DNA Barcoding of Mosquito Species

  • Lalita Gupta
  • Sanjeev Kumar
  • Kuldeep Gupta


Insects are the very diverse group of animals that exist on earth since its origin. Their genomic diversity as well as existence also imparts into the species variability, which also stays alive with their future counterparts. Among insects, there are about 3500 species of mosquitoes (Diptera, Culicidae) which have been described worldwide. In this chapter, we deal with DNA barcoding, the use of short, standardized genomic segments as markers for species identification. DNA barcoding is a novel concept for taxonomic categorization of various insects species and has been applied to study a large number of eukaryotes. At present, 10% of insects species have been DNA barcoded. In insects, interspecific variation in DNA sequences of some genes is much higher than intraspecific variability. This provides an opportunity to use DNA sequences for species identification through a fragment of the nuclear or mitochondrial gene which has been selected as the standard barcoding region. Mitochondrial molecular markers always have been a good choice over the nuclear molecular marker by having the less number of evolutionary changes in their subcompartment genome. DNA barcoding is a recent and widely used molecular-based identification system that aims to identify biological specimens and assigning them to a given species. It can be considered the core of an integrated taxonomic system, where bioinformatics and phylogenetics play a key role. DNA barcoding can be used to discover cryptic, closely related and morphologically similar species that were overlooked earlier by the traditional morphology-based approaches.


Cytochrome oxidase I (COI) Barcode of Life Data System (BOLD) DNA amplification Genetic diversity Species diversity Insect biodiversity 


  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefGoogle Scholar
  2. Arnqvist G (1998) Comparative evidence for the evolution of genitalia by sexual selection. Nature 393:784–786CrossRefGoogle Scholar
  3. Bächtold A, Kaminski LA, Magaldi LM, Oliveira PS, Del-Claro K, Janzen DH, Burns JM, Grishin N, Hajibabaei M, Hallwachs W et al (2017) Integrative data helps the assessment of a butterfly within the Udranomia kikkawai species complex (Lepidoptera: Hesperiidae): immature stages, natural history, and molecular evidence. Zool Anz J Comp Zool 266:169–176CrossRefGoogle Scholar
  4. Balakrishnan R (2005) Species concepts, species boundaries and species identification: a view from the tropics. Syst Biol 54:689–693CrossRefPubMedGoogle Scholar
  5. Ball SL, Armstrong KF (2006) DNA barcodes for insect pest identification: a test case with tussock moths (Lepidoptera: Lymantriidae). Can J For Res 36:337–350CrossRefGoogle Scholar
  6. Beebe NW, Foley DH, Cooper RD, Bryan JH, Saul A (1996) DNA probes for the Anopheles punctulatus complex. Am J Trop Med Hyg 54:395–398CrossRefPubMedGoogle Scholar
  7. Beutel RG, Pohl H (2006) Endopterygote systematics – where do we stand and what is the goal (Hexapoda, Arthropoda)? Syst Entomol 31:202–219CrossRefGoogle Scholar
  8. Blaxter M, Mann J, Chapman T, Thomas F, Whitton C, Floyd R, Abebe E (2005) Defining operational taxonomic units using DNA barcode data. Philos Trans R Soc London (Ser B) 360:1935–1943CrossRefGoogle Scholar
  9. Chen B, Butlin RK, Pedro PM, Wang XZ, Harbach RE (2006) Molecular variation, systematics and distribution of the Anopheles fluviatilis complex in southern Asia. Med Vet Entomol 20:33–43CrossRefPubMedGoogle Scholar
  10. Claridge MF, Dawah HA, Wilson MR (eds) (1997) Species: the units of biodiversity. Chapman and Hall, LondonGoogle Scholar
  11. Cock MJW, Alston-Smith S (2017) Six new records of butterflies (Lepidoptera, Papilionoidea) from Trinidad, West Indies. Living World J Trinidad Tob Field Nat Club 2017:7–13Google Scholar
  12. Cywinska A, Hunter FF, Hebert PDN (2006) Identifying Canadian mosquito species through DNA barcodes. Med Vet Entomol 20:413–424CrossRefPubMedGoogle Scholar
  13. Daravath SS, Siddaiah M, ReddyaNaik B (2015) Molecular characterization and phylogenetic analysis of culex quinquefasciatus by DNA barcoding. Adv Entomol 3(3):118–124CrossRefGoogle Scholar
  14. Ebach MC, Holdrege C (2005) DNA barcoding is no substitute for taxonomy. Nature 434:697CrossRefPubMedGoogle Scholar
  15. Eberhard WG (1985) Sexual selection and animal genitalia. Harvard University Press, Cambridge, MACrossRefGoogle Scholar
  16. Fanello CF, Santolamazza F, Torre AD (2002) Simultaneous identification of species and molecular forms of the Anopheles gambiae complex by PCR-RFLP. Med Vet Entomol 16:461–464CrossRefPubMedGoogle Scholar
  17. Foley DH, Wilkerson RC, Cooper RD, Volovsek ME, Bryan JH (2007) A molecular phylogeny of Anopheles annulipes (Diptera: Culicidae) sensu lato: the most species-rich anopheline complex. Mol Phylogenet Evol 43:283–297CrossRefPubMedGoogle Scholar
  18. Garros C, Harbach RE, Manguin S (2005) Morphological assessment and molecular phylogenetics of the Funestus and Minimus groups of Anopheles (Cellia). J Med Entomol 42:522–536CrossRefPubMedGoogle Scholar
  19. Giangrande A (2003) Biodiversity, conservation, and the ‘taxonomic impediment. Aquat Conserv Mar Freshwat Ecosyst 13:451–459CrossRefGoogle Scholar
  20. Godfray HC (2002) Challenges for taxonomy. Nature 417:17–19CrossRefPubMedGoogle Scholar
  21. Green CA, Munstermann LE, Tan SG, Panyim S, Baimai V (1992) Population genetic evidence for species A, species-B, species-C and species-D of the Anopheles dirus complex in Thailand and enzyme electromorphs for their identification. Med Vet Entomol 6:29–36CrossRefPubMedGoogle Scholar
  22. Grimaldi DA, Engel MS (2005) Evolution of the insects. Cambridge University Press, CambridgeGoogle Scholar
  23. Gunay F, Alten B, Simsek F, Aldemir A, Linton YM (2015) Barcoding Turkish Culex mosquitoes to facilitate arbovirus vector incrimination studies reveals hidden diversity and new potential vectors. Acta Trop 143:112–120CrossRefPubMedGoogle Scholar
  24. Gupta K, Dhawan R, Kajla M, Kumar S, Jnanasiddhy B, Singh NK, Dixit R, Bihani A, Gupta L (2016) Molecular identification of Aedes aegypti mosquitoes from Pilani region of Rajasthan, India. J Vector Borne Dis 53(2):149–155PubMedGoogle Scholar
  25. Hajibabaei M, Janzen DH, Burns JM, Hallwachs W, Hebert PDN (2006) DNA barcodes distinguish species of tropical Lepidoptera. Proc Natl Acad Sci USA 103(4):968–971CrossRefPubMedGoogle Scholar
  26. Hebert PDN, Gregory TR (2005) The promise of DNA barcoding for taxonomy. Syst Biol 54(5):852–859CrossRefPubMedGoogle Scholar
  27. Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003a) Biological identifications through DNA barcodes. Proc R Soc B Biol Sci 270:313–321CrossRefGoogle Scholar
  28. Hebert PDN, Ratnasingham S, deWaard JR (2003b) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc B Biol Sci 270(Suppl):S96–S99CrossRefGoogle Scholar
  29. Hebert PDN, Penton EH, Burns JM, Janzen DH, Hallwachs W (2004) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc Natl Acad Sci USA 101(41):14812–14817CrossRefPubMedGoogle Scholar
  30. Janzen DH, Hajibabaei M, Burns JM, Hallwachs W, Remigio E, Hebert PDN (2005) Wedding biodiversity inventory of a large and complex Lepidoptera fauna with DNA barcoding. Philos Trans R Soc B Biol Sci 360:1835–1845CrossRefGoogle Scholar
  31. Kent RJ, West AJ, Norris DE (2004) Molecular differentiation of colonized human malaria vectors by 28S ribosomal DNA polymorphisms. Am J Trop Med Hyg 71:514–517PubMedPubMedCentralCrossRefGoogle Scholar
  32. Kumar NP, Rajavel AR, Natarajan R, Jambulingam P (2007) DNA barcodes can distinguish species of Indian mosquitoes (Diptera: Culicidae). J Med Entomol 44:1–7CrossRefPubMedGoogle Scholar
  33. Mallet J, Willmott K (2003) Taxonomy: renaissance or tower of babel? Trends Ecol Evol 18:57–59CrossRefGoogle Scholar
  34. Marrelli MT, Floeter-Winter LM, Malafronte RS, Tadei WP, Lourenco-de-Oliveira R, Flores-Mendoza C, Marinotti O (2005) Amazonian malaria vector anopheline relationships interpreted from ITS2 rDNA sequences. Med Vet Entomol 19:208–218CrossRefPubMedGoogle Scholar
  35. Mayden RL (1997) A hierarchy of species concepts: the denouement in the saga of the species problem. In: Claridge MF, Dawah HA, Wilson MR (eds) Species: The units of biodiversity. Chapman and Hall, London, pp 381–424Google Scholar
  36. Meyer CP, Paulay G (2005) DNA barcoding: error rates based on comprehensive sampling. PLoS Biol 3(12):2229–2238CrossRefGoogle Scholar
  37. Moritz C, Cicero C (2004) DNA barcoding: promise and pitfalls. PLoS Biol 2(10):28–30CrossRefGoogle Scholar
  38. Murugan K, Vadivalagan C, Karthika P, Panneerselvam C, Paulpandi M, Subramaniam J, Wei H, Alsalhi MS, Devanesan S, Nicoletti M, Paramasivan R (2016) DNA barcoding and molecular evolution of mosquito vectors of medical and veterinary importance. Parasitol Res 115(1):107–121CrossRefPubMedGoogle Scholar
  39. Porter TM, Gibson JM, Shokralla S, Baird DJ, Golding GB, Hajibabaei M (2014) Rapid and accurate taxonomic classification of insect (Class Insecta) cytochrome c oxidase subunit 1 (COI) DNA barcode sequences using a naïve Bayesian classifier. Mol Ecol Resour 14(5):929–942PubMedCentralGoogle Scholar
  40. Savolainen V, Cowan RS, Vogler AP, Roderick GK, Lane R (2005) Towards writing the encyclopedia of life: an introduction to DNA barcoding. Philos Trans R Soc B Biol Sci 360:1805–1811CrossRefGoogle Scholar
  41. Shendure J, Mitra RD, Varma C, Church GM (2004) Advanced sequencing technologies: methods and goals. Nat Rev Genet 5:335–344CrossRefPubMedGoogle Scholar
  42. Shokralla S, Gibson JF, Nikbakht H, Janzen DH, Hallwachs W, Hajibabaei M (2014) Next-generation DNA barcoding: using next-generation sequencing to enhance and accelerate DNA barcode capture from single specimens. Mol Ecol Resour 14(5):892–901PubMedPubMedCentralGoogle Scholar
  43. Shokralla S, Porter TM, Gibson JF, Dobosz R, Janzen DH, Hallwachs W, Golding GB, Hajibabaei M (2015) Massively parallel multiplex DNA sequencing for specimen identification using an Illumina MiSeq platform. Sci Rep 5:9687CrossRefPubMedPubMedCentralGoogle Scholar
  44. Singer G, Hajibabaei M (2009) web-based molecular biodiversity analysis. BMC Bioinform 10:S14CrossRefGoogle Scholar
  45. Singh OP, Chandra D, Nanda N, Sharma SK, Htun PT, Adak T, Subbarao SK, Dash AP (2006) On the conspecificity of Anopheles fluviatilis species S with Anopheles minimus species C. J Biosci 31:671–677CrossRefPubMedGoogle Scholar
  46. Smith MA, Fisher BL, Hebert PDN (2005) DNA barcoding for effective biodiversity assessment of a hyperdiverse arthropod group: the ants of Madagascar. Philos Trans R Soc B Biol Sci 360:1825–1834CrossRefGoogle Scholar
  47. Theron J, Cloete TE (2000) Molecular techniques for determining microbial diversity and community structure in natural environments. Crit Rev Microbiol 26:37–57CrossRefPubMedGoogle Scholar
  48. Wang G, Li C, Guo X, Xing D, Dong Y, Wang Z, Zhang Y, Liu M, Zheng Z, Zhang H, Zhu X, Wu Z, Zhao T, Pinto J (2012) Identifying the main mosquito species in China based on DNA barcoding. PLoS One 7(10):e47051CrossRefPubMedPubMedCentralGoogle Scholar
  49. Will KW, Rubinoff D (2004) Myth of the molecule: DNA barcodes for species cannot replace morphology for identification and classification. Cladistics 20:47–55CrossRefGoogle Scholar
  50. Will KW, Mishler BD, Wheeler QD (2005) The perils of DNA barcoding and the need for integrative taxonomy. Syst Biol 54(5):844–851CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Lalita Gupta
    • 1
  • Sanjeev Kumar
    • 2
  • Kuldeep Gupta
    • 3
  1. 1.Department of ZoologyChaudhary Bansi Lal UniversityBhiwaniIndia
  2. 2.Department of BiotechnologyChaudhary Bansi Lal UniversityBhiwaniIndia
  3. 3.Department of Biomedical Sciences, School of Medicine and Health SciencesUniversity of North DakotaGrand ForksUSA

Personalised recommendations