DNA Barcoding on Bacteria and Its Application in Infection Management

  • Mohammad Zubair
  • Farha Fatima
  • Shamina Begum
  • Zahid Hameed Siddiqui


The development of bacterial DNA barcoding with error-independent and time-saving technique has increased dramatically, which helps in identifying the microbes, understanding the microbial biodiversity, and analyzing the diseases, related to these pathogens. The study has discussed the developmental stages of DNA barcode research and compared it with the gold standard methods. It has evaluated the possible application of magnetic- and nanoparticle-related applications in bacterial DNA barcoding. These innovative techniques help in the identification of a number of infectious pathogens, which are present in trace amount. Bio-imaging detection of an infectious microorganism has proved to be effective for the development of fluorescent nanoparticle, super-paramagnetic nanoparticle, and metallic nanoparticle. The living organisms, present with functional materials, have a vast application in clinical research of water-soluble conjugated polymers. However, the performance of DNA barcoding in laboratory scale is easy, and it tends to give maximum benefit to the community, if they developed a global system to share their findings and interpret the sequenced data by genome.


Bacteria DNA barcoding Infection management 



Bacillus globigii


Basic local alignment search tool


The barcode of life data system


Conjugated polymer nanoparticles



E. coli

Escherichia coli


Fluorescence resonance energy transfer


Kilo daltons


Chaperonin 60


Multilocus sequence typing


Molecular operational taxonomic unit


Mycobacterium tuberculosis


National Centre for Biotechnology Information


Novel penicillin-binding protein, PBP-2a




Nontuberculous mycobacteria


Potential pathogenicity islands


Polymerase chain reaction


The quarantine barcoding of life


Replication initiation factor

S. aureus

Staphylococcus aureus


Sulfhydryl variable enzymes


Elongation factor Tu



The authors are very thankful to all the associated personnel in any reference that contributed in/for the purpose of this research.

Conflict of Interest

The authors declare no conflict of interest.


  1. Akin D, Sturgis J, Ragheb K, Sherman D, Burkholder K, Robinson JP, Bhunia AK, Mohammed S, Bashir R (2007) Bacteria-mediated delivery of nanoparticles and cargo into cells. Nat Nanotechnol 2(7):441–449. CrossRefPubMedGoogle Scholar
  2. Auburn S, Campino S, Clark TG, Djimde AA, Zongo I, Pinches R, Manske M, Mangano V, Alcock D, Anastasi E, Maslen G (2011) An effective method to purify Plasmodium falciparum DNA directly from clinical blood samples for whole genome high-throughput sequencing. PLoS One 6(7):e22213. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Balasingham SV, Davidsen T, Szpinda I, Frye SA, Tonjum T (2009) Molecular diagnostics in tuberculosis. Mol Diagn Ther 13(3):137–151. CrossRefPubMedGoogle Scholar
  4. Ball SL, Armstrong KF (2006) DNA barcodes for insect pest identification: a test case with tussock moths (Lepidoptera: Lymantriidae). Can J For Res 36(2):337–350. CrossRefGoogle Scholar
  5. Barberan A, Casamayor EO (2010) Global phylogenetic community structure and β-diversity patterns in surface bacterioplankton metacommunities. Aquat Microb Ecol 59(1):1–10. CrossRefGoogle Scholar
  6. Begerow D, Nilsson H, Unterseher M, Maier W (2010) Current state and perspectives of fungal DNA barcoding and rapid identification procedures. Appl Microbiol Biotechnol 87(1):99–108. CrossRefPubMedGoogle Scholar
  7. Beheregaray LB (2008) Twenty years of phylogeography: the state of the field and the challenges for the Southern Hemisphere. Mol Ecol 17(17):3754–3774. CrossRefPubMedGoogle Scholar
  8. Bizzini A, Jaton K, Romo D, Bille J, Prod’hom G, Greub G (2011) Matrix-assisted laser desorption ionization–time of flight mass spectrometry as an alternative to 16S rRNA gene sequencing for identification of difficult-to-identify bacterial strains. J Clin Microbiol 49(2):693–696. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Blaxter ML (2004) The promise of a DNA taxonomy. Philos Trans R Soc Lond B Biol Sci 359(1444):669–679. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Croxatto A, Prod’hom G, Greub G (2012) Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiol Rev 36(2):380–407. CrossRefPubMedGoogle Scholar
  11. Curtis TP, Sloan WT, Scannell JW (2002) Estimating prokaryotic diversity and its limits. Proc Natl Acad Sci USA 99(16):10494–10499. CrossRefPubMedGoogle Scholar
  12. Didelot X, Bowden R, Wilson DJ, Peto TE, Crook DW (2012) Transforming clinical microbiology with bacterial genome sequencing. Nat Rev Genet 13(9):601–612. CrossRefPubMedPubMedCentralGoogle Scholar
  13. Dufort S, Richard MJ, Lantuejoul S, De Fraipont F (2011) Pyrosequencing, a method approved to detect the two major EGFR mutations for anti EGFR therapy in NSCLC. J Exp Clin Cancer Res 30(1):57. CrossRefPubMedPubMedCentralGoogle Scholar
  14. Feng X, Yang G, Liu L, Lv F, Yang Q, Wang S, Zhu D (2012) A convenient preparation of multi-spectral microparticles by bacteria-mediated assemblies of conjugated polymer nanoparticles for cell imaging and barcoding. Adv Mater 24(5):637–641. CrossRefPubMedGoogle Scholar
  15. Fenollar F, Puechal X, Raoult D (2007) Whipple’s disease. N Engl J Med 356(1):55–66. CrossRefPubMedGoogle Scholar
  16. Greub G, Kebbi-Beghdadi C, Bertelli C, Collyn F, Riederer BM, Yersin C, Croxatto A, Raoult D (2009) High throughput sequencing and proteomics to identify immunogenic proteins of a new pathogen: the dirty genome approach. PLoS One 4(12):e8423. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Hajibabaei M, Singer GA, Hebert PD, Hickey DA (2007) DNA barcoding: how it complements taxonomy, molecular phylogenetics and population genetics. Trends Genet 23(4):167–172. CrossRefPubMedGoogle Scholar
  18. Hebert PD, Cywinska A, Ball SL (2003) Biological identifications through DNA barcodes. Proc R Soc Lond B Biol Sci 270(1512):313–321. CrossRefGoogle Scholar
  19. Hickerson MJ, Meyer CP, Moritz C (2006) DNA barcoding will often fail to discover new animal species over broad parameter space. Syst Biol 55(5):729–739. CrossRefPubMedGoogle Scholar
  20. Hill HD, Mirkin CA (2006) The bio-barcode assay for the detection of protein and nucleic acid targets using DTT-induced ligand exchange. Nat Protoc 1(1):324. CrossRefPubMedGoogle Scholar
  21. Hillemann D, Weizenegger M, Kubica T, Richter E, Niemann S (2005) Use of the genotype MTBDR assay for rapid detection of rifampin and isoniazid resistance in Mycobacterium tuberculosis complex isolates. J Clin Microbiol 43(8):3699–3703. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Holmes RK (2000) Biology and molecular epidemiology of diphtheria toxin and the tox gene. J Infect Dis 181(Suppl 1):S156–S167. CrossRefPubMedGoogle Scholar
  23. Hugenholtz P, Goebel BM, Pace NR (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180(18):4765–4774. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Iacono M, Villa L, Fortini D, Bordoni R, Imperi F, Bonnal RJ, Sicheritz-Ponten T, De Bellis G, Visca P, Cassone A, Carattoli A (2008) Whole-genome pyrosequencing of an epidemic multidrug-resistant Acinetobacter baumannii strain belonging to the European clone II group. Antimicrob Agents Chemother 52(7):2616–2625. CrossRefPubMedPubMedCentralGoogle Scholar
  25. Jolley KA, Bliss CM, Bennett JS, Bratcher HB, Brehony C, Colles FM, Wimalarathna H, Harrison OB, Sheppard SK, Cody AJ, Maiden MC (2012) Ribosomal multilocus sequence typing: universal characterization of bacteria from domain to strain. Microbiology 158(4):1005–1015. CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kaper JB, Nataro JP, Mobley HL (2004) Pathogenic Escherichia coli. Nat Rev Microbiol 2(2):123–140. CrossRefPubMedGoogle Scholar
  27. Kuroda M, Sekizuka T, Shinya F, Takeuchi F, Kanno T, Sata T, Asano S (2012) Detection of a possible bioterrorism agent, Francisella sp., in a clinical specimen by use of next-generation direct DNA sequencing. J Clin Microbiol 50(5):1810–1812. CrossRefPubMedPubMedCentralGoogle Scholar
  28. Lappin E, Ferguson AJ (2009) Gram-positive toxic shock syndromes. Lancet Infect Dis 9(5):281–290. CrossRefPubMedGoogle Scholar
  29. Larsen MV, Cosentino S, Rasmussen S, Friis C, Hasman H, Marvig RL, Jelsbak L, Sicheritz-Pontén T, Ussery DW, Aarestrup FM, Lund O (2012) Multilocus sequence typing of total-genome-sequenced bacteria. J Clin Microbiol 50(4):1355–1361CrossRefPubMedPubMedCentralGoogle Scholar
  30. Le T, Trexel J, Brugler A, Tiebel K, Maezato Y, Robertson B, Blum P (2013) Bar-coded Enterobacteria: an undergraduate microbial ecology laboratory module. Am J Educ Res 1(1):26–30. CrossRefGoogle Scholar
  31. Lee H, Kim J, Kim H, Kim J, Kwon S (2010) Colour-barcoded magnetic microparticles for multiplexed bioassays. Nat Mater 9(9):745–749. CrossRefPubMedGoogle Scholar
  32. Lieberman TD, Michel JB, Aingaran M, Potter-Bynoe G, Roux D, Davis MR Jr, Skurnik D, Leiby N, LiPuma JJ, Goldberg JB, McAdam AJ (2011) Parallel bacterial evolution within multiple patients identifies candidate pathogenicity genes. Nat Genet 43(12):1275–1280. CrossRefPubMedPubMedCentralGoogle Scholar
  33. Lim J, Kim SY, Kim S, Eo HS, Kim CB, Paek WK, Kim W, Bhak J (2009) BioBarcode: a general DNA barcoding database and server platform for Asian biodiversity resources. BMC Genomics 10(3):S8. CrossRefPubMedPubMedCentralGoogle Scholar
  34. Links MG, Dumonceaux TJ, Hemmingsen SM, Hill JE (2012) The chaperonin-60 universal target is a barcode for bacteria that enables de novo assembly of metagenomic sequence data. PLoS One 7(11):e49755. CrossRefPubMedPubMedCentralGoogle Scholar
  35. Liong M, Hoang AN, Chung J, Gural N, Ford CB, Min C, Shah RR, Ahmad R, Fernandez-Suarez M, Fortune SM, Toner M (2013) Magnetic barcode assay for genetic detection of pathogens. Nat Commun 4:1752. CrossRefPubMedPubMedCentralGoogle Scholar
  36. Liu B, Zhang X, Huang H, Zhang Y, Zhou F, Wang G (2014) A novel molecular typing method of Mycobacteria based on DNA barcoding visualization. J Clin Bioinforma 4(1):4. CrossRefPubMedPubMedCentralGoogle Scholar
  37. Makarova O, Contaldo N, Paltrinieri S, Kawube G, Bertaccini A, Nicolaisen M (2012) DNA barcoding for identification of ‘Candidatus Phytoplasmas’ using a fragment of the elongation factor Tu gene. PLoS One 7(12):e52092. CrossRefPubMedPubMedCentralGoogle Scholar
  38. Mecsas J, Bilis I, Falkow S (2001) Identification of attenuated Yersinia pseudotuberculosis strains and characterization of an orogastric infection in BALB/c mice on day 5 postinfection by signature-tagged mutagenesis. Infect Immun 69(5):2779–2787. CrossRefPubMedPubMedCentralGoogle Scholar
  39. Mellmann A, Harmsen D, Cummings CA, Zentz EB, Leopold SR, Rico A, Prior K, Szczepanowski R, Ji Y, Zhang W, McLaughlin SF (2011) Prospective genomic characterization of the German enterohemorrhagic Escherichia coli O104: H4 outbreak by rapid next generation sequencing technology. PLoS One 6(7):e22751. CrossRefPubMedPubMedCentralGoogle Scholar
  40. Miller SE (2005) Proposed standards for BARCODE records in INSDC (BRIs). Request document for continuation of support by the Alfred P. Sloan Foundation submitted by the Smithsonian Institution on behalf of Consortium for the barcode of Life: 22 January 2006, pp 36–38Google Scholar
  41. Neigel J, Domingo A, Stake J (2007) DNA barcoding as a tool for coral reef conservation. Coral Reefs 26(3):487. CrossRefGoogle Scholar
  42. Peikon ID, Gizatullina DI, Zador AM (2014) In vivo generation of DNA sequence diversity for cellular barcoding. Nucleic Acids Res 42(16):e127–e127. CrossRefPubMedPubMedCentralGoogle Scholar
  43. Quinones-Mateu ME, Avila S, Reyes-Teran G, Martinez MA (2014) Deep sequencing: becoming a critical tool in clinical virology. J Clin Virol 61(1):9–19. CrossRefPubMedPubMedCentralGoogle Scholar
  44. Rasko DA, Webster DR, Sahl JW, Bashir A, Boisen N, Scheutz F, Paxinos EE, Sebra R, Chin CS, Iliopoulos D, Klammer A (2011) Origins of the E. coli strain causing an outbreak of hemolytic–uremic syndrome in Germany. N Engl J Med 365(8):709–717. CrossRefPubMedPubMedCentralGoogle Scholar
  45. Ratnasingham S, Hebert PD (2007) BOLD: The Barcode of Life Data System ( Mol Ecol Resour 7(3):355–364.
  46. Rhode H, Qin J, Cui Y, Li D, Loman NJ, Hentschke M, Chen W, Pu F, Peng Y, Li J, Xi F, E. coli O104: H4 Genome Analysis Crowd-Sourcing Consortium (2012) Open-source genomic analysis of Shiga-toxin-producing E. coli O104: H4. N Engl J Med 365(8):718–724CrossRefGoogle Scholar
  47. Ripa T, Nilsson PA (2007) A Chlamydia trachomatis strain with a 377-bp deletion in the cryptic plasmid causing false-negative nucleic acid amplification tests. Sex Transm Dis 34(5):255–256. CrossRefPubMedGoogle Scholar
  48. Rubinoff D, Cameron S, Will K (2006) A genomic perspective on the shortcomings of mitochondrial DNA for “barcoding” identification. J Hered 97(6):581–594. CrossRefPubMedGoogle Scholar
  49. Savolainen V, Cowan RS, Vogler AP, Roderick GK, Lane R (2005) Towards writing the encyclopaedia of life: an introduction to DNA barcoding. Philos Trans R Soc Lond B Biol Sci 360(1462):1805–1811. CrossRefPubMedPubMedCentralGoogle Scholar
  50. Schneider G, Dobrindt U, Middendorf B, Hochhut B, Szijarto V, Emődy L, Hacker J (2011a) Mobilisation and remobilisation of a large archetypal pathogenicity island of uropathogenic Escherichia coli in vitro support the role of conjugation for horizontal transfer of genomic islands. BMC Microbiol 11(1):210. CrossRefPubMedPubMedCentralGoogle Scholar
  51. Schneider KL, Marrero G, Alvarez AM, Presting GG (2011b) Classification of plant associated bacteria using RIF, a computationally derived DNA marker. PLoS One 6(4):e18496. CrossRefPubMedPubMedCentralGoogle Scholar
  52. Serizawa M, Sekizuka T, Okutani A, Banno S, Sata T, Inoue S, Kuroda M (2010) Genomewide screening for novel genetic variations associated with ciprofloxacin resistance in Bacillus anthracis. Antimicrob Agents Chemother 54(7):2787–2792. CrossRefPubMedPubMedCentralGoogle Scholar
  53. Tallury P, Malhotra A, Byrne LM, Santra S (2010) Nanobioimaging and sensing of infectious diseases. Adv Drug Deliv Rev 62(4):424–437. CrossRefPubMedGoogle Scholar
  54. Tanabe AS, Toju H (2013) Two new computational methods for universal DNA barcoding: a benchmark using barcode sequences of bacteria, archaea, animals, fungi, and land plants. PLoS One 8(10):e76910. CrossRefPubMedPubMedCentralGoogle Scholar
  55. Tok JBH, Chuang F, Kao MC, Rose KA, Pannu SS, Sha MY, Chakarova G, Penn SG, Dougherty GM (2006) Metallic striped nanowires as multiplexed immunoassay platforms for pathogen detection. Angew Chem Int Ed 45(41):6900–6904. CrossRefGoogle Scholar
  56. Wang J, Soininen J, He J, Shen J (2012) Phylogenetic clustering increases with elevation for microbes. Environ Microbiol Rep 4(2):217–226. CrossRefPubMedGoogle Scholar
  57. Will KW, Mishler BD, Wheeler QD (2005) The perils of DNA barcoding and the need for integrative taxonomy. Syst Biol 54(5):844–851. CrossRefPubMedGoogle Scholar
  58. Wolk DM, Struelens MJ, Pancholi P, Davis T, Della-Latta P, Fuller D, Picton E, Dickenson R, Denis O, Johnson D, Chapin K (2009) Rapid detection of Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) in wound specimens and blood cultures: multicenter preclinical evaluation of the Cepheid Xpert MRSA/SA skin and soft tissue and blood culture assays. J Clin Microbiol 47(3):823–826. CrossRefPubMedPubMedCentralGoogle Scholar
  59. Wu D, Hugenholtz P, Mavromatis K, Pukall R, Dalin E, Ivanova NN, Kunin V, Goodwin L, Wu M, Tindall BJ, Hooper SD, D’haeseleer P, Zemla A, Singer M, Lapidus A, Nolan M, Copeland A, Han C, Chen F, Cheng JF, Lucas S, Kerfeld C, Lang E, Gronow S, Chain P, Bruce D, Rubin EM, Kyrpides NC, Klenk HP, Eisen JA (2009) A phylogeny-driven genomic encyclopaedia of bacteria and archaea. Nature 462:1056–1060. CrossRefPubMedPubMedCentralGoogle Scholar
  60. Zhang D, Carr DJ, Alocilja EC (2009) Fluorescent bio-barcode DNA assay for the detection of Salmonella enterica serovar Enteritidis. Biosens Bioelectron 24(5):1377–1381. CrossRefPubMedGoogle Scholar
  61. Zubair M, Malik A, Ahmad J (2012) Study of plasmid-mediated extended-spectrum β-lactamase-producing strains of enterobacteriaceae, isolated from diabetic foot infections in a North Indian tertiary-care hospital. Diabetes Technol Ther 14(4):315–324. CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Mohammad Zubair
    • 1
  • Farha Fatima
    • 2
  • Shamina Begum
    • 1
  • Zahid Hameed Siddiqui
    • 3
  1. 1.Department of Medical Microbiology, Faculty of MedicineUniversity of TabukTabukKingdom of Saudi Arabia
  2. 2.Department of Zoology, Faculty of Life ScienceAligarh Muslim UniversityAligarhIndia
  3. 3.Department of Biology, Faculty of ScienceUniversity of TabukTabukKingdom of Saudi Arabia

Personalised recommendations