DNA Barcoding of Rays from the South China Sea

  • B. Akbar John
  • M. A. Muhamad Asrul
  • Wahidah Mohd Arshaad
  • K. C. A. Jalal
  • Hassan I. Sheikh


Fishery management on elasmobranch is gaining attention in recent years due to their economic value and key ecological role played by them in their natural habitat. Many species of elasmobranch especially rays exhibit overlapping morphological similarities and hence difficult to identify to their species level. As an accurate identification is the key for developing framework for fishery management, we used molecular approach to identify ray fishes sampled from South China Sea. We used cytochrome oxidase subunit I (COI) sequencing (∼652 bp) to cross-examine field identification of ray fishes. A total of ten species that belong to three families were successfully sequenced/identified from 29 PCR products. BLAST/BOLD analyses were performed, and inter- and intraspecies genetic distances were calculated. Due to overlapping morphological characters and morphocryptic nature, their accurate field identification is challenging. We also addressed problems in species-level delimitation of ray fishes due to the paucity of information in DNA databanks besides unresolved taxonomic status of available data set. We further addressed management and action plan for sustainable management of elasmobranch fishery in Malaysia.


DNA barcoding COI gene Ray fish Batoids 


  1. Ahmad A, Annie Lim PK, Fahmi D, Krajangdara T (2013) Field guide to look-alike sharks and rays species of the Southeast Asian Region. Southeast Asians Fisheries Development Center/Marine Fishery Resources Development and Management DepartmentGoogle Scholar
  2. Ambak MA, Terengganu, PUM (2012) Fishes of Malaysia: Penerbit UMTGoogle Scholar
  3. Bineesh K, Gopalakrishnan A, Akhilesh K, Sajeela K, Abdussamad E, Pillai N, et al (2016) DNA barcoding reveals species composition of sharks and rays in the Indian commercial fishery. Mitochondrial DNA Part A, pp 1–15Google Scholar
  4. Blagoev GA, deWaard JR, Ratnasingham S, deWaard SL, Lu L, Robertson J et al (2016) Untangling taxonomy: a DNA barcode reference library for Canadian spiders. Mol Ecol Resour 16(1):325–341CrossRefPubMedGoogle Scholar
  5. Bortolus A (2008) Error cascades in the biological sciences: the unwanted consequences of using bad taxonomy in ecology. AMBIO 37(2):114–118CrossRefPubMedGoogle Scholar
  6. Burns JM, Janzen DH, Hajibabaei M, Hallwachs W, Hebert PD (2007) DNA barcodes of closely related (but morphologically and ecologically distinct) species of skipper butterflies (Hesperiidae) can differ by only one to three nucleotides. J Lepidopter Soc 61(3):138–153Google Scholar
  7. Cerutti-Pereyra F, Meekan MG, Wei N-WV, O'Shea O, Bradshaw CJ, Austin CM (2012) Identification of rays through DNA barcoding: an application for ecologists. PLoS One 7(6):e36479CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chang CH, Shao KT, Lin HY, Chiu YC, Lee MY, Liu SH, Lin PL (2017) DNA barcodes of the native ray-finned fishes in Taiwan. Mol Ecol Resour 17:796–805CrossRefPubMedGoogle Scholar
  9. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3(5):294–299PubMedGoogle Scholar
  10. Griffiths AM, Miller DD, Egan A, Fox J, Greenfield A, Mariani S (2013) DNA barcoding unveils skate (Chondrichthyes: Rajidae) species diversity in ‘ray’ products sold across Ireland and the UK. PeerJ 1:e129CrossRefPubMedPubMedCentralGoogle Scholar
  11. Hebert PD, Gregory TR (2005) The promise of DNA barcoding for taxonomy. Syst Biol 54(5):852–859CrossRefPubMedGoogle Scholar
  12. Hebert PD, Cywinska A, Ball SL (2003) Biological identifications through DNA barcodes. Proc R Soc Lond B Biol Sci 270(1512):313–321CrossRefGoogle Scholar
  13. Holmes BH, Steinke D, Ward RD (2009) Identification of shark and ray fins using DNA barcoding. Fish Res 95(2):280–288CrossRefGoogle Scholar
  14. Ivanova NV, Zemlak TS, Hanner RH, Hebert PD (2007) Universal primer cocktails for fish DNA barcoding. Mol Ecol Notes 7(4):544–548CrossRefGoogle Scholar
  15. John BA, Sheikh HI, Jalal K, Zaleha K, Kamaruzzaman B (2016) Revised phylogeny of extant xiphosurans (Horseshoe Crabs). In: DNA barcoding in marine perspectives. Springer, pp 113–130Google Scholar
  16. Madduppa H, Ayuningtyas RU, Subhan B, Arafat D (2016) Exploited but unevaluated: DNA barcoding reveals skates and stingrays (Chordata, Chondrichthyes) species landed in the Indonesian fish market. Indon J Mar Sci 21(2):77–84CrossRefGoogle Scholar
  17. Manjaji-Matsumoto BM, Last PR (2008) Himantura leoparda sp. nov., a new whipray (Myliobatoidei: Dasyatidae) from the Indo–Pacific. Descriptions of new Australian Chondrichthyans. CSIRO Mar Atm Res Pap 22:293–301Google Scholar
  18. Naylor GJ, Caira JN, Jensen K, Rosana K, White WT, Last P (2012) A DNA sequence-based approach to the identification of shark and ray species and its implications for global elasmobranch diversity and parasitology. Bull Am Mus Nat Hist:1–262Google Scholar
  19. Sandoval-Castillo J, Rocha-Olivares A (2011) Deep mitochondrial divergence in Baja California populations of an aquilopelagic elasmobranch: the golden cownose ray. J Hered 102(3):269–274CrossRefPubMedGoogle Scholar
  20. Steinke D, Prosser SW, Hebert PD (2016) DNA barcoding of marine metazoans. Mar Genomics Methods Protoc:155–168Google Scholar
  21. The IUCN Red List of Threatened Species. Version 2016-3. Retrieved 28 Jan 2017 from www.iucnredlist.orgGoogle Scholar
  22. Toffoli D, Hrbek T, Araújo MLG d, Almeida MP d, Charvet-Almeida P, Farias IP (2008) A test of the utility of DNA barcoding in the radiation of the freshwater stingray genus Potamotrygon (Potamotrygonidae, Myliobatiformes). Genet Mol Biol 31(1):324–336CrossRefGoogle Scholar
  23. Ward RD, Holmes BH, White WT, Last PR (2008) DNA barcoding Australasian chondrichthyans: results and potential uses in conservation. Mar Freshw Res 59(1):57–71CrossRefGoogle Scholar
  24. Ward RD, Hanner R, Hebert PD (2009) The campaign to DNA barcode all fishes, FISH-BOL. J Fish Biol 74(2):329–356CrossRefPubMedGoogle Scholar
  25. White WT, Last PR, Naylor GJ, Jensen K, Caira JN (2010) Clarification of Aetobatus ocellatus (Kuhl, 1823) as a valid species, and a comparison with Aetobatus narinari (Euphrasen, 1790) (Rajiformes: Myliobatidae). Descriptions of new sharks and rays from Borneo. CSIRO Mar Atmos Res Pap 32:141–164Google Scholar
  26. Wynen L, Larson H, Thorburn D, Peverell S, Morgan D, Field I, Gibb K (2009) Mitochondrial DNA supports the identification of two endangered river sharks (Glyphis glyphis and Glyphis garricki) across northern Australia. Mar Freshw Res 60(6):554–562CrossRefGoogle Scholar
  27. Zemlak TS, Ward RD, Connell AD, Holmes BH, Hebert PD (2009) DNA barcoding reveals overlooked marine fishes. Mol Ecol Resour 9(s1):237–242CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • B. Akbar John
    • 1
  • M. A. Muhamad Asrul
    • 2
  • Wahidah Mohd Arshaad
    • 4
  • K. C. A. Jalal
    • 2
  • Hassan I. Sheikh
    • 3
  1. 1.INOCEM Research Station (IRS)Kulliyyah of Science, International Islamic University Malaysia (IIUM)KuantanMalaysia
  2. 2.Department of Marine ScienceKulliyyah of Science, International Islamic University Malaysia (IIUM)KuantanMalaysia
  3. 3.Department of BiotechnologyKulliyyah of Science, International Islamic University Malaysia (IIUM)KuantanMalaysia
  4. 4.Department of FisheriesSEFDECTerengganuMalaysia

Personalised recommendations