Nucleic Acids Res 26(2):544–548PubMedPubMedCentralCrossRefGoogle Scholar
  675. Sambrook JF, Fan DP, Brenner S (1967) A strong suppressor specific for UGA. Nature 214(5087):452–453PubMedPubMedCentralCrossRefGoogle Scholar
  676. Samso M, Palumbo MJ, Radermacher M, Liu JS, Lawrence CE (2002) A Bayesian method for classification of images from electron micrographs. J Struct Biol 138(3):157–170CrossRefPubMedGoogle Scholar
  677. Sancar A, Sancar GB (1988) DNA repair enzymes. Annu Rev Biochem 57:29–67PubMedPubMedCentralCrossRefGoogle Scholar
  678. Sanderson MJ (1997) A nonparametric approach to estimating divergence times in the absence of rate constancy. Mol Biol Evol 14:1218–1232CrossRefGoogle Scholar
  679. Sankoff D (1975) Minimal mutation trees of sequences. J SIAM Appl Math 28:35–42CrossRefGoogle Scholar
  680. Sankoff D, Morel C, Cedergren RJ (1973) Evolution of 5S RNA and the non-randomness of base replacement. Nat New Biol 245(147):232–234CrossRefPubMedGoogle Scholar
  681. Sankoff D, Cedergren RJ, Lapalme G (1976) Frequency of insertion-deletion, transversion, and transition in the evolution of 5S ribosomal RNA. J Mol Evol 7(2):133–149CrossRefPubMedGoogle Scholar
  682. Sawa T, Ohno-Machado L (2003) A neural network-based similarity index for clustering DNA microarray data. Comput Biol Med 33(1):1–15CrossRefPubMedGoogle Scholar
  683. Schena M (1996) Genome analysis with gene expression microarrays. BioEssays 18(5):427–431PubMedPubMedCentralCrossRefGoogle Scholar
  684. Schena M (2003) Microarray analysis. Wiley-Liss, New YorkGoogle Scholar
  685. Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270(5235):467–470PubMedPubMedCentralCrossRefGoogle Scholar
  686. Schena M, Heller RA, Theriault TP, Konrad K, Lachenmeier E, Davis RW (1998) Microarrays: biotechnology’s discovery platform for functional genomics [see comments]. Trends Biotechnol 16(7):301–306PubMedPubMedCentralCrossRefGoogle Scholar
  687. Schmucker D, Clemens JC, Shu H, Worby CA, Xiao J, Muda M, Dixon JE, Zipursky SL (2000) Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell 101(6):671–684PubMedPubMedCentralCrossRefGoogle Scholar
  688. Schneider TD, Stephens RM (1990) Sequence logos: a new way to display consensus sequences. Nucleic Acids Res 18(20):6097–6100PubMedPubMedCentralCrossRefGoogle Scholar
  689. Schuler M, Connell SR, Lescoute A, Giesebrecht J, Dabrowski M, Schroeer B, Mielke T, Penczek PA, Westhof E, Spahn CM (2006) Structure of the ribosome-bound cricket paralysis virus IRES RNA. Nat Struct Mol Biol 13(12):1092–1096PubMedPubMedCentralCrossRefGoogle Scholar
  690. Schwartz S, Silva J, Burstein D, Pupko T, Eyras E, Ast G (2008) Large-scale comparative analysis of splicing signals and their corresponding splicing factors in eukaryotes. Genome Res 18(1):88–103PubMedPubMedCentralCrossRefGoogle Scholar
  691. Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6(2):461–464CrossRefGoogle Scholar
  692. Schwer B, Stunnenberg HG (1988) Vaccinia virus late transcripts generated in vitro have a poly(A) head. EMBO J 7(4):1183–1190PubMedPubMedCentralCrossRefGoogle Scholar
  693. Schwer B, Visca P, Vos JC, Stunnenberg HG (1987) Discontinuous transcription or RNA processing of vaccinia virus late messengers results in a 5′ poly(A) leader. Cell 50(2):163–169PubMedPubMedCentralCrossRefGoogle Scholar
  694. Scolnick EM, Caskey CT (1969) Peptide chain termination. V. The role of release factors in mRNA terminator codon recognition. Proc Natl Acad Sci U S A 64(4):1235–1241PubMedPubMedCentralCrossRefGoogle Scholar
  695. Scolnick E, Tompkins R, Caskey T, Nirenberg M (1968) Release factors differing in specificity for terminator codons. Proc Natl Acad Sci U S A 61(2):768–774PubMedPubMedCentralCrossRefGoogle Scholar
  696. Scott D, Weeks D, Melchers K, Sachs G (1998) The life and death of Helicobacter pylori. Gut 43(Suppl 1):S56–S60PubMedPubMedCentralCrossRefGoogle Scholar
  697. Scott DR, Marcus EA, Weeks DL, Sachs G (2002) Mechanisms of acid resistance due to the urease system of Helicobacter pylori. Gastroenterology 123(1):187–195PubMedPubMedCentralCrossRefGoogle Scholar
  698. Seetharam R, Heeren RA, Wong EY, Braford SR, Klein BK, Aykent S, Kotts CE, Mathis KJ, Bishop BF, Jennings MJ et al (1988) Mistranslation in IGF-1 during over-expression of the protein in Escherichia coli using a synthetic gene containing low frequency codons. Biochem Biophys Res Commun 155(1):518–523CrossRefPubMedGoogle Scholar
  699. Segurel L, Bon C (2017) On the evolution of lactase persistence in humans. Annu Rev Genomics Hum Genet 18:297–319PubMedPubMedCentralCrossRefGoogle Scholar
  700. Sendler E, Johnson GD, Mao S, Goodrich RJ, Diamond MP, Hauser R, Krawetz SA (2013) Stability, delivery and functions of human sperm RNAs at fertilization. Nucleic Acids Res 41(7):4104–4117PubMedPubMedCentralCrossRefGoogle Scholar
  701. Seo EY, Namkung JH, Lee KM, Lee WH, Im M, Kee SH, Tae Park G, Yang JM, Seo YJ, Park JK et al (2005) Analysis of calcium-inducible genes in keratinocytes using suppression subtractive hybridization and cDNA microarray. Genomics 86(5):528–538CrossRefPubMedGoogle Scholar
  702. Serero A, Giglione C, Sardini A, Martinez-Sanz J, Meinnel T (2003) An unusual peptide deformylase features in the human mitochondrial N-terminal methionine excision pathway. J Biol Chem 278(52):52953–52963PubMedPubMedCentralCrossRefGoogle Scholar
  703. Shadel GS, Clayton DA (1997) Mitochondrial DNA maintenance in vertebrates. Annu Rev Biochem 66:409–435PubMedPubMedCentralCrossRefGoogle Scholar
  704. Sharma U, Conine CC, Shea JM, Boskovic A, Derr AG, Bing XY, Belleannee C, Kucukural A, Serra RW, Sun F et al (2016) Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science 351(6271):391–396PubMedPubMedCentralCrossRefGoogle Scholar
  705. Sharp PM (1986) What can AIDS virus codon usage tell us? Nature 324(6093):114PubMedPubMedCentralCrossRefGoogle Scholar
  706. Sharp PM, Bulmer M (1988) Selective differences among translation termination codons. Gene 63(1):141–145CrossRefPubMedGoogle Scholar
  707. Sharp PM, Li WH (1987) The codon adaptation index – a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res 15(3):1281–1295PubMedPubMedCentralCrossRefGoogle Scholar
  708. Sharp PM, Tuohy TM, Mosurski KR (1986) Codon usage in yeast: cluster analysis clearly differentiates highly and lowly expressed genes. Nucleic Acids Res 14(13):5125–5143PubMedPubMedCentralCrossRefGoogle Scholar
  709. Sheppard K, Yuan J, Hohn MJ, Jester B, Devine KM, Soll D (2008) From one amino acid to another: tRNA-dependent amino acid biosynthesis. Nucleic Acids Res 36(6):1813–1825PubMedPubMedCentralCrossRefGoogle Scholar
  710. Sheridan PL, Sheline CT, Cannon K, Voz ML, Pazin MJ, Kadonaga JT, Jones KA (1995) Activation of the HIV-1 enhancer by the LEF-1 HMG protein on nucleosome-assembled DNA in vitro. Genes Dev 9(17):2090–2104PubMedPubMedCentralCrossRefGoogle Scholar
  711. Sheth N, Roca X, Hastings ML, Roeder T, Krainer AR, Sachidanandam R (2006) Comprehensive splice-site analysis using comparative genomics. Nucl Acids Res 34(14):3955–3967CrossRefPubMedGoogle Scholar
  712. Shimodaira H, Hasegawa M (1999) Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 16(8):1114–1116CrossRefGoogle Scholar
  713. Shine J, Dalgarno L (1974a) The 3′-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci U S A 71(4):1342–1346PubMedPubMedCentralCrossRefGoogle Scholar
  714. Shine J, Dalgarno L (1974b) Identical 3′-terminal octanucleotide sequence in 18S ribosomal ribonucleic acid from different eukaryotes. A proposed role for this sequence in the recognition of terminator codons. Biochem J 141(3):609–615PubMedPubMedCentralCrossRefGoogle Scholar
  715. Shine J, Dalgarno L (1975) Determinant of cistron specificity in bacterial ribosomes. Nature 254(5495):34–38PubMedPubMedCentralCrossRefGoogle Scholar
  716. Shirokikh NE, Spirin AS (2008) Poly(A) leader of eukaryotic mRNA bypasses the dependence of translation on initiation factors. Proc Natl Acad Sci U S A 105(31):10738–10743PubMedPubMedCentralCrossRefGoogle Scholar
  717. Shoemaker RH (2006) The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer 6(10):813–823PubMedPubMedCentralCrossRefGoogle Scholar
  718. Shoemaker DD, Schadt EE, Armour CD, He YD, Garrett-Engele P, McDonagh PD, Loerch PM, Leonardson A, Lum PY, Cavet G et al (2001) Experimental annotation of the human genome using microarray technology. Nature 409(6822):922–927PubMedPubMedCentralCrossRefGoogle Scholar
  719. Shoemaker R, Deng J, Wang W, Zhang K (2010) Allele-specific methylation is prevalent and is contributed by CpG-SNPs in the human genome. Genome Res 20(7):883–889PubMedPubMedCentralCrossRefGoogle Scholar
  720. Shpaer EG (1986) Constraints on codon context in Escherichia coli genes. Their possible role in modulating the efficiency of translation. J Mol Biol 188(4):555–564CrossRefPubMedGoogle Scholar
  721. Siavoshi F, Malekzadeh R, Daneshmand M, Smoot DT, Ashktorab H (2004) Association between Helicobacter pylori infection in gastric cancer, ulcers and gastritis in Iranian patients. Helicobacter 9(5):470PubMedPubMedCentralCrossRefGoogle Scholar
  722. Siepel A, Haussler D (2004a) Combining phylogenetic and hidden Markov models in biosequence analysis. J Comput Biol 11(2–3):413–428PubMedPubMedCentralCrossRefGoogle Scholar
  723. Siepel A, Haussler D (2004b) Phylogenetic estimation of context-dependent substitution rates by maximum likelihood. Mol Biol Evol 21(3):468–488PubMedPubMedCentralCrossRefGoogle Scholar
  724. Siepel A, Haussler D (2005) Phylogenetic hidden Markov models. In: Nielsen R (ed) Statistical methods in molecular evolution. Springer, New York, pp 325–351CrossRefGoogle Scholar
  725. Sim J, Kim SY, Lee J (2005) PPRODO: prediction of protein domain boundaries using neural networks. Proteins 59(3):627–632CrossRefPubMedGoogle Scholar
  726. Simpson RM, Bruno AE, Bard JE, Buck MJ, Read LK (2016) High-throughput sequencing of partially edited trypanosome mRNAs reveals barriers to editing progression and evidence for alternative editing. RNA 22(5):677–695PubMedPubMedCentralCrossRefGoogle Scholar
  727. Sloane AJ, Duff JL, Wilson NL, Gandhi PS, Hill CJ, Hopwood FG, Smith PE, Thomas ML, Cole RA, Packer NH et al (2002) High throughput peptide mass fingerprinting and protein macroarray analysis using chemical printing strategies. Mol Cell Proteomics 1(7):490–499CrossRefPubMedGoogle Scholar
  728. Smircich P, Eastman G, Bispo S, Duhagon MA, Guerra-Slompo EP, Garat B, Goldenberg S, Munroe DJ, Dallagiovanna B, Holetz F et al (2015) Ribosome profiling reveals translation control as a key mechanism generating differential gene expression in Trypanosoma cruzi. BMC Genomics 16:443PubMedPubMedCentralCrossRefGoogle Scholar
  729. Smit AF (1999) Interspersed repeats and other mementos of transposable elements in mammalian genomes. Curr Opin Genet Dev 9(6):657–663PubMedPubMedCentralCrossRefGoogle Scholar
  730. Smith TF, Waterman MS (1981) Identification of common molecular subsequences. J Mol Biol 147(1):195–197CrossRefPubMedGoogle Scholar
  731. Smith AB, Pisani D, Mackenzie-Dodds JA, Stockley B, Webster BL, Littlewood DT (2006) Testing the molecular clock: molecular and paleontological estimates of divergence times in the Echinoidea (Echinodermata). Mol Biol Evol 23(10):1832–1851PubMedPubMedCentralCrossRefGoogle Scholar
  732. Smyth RP, Davenport MP, Mak J (2012) The origin of genetic diversity in HIV-1. Virus Res 169(2):415–429CrossRefPubMedGoogle Scholar
  733. Smyth RP, Schlub TE, Grimm AJ, Waugh C, Ellenberg P, Chopra A, Mallal S, Cromer D, Mak J, Davenport MP (2014) Identifying recombination hot spots in the HIV-1 genome. J Virol 88(5):2891–2902PubMedPubMedCentralCrossRefGoogle Scholar
  734. Sneath PHA (1962) The construction of taxonomic groups. In: Ainsworth GC, Sneath PHA (eds) Microbial classification. Cambridge University Press, Cambridge, pp 289–332Google Scholar
  735. Sokal RR, Michener CD (1958) A statistical method for evaluating systematic relationships. Univ Kans Sci Bull 28:1409–1438Google Scholar
  736. Solnick JV, Hansen LM, Salama NR, Boonjakuakul JK, Syvanen M (2004) Modification of Helicobacter pylori outer membrane protein expression during experimental infection of rhesus macaques. Proc Natl Acad Sci U S A 101(7):2106–2111PubMedPubMedCentralCrossRefGoogle Scholar
  737. Sommerer N, Centeno D, Rossignol M (2006) Peptide mass fingerprinting: identification of proteins by maldi-tof. Methods Mol Biol 355:219–234Google Scholar
  738. Sonenberg N, Meerovitch K (1990) Translation of poliovirus mRNA. Enzyme 44(1–4):278–291PubMedPubMedCentralCrossRefGoogle Scholar
  739. Sorensen MA, Kurland CG, Pedersen S (1989) Codon usage determines translation rate in Escherichia coli. J Mol Biol 207:365–377PubMed