Advertisement

Molecular Characterization of Ruminant Mammals Using DNA Barcodes

  • Muniyandi Nagarajan
  • Koodali Nimisha
  • Subhash Thomas
Chapter

Abstract

Ruminant mammals are widely distributed across the world and distinguished from other mammals by the presence of four-chambered stomach. Most of the ruminants are wild, while a few are domestic which contribute significantly to the agricultural economy in the form of livestock resources. Characterization of livestock breeds and the exact identification of wild ruminant species are imperative for developing improved breeds and wildlife conservation, respectively. Though, taxonomists determine breeds and species based on morphological traits, which is nugatory in the case of cryptic species or when unrelated species exhibit similar morphological traits. However, the emerging DNA-based technique has overcome the challenges and limitations faced by the conventional methods. DNA barcoding, specifically, the discovery of mitochondrial cytochrome c oxidase subunit I (COI) gene as a standard DNA barcode region for animals, has transfigured the realm of molecular systematics by providing a platform to expeditiously find novel lineages and elucidate ruminant phylogeny. Despite this, DNA barcoding has huge applications including detection of adulteration and mislabeling of bush meat and checking wildlife poaching and animal trafficking. This chapter provides an overview of ruminant mammals and the usefulness of COI gene in the identification of ruminant species.

Keywords

Ruminant Mammal COI gene Phylogeny 

Notes

Acknowledgments

The senior author is thankful to the Science and Engineering Research Board (SERB), Department of Science and Technology, Government of India, New Delhi for the financial Assistance (SR/S0/AS-84/2012). ST is thankful to the Kerala State Council for Science, Technology and Environment (KSCSTE) for the support in the form of research fellowship.

References

  1. Ajmone-Marsan P, Negrini R, Crepaldi P et al (2001) Assessing genetic diversity in Italian goat populations using AFLP markers. Anim Genet 32:281–288CrossRefPubMedGoogle Scholar
  2. Ali A, Rehman A, William K (2016) Phylogenetic analysis of Capra hircus commonly found goat breeds of Pakistan using DNA barcode. J Bioresour Manage 3(1)Google Scholar
  3. Arif IA, Bakir MA, Khan HA (2012) Inferring the phylogeny of bovidae using mitochondrial DNA sequences: resolving power of individual genes relative to complete genomes. Evol Bioinformatics Online 8:139–150.  https://doi.org/10.4137/EBO.S8897CrossRefGoogle Scholar
  4. Avise JC (1994) History of molecular phylogenetics. In: Avise JC (ed) Molecular markers, natural history and evolution. Springer, pp 16–43Google Scholar
  5. Bai JL (2015) Phylotaxonomic position of Tianzhu white yak (Poephagus grunniens) based on nucleotide sequences of multiple subunits of cytochrome c oxidase. J Appl Anim Res 43:431–438.  https://doi.org/10.1080/09712119.2014.980416CrossRefGoogle Scholar
  6. Barrett RDH, Hebert PDN (2005) Identifying spiders through DNA barcodes. Can J Zool 83:481–491.  https://doi.org/10.1139/z05-024CrossRefGoogle Scholar
  7. Bitanyi S, Bjørnstad G, Ernest EM et al (2011) Species identification of Tanzanian antelopes using DNA barcoding. Mol Ecol Resour 11:442–449.  https://doi.org/10.1111/j.1755-0998.2011.02980.xCrossRefPubMedGoogle Scholar
  8. Bondoc OL, Cerbito WA (2013) Genetic diversity and relationships of domestic goat and sheep breeds (Artiodactyla: Bovidae: Caprinae) in the Philippines based on DNA barcodes. J Vet Sci 50(2):64–74Google Scholar
  9. Bozzi R, Degl’Innocenti P, Rivera Diaz P et al (2009) Genetic characterization and breed assignment in five Italian sheep breeds using microsatellite markers. Small Rumin Res 85:50–57.  https://doi.org/10.1016/j.smallrumres.2009.07.005CrossRefGoogle Scholar
  10. Cai Y, Zhang L, Shen F et al (2011) DNA barcoding of 18 species of Bovidae. Chin Sci Bull 56:164–168.  https://doi.org/10.1007/s11434-010-4302-1CrossRefGoogle Scholar
  11. Cai Y, Zhang L, Wang Y et al (2015) Identification of deer species (Cervidae, Cetartiodactyla) in China using mitochondrial cytochrome c oxidase subunit I (mtDNA COI). Mitochondrial DNA 1736:1–4.  https://doi.org/10.3109/19401736.2014.1003919CrossRefGoogle Scholar
  12. Cywinska A, Hunter FF, Hebert PDN (2006) Identifying Canadian mosquito species through DNA barcodes. Med Vet Entomol 20:413–424.  https://doi.org/10.1111/j.1365-2915.2006.00653.xCrossRefPubMedGoogle Scholar
  13. D’Amato ME, Alechine E, Cloete KW et al (2013) Where is the game? Wild meat products authentication in South Africa: a case study. Investig Genet 4:6.  https://doi.org/10.1186/2041-2223-4-6CrossRefPubMedPubMedCentralGoogle Scholar
  14. Dalton DL, Kotze A (2011) DNA barcoding as a tool for species identification in three forensic wildlife cases in South Africa. Forensic Sci Int 207:e51–e54.  https://doi.org/10.1016/j.forsciint.2010.12.017CrossRefPubMedGoogle Scholar
  15. de Mello Klocker Vasconcellos LP, Tambasco-Talhari D, Pozzi Pereira A et al (2003) Genetic characterization of Aberdeen Angus cattle using molecular markers. Genet Mol Biol 26:133–137.  https://doi.org/10.1590/S1415-47572003000200005CrossRefGoogle Scholar
  16. Elmeer K, Almalki A, Mohran KA et al (2012) DNA barcoding of Oryx leucoryx using the mitochondrial cytochrome C oxidase gene. Genet Mol Res 11(1):539–547CrossRefPubMedGoogle Scholar
  17. Fernández MH, Vrba ES (2005) A complete estimate of the phylogenetic relationships in Ruminantia: a dated species-level supertree of the extant ruminants. Biol Rev 80:269–302.  https://doi.org/10.1017/S1464793104006670CrossRefGoogle Scholar
  18. Ferri E, Barbuto M, Bain O et al (2009) Integrated taxonomy: traditional approach and DNA barcoding for the identification of filarioid worms and related parasites (Nematoda). Front Zool 6(1).  https://doi.org/10.1186/1742-9994-6-1
  19. Gatesy J, Yelon D, Desall R, Vrba ES (1992) Phylogeny of the Bovidae (Artiodactyla, Mammalia), based on mitochondrial ribosomal DNA sequences. Mol Biol Evol 9(3):433–446PubMedGoogle Scholar
  20. Gentry AW (1994) The Miocene differentiation of old world Pecora (Mammalia). Hist Biol 7:115–158.  https://doi.org/10.1080/10292389409380449CrossRefGoogle Scholar
  21. Gjerde B (2013) Phylogenetic relationships among Sarcocystis species in cervids, cattle and sheep inferred from the mitochondrial cytochrome c oxidase subunit I gene. Int J Parasitol 43:579–591.  https://doi.org/10.1016/j.ijpara.2013.02.004CrossRefPubMedGoogle Scholar
  22. Hackmann TJ, Spain JN (2010) Invited review: ruminant ecology and evolution: perspectives useful to ruminant livestock research and production. J Dairy Sci 93:1320–1334.  https://doi.org/10.3168/jds.2009-2071CrossRefPubMedGoogle Scholar
  23. Hajibabaei M, Janzen DH, Burns JM et al (2006) DNA barcodes distinguish species of tropical Lepidoptera. Proc Natl Acad Sci U S A 103:968–971.  https://doi.org/10.1073/pnas.0510466103CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hassanin A, Douzery EJP (2003) Molecular and morphological phylogenies of ruminantia and the alternative position of the moschidae. Syst Biol 52:206–228CrossRefPubMedGoogle Scholar
  25. Hassanin A, Ropiquet A (2004) Molecular phylogeny of the tribe Bovini (Bovidae, Bovinae) and the taxonomic status of the Kouprey, Bos sauveli Urbain 1937. Mol Phylogenet Evol 33:896–907.  https://doi.org/10.1016/j.ympev.2004.08.009CrossRefPubMedGoogle Scholar
  26. Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003a) Biological identifications through DNA barcodes. Proc Biol Sci 270:313–321.  https://doi.org/10.1098/rspb.2002.2218CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hebert PDN, Ratnasingham S, Waard J (2003b) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc Lond B 270:S96–S99.  https://doi.org/10.1098/rsbl.2003.0025CrossRefGoogle Scholar
  28. Hebert PDN, Penton EH, Burns JM et al (2004a) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc Natl Acad Sci U S A 101:14812–14817CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hebert PDN, Stoeckle MY, Zemlak TS, Francis CM (2004b) Identification of birds through DNA barcodes. PLoS Biol 2(10):e312CrossRefPubMedPubMedCentralGoogle Scholar
  30. Heywood JJN (2010) Explaining patterns in modern ruminant diversity: contingency or constraint? Biol J Linn Soc 99:657–672.  https://doi.org/10.1111/j.1095-8312.2010.01436.xCrossRefGoogle Scholar
  31. Janzen DH, Hajibabaei M, Burns JM et al (2005) Wedding biodiversity inventory of a large and complex Lepidoptera fauna with DNA barcoding. Philos Trans R Soc Lond Ser B Biol Sci 360:1835–1845.  https://doi.org/10.1098/rstb.2005.1715CrossRefGoogle Scholar
  32. Kane DE, Hellberg RS (2016) Identification of species in ground meat products sold on the U.S. commercial market using DNA-based methods. Food Control 59:158–163.  https://doi.org/10.1016/j.foodcont.2015.05.020CrossRefGoogle Scholar
  33. Kemp TS (2004) The origin and evolution of mammals. Oxford University Press, New YorkGoogle Scholar
  34. Khaldi Z, Rekik B, Haddad B, et al (2010) Genetic characterization of three ovine breeds in Tunisia using randomly amplified polymorphic DNA markersGoogle Scholar
  35. Kraus F, Miyamoto MM (1991) Rapid cladogenesis among the pecoran ruminants: evidence from mitochondrial DNA sequences. Syst Zool 40:117–130CrossRefGoogle Scholar
  36. Kulemzina AI, Yang F, Trifonov VA et al (2011) Chromosome painting in Tragulidae facilitates the reconstruction of Ruminantia ancestral karyotype. Chromosom Res 19:531–539.  https://doi.org/10.1007/s10577-011-9201-zCrossRefGoogle Scholar
  37. Kumar S, Gupta J, Kumar N, Dikshit K, Navani N, Jain P, Nagarajan M (2006) Genetic variation and relationships among eight Indian riverine buffalo breeds. Mol Ecol 15:593–600CrossRefPubMedGoogle Scholar
  38. Kumar S, Nagarajan M, Sandhu JS, Kumar N, Behl V, Nishanth G (2007) Mitochondrial DNA analyses of Indian water buffalo support a distinct genetic origin of river and swamp buffalo. Anim Genet 38:227–232CrossRefPubMedGoogle Scholar
  39. Lai SJ, Liu YP, Liu YX, Li XW, Yao YG (2006) Genetic diversity and origin of Chinese cattle revealed by mtDNA D-loop sequence variation. Mol Phylogenet Evol 38:146–154CrossRefPubMedGoogle Scholar
  40. Mahrous K, Ramadan H (2011) Genetic variations between camel breeds using microsatellite markers and RAPD techniques. J Appl Biosci 39:2626–2634Google Scholar
  41. Mbugua D (2014) Use of cytochrome oxidase 1 gene region: a molecular tool for the domestic and wildlife industry in Kenya. Sci J Anim Sci 3(3):87–94Google Scholar
  42. Nagarajan M, Kumar N, Nishanth G et al (2009) Microsatellite markers of water buffalo, Bubalus bubalis- development, characterisation and linkage disequilibrium studies. BMC Genet 10:68.  https://doi.org/10.1186/1471-2156-10-68CrossRefPubMedPubMedCentralGoogle Scholar
  43. Nagarajan M, Nimisha K, Kumar S (2015) Mitochondrial DNA variability of domestic river buffalo (Bubalus bubalis) populations: genetic evidence for domestication of river buffalo in Indian subcontinent. Genome Biol Evol 7:1252–1259.  https://doi.org/10.1093/gbe/evv067CrossRefPubMedPubMedCentralGoogle Scholar
  44. Nagy ZT, Sonet G, Glaw F, Vences M (2012) First large-scale DNA barcoding assessment of reptiles in the biodiversity hotspot of Madagascar, based on newly designed COI primers. PLoS One 7:e34506CrossRefPubMedPubMedCentralGoogle Scholar
  45. Qiu Q, Zhang G, Ma T et al (2012) The yak genome and adaptation to life at high altitude. Nat Genet 44:946–949CrossRefPubMedGoogle Scholar
  46. Quinto CA, Tinoco R, Hellberg RS (2016) DNA barcoding reveals mislabeling of game meat species on the U.S. commercial market. Food Control 59:386–392.  https://doi.org/10.1016/j.foodcont.2015.05.043CrossRefGoogle Scholar
  47. Saifi HW, Bhushan B, Kumar S et al (2004) Genetic identity between Bhadawari and Murrah breeds of Indian buffaloes (Bubalus bubalis) using RAPD-PCR. Asian-Australas J Anim Sci 17:603–607.  https://doi.org/10.5713/ajas.2004.603CrossRefGoogle Scholar
  48. Sanches A, Tokumoto PM, Peres WAM et al (2012) Illegal hunting cases detected with molecular forensics in Brazil. Investig Genet 3:17.  https://doi.org/10.1186/2041-2223-3-17CrossRefPubMedPubMedCentralGoogle Scholar
  49. Santos-Silva F, Ivo RS, Sousa MCO et al (2008) Assessing genetic diversity and differentiation in Portuguese coarse-wool sheep breeds with microsatellite markers. Small Rumin Res 78:32–40.  https://doi.org/10.1016/j.smallrumres.2008.04.006CrossRefGoogle Scholar
  50. Sharma G, Kamalakannan M, Venkataraman K (2013) A checklist of mammals of India with their distribution and conservation status. Director Zoological Survey of IndiaGoogle Scholar
  51. Sodhi M, Mukesh M, Anand A et al (2006) Assessment of genetic variability in two North Indian Buffalo breeds using random amplified polymorphic DNA (RAPD) markers. Asian-Aust J Anim Sci 19:1234–1239.  https://doi.org/10.5713/ajas.2006.1234CrossRefGoogle Scholar
  52. Stanley HF, Kadwell M, Wheeler JC (1994) Molecular evolution of the family Camelidae: a mitochondrial DNA study. Proc Biol Sci 256:1–6.  https://doi.org/10.1098/rspb.1994.0041CrossRefPubMedGoogle Scholar
  53. Syakalima M, Munyeme M, Yasuda J (2016) Cytochrome c oxidase sequences of Zambian wildlife helps to identify species of origin of meat. doi:  https://doi.org/10.1155/2016/1808912
  54. Tamura K, Peterson D, Peterson N et al (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739.  https://doi.org/10.1093/molbev/msr121CrossRefPubMedPubMedCentralGoogle Scholar
  55. Thornton PK (2010) Livestock production: recent trends, future prospects. Philos Trans R Soc Lond Ser B Biol Sci 365:2853–2867.  https://doi.org/10.1098/rstb.2010.0134CrossRefGoogle Scholar
  56. Tu Z-C, Qiu H, Zhang Y-P (2002) Polymorphism in mitochondrial DNA (mtDNA) of yak (Bos grunniens). Biochem Genet 40:187–193CrossRefPubMedGoogle Scholar
  57. Valdez-Moreno M, Vásquez-Yeomans L, Elías-Gutiérrez M et al (2010) Using DNA barcodes to connect adults and early life stages of marine fishes from the Yucatan Peninsula, Mexico: potential in fisheries management. Mar Freshw Res 61:655–671CrossRefGoogle Scholar
  58. Vences M, Thomas M, Bonett RM, Vieites DR (2005) Deciphering amphibian diversity through DNA barcoding: chances and challenges. Philos Trans R Soc B Biol Sci 360:1859–1868.  https://doi.org/10.1098/rstb.2005.1717CrossRefGoogle Scholar
  59. Vences M, Nagy ZT, Sonet G, Verheyen E (2012) DNA barcoding amphibians and reptiles. Methods Mol Biol 858:79–107.  https://doi.org/10.1007/978-1-61779-591-6_5CrossRefPubMedGoogle Scholar
  60. Wang JJ-F, Jiang L-Y, Qiao G-X (2011) Use of a mitochondrial COI sequence to identify species of the subtribe Aphidina (Hemiptera, Aphididae). Zookeys 122:1–17.  https://doi.org/10.3897/zookeys.122.1256CrossRefGoogle Scholar
  61. Ward RD, Zemlak TS, Innes BH et al (2005) DNA barcoding Australia’s fish species. Philos Trans R Soc Lond Ser B Biol Sci 360:1847–1857.  https://doi.org/10.1098/rstb.2005.1716CrossRefGoogle Scholar
  62. Waugh J (2007) DNA barcoding in animal species: progress, potential and pitfalls. BioEssays 29:188–197.  https://doi.org/10.1002/bies.20529CrossRefPubMedGoogle Scholar
  63. Wilson DE, Reeder DAM (2005) Mammal species of the world: a taxonomic and geographic reference. Johns Hopkins University PressGoogle Scholar
  64. Xiang-long L, Zhang Y, Shen-gou C et al (1997) Study on the mtDNA RFLP of goat breeds. Zool Res 18:421–428Google Scholar
  65. Xie Y, Li Y, Zhao X, et al (2010) Origins of the Chinese Yak: evidence from maternal and paternal inheritance. In: 2010 4th international conference on bioinformatics and biomedical engineering, pp 1–5Google Scholar
  66. Yan D, Luo JY, Han YM et al (2013) Forensic DNA barcoding and bio-response studies of animal horn products used in traditional medicine. PLoS One 8:e55854CrossRefPubMedPubMedCentralGoogle Scholar
  67. Zhang RL, Zhang B (2014) Prospects of using DNA barcoding for species identification and evaluation of the accuracy of sequence databases for ticks (Acari: Ixodida). Ticks Tick Borne Dis 5:352–358.  https://doi.org/10.1016/j.ttbdis.2014.01.001CrossRefPubMedGoogle Scholar
  68. Zhengchao T, Yaping Z, Huai Q (1998) Mitochondrial DNA polymorphism and genetic diversity in Chinese yaks. Yi Chuan Xue Bao 25:205–212Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Muniyandi Nagarajan
    • 1
  • Koodali Nimisha
    • 1
  • Subhash Thomas
    • 1
  1. 1.Department of Genomic ScienceSchool of Biological Sciences, Central University of KeralaKasargodIndia

Personalised recommendations