A Molecular Assessment of Red Algae with Reference to the Utility of DNA Barcoding

  • Zahid Hameed Siddiqui
  • Zahid Khorshid Abbas
  • Khalid Rehman Hakeem
  • Mather Ali Khan
  • Abdul Ilah


The ecological and commercial importance of red algae is of high value, the estimated cost seaweed industry produces is US$10 billion. The species which are exploited most are the members of Rhodophyta (Eucheuma/Kappaphycus, Porphyra, and Gracilaria). In order to understand the distribution of seaweed, their identification is necessary which is generally based on morphological characteristics, often resulting in wrong identification of species. DNA barcoding can be used as a contemporary tool for species identification. It can resolve many intrinsic problems of morphological taxonomy, only a small amount of tissue is required for species identification, and the samples can be examined at all stages of development. The application of DNA barcoding can be used in identification of invasive and endangered species along with conservation biology. In case of red alga, DNA barcoding proved to be beneficial for the recognition of high-yielding agar strain as well as for cryptic species identification. In this study, several identification-based problems of red algae have been discussed by using different intraspecific markers such as cox1, cox3, and cox2-3 spacer and rbcL and rbcL-rbcS spacer. As per the available data, the mitochondrial markers, gene cox1 is more effective than rbcL for the measurement of red algal genetic diversity.


DNA barcoding Red algae Cox1 Cox2-3 rbcL 



Amplified fragment length polymorphism


Barcode of Life Database


Consortium for the Barcode of Life


Mitochondrial cytochrome oxidase subunit 1


Mitochondrial cytochrome oxidase subunit 2


Mitochondrial cytochrome oxidase subunit 3


Deoxyribonucleic acid


Inter-simple sequence repeats

ITS-1 and ITS-2

The internal transcribed spacers


Random amplified polymorphic DNA


Large subunit of the ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCo)


The plastid-encoded RuBisCO spacer


The nuclear small subunit


Restriction fragment length polymorphism


Conflict of Interest

The authors declare that there is no conflict of interest.


  1. Anderson NL, Parish NM, Richardson JP, Pearson TW (1985) Comparison of African trypanosomes of different antigenic phenotypes, subspecies and life cycle stages by two-dimensional gel electrophoresis. Mol Biochem Parasitol 16(3):299–314PubMedCrossRefGoogle Scholar
  2. Andreakis N, Procaccini G, Maggs C, Kooidtra WHCF (2007) Phylogeography of the invasive seaweed Asparagopsis (Bonnemaisoniales, Rhodophyta) reveals cryptic diversity. Mol Ecol 16:2285–2299PubMedCrossRefGoogle Scholar
  3. Arnot DE, Roper C, Bayoumi RA (1993) Digital codes from hypervariable tandemly repeated DNA sequences in the Plasmodium falciparum circumsporozoite gene can genetically barcode isolates. Mol Biochem Parasitol 61(1):15–24PubMedCrossRefGoogle Scholar
  4. Barrett RD, Hebert PD (2005) Identifying spiders through DNA barcodes. Can J Zool 83(3):481–491CrossRefGoogle Scholar
  5. Bixler HJ (1996) Recent developments in manufacturing and marketing carrageenan. Hydrobiologia 326/327:35–57CrossRefGoogle Scholar
  6. Brodie J, Bartsch I, Neefus C, Orfinidis S, Bray T, Mathieson A (2007) New insights into the cryptic diversity of the North Atlantic–Mediterranean ‘Porphyra leucosticta’ complex: P. olivii sp. nov. and P. rosengurttii (Bangiales, Rhodophyta). Eur J Phycol 42:3–28CrossRefGoogle Scholar
  7. Brodie J, Mortensen AM, Ramirez ME, Russell S, Rinkel B (2008) Making the links: towards a global taxonomy for the red algal genus Porphyra (Bangiales, Rhodophyta). J Appl Phycol 20:939–949CrossRefGoogle Scholar
  8. Burns JM, Janzen DH, Hajibabaei M, Hallwachs W, Hebert PDN (2008) DNA barcodes and cryptic species of skipper butterflies in the genus Perichares in Area de Conservacion Guanacaste, Costa Rica. Proc Natl Acad Sci USA 105:6350–6355PubMedCrossRefGoogle Scholar
  9. Byrne K, Zuccarello GC, West J, Liao ML, Kraft GT (2002) Gracilaria species (Gracilariaceae, Rhodophyta) from southeastern Australia, including a new species, Gracilaria perplexa sp. nov.: morphology, molecular relationships and agar content. Phycol Res 50:295–312CrossRefGoogle Scholar
  10. Chase MW, Salamin N, Wilkinson M, Dunwell JM, Kesanakurthi RP, Haidar N, Savolainen V (2005) Land plants and DNA barcodes: short-term and long-term goals. Philos Trans R Soc Lond Ser B Biol Sci 360(1462):1889–1895CrossRefGoogle Scholar
  11. Chiasson WB, Johanson KG, Sherwood AR, Vis ML (2007) Phylogenetic affinities of the form taxon Chantransia pygmaea (Rhodophyta) specimens from the Hawaiian Islands. Phycologia 46:257–262CrossRefGoogle Scholar
  12. Cho GY, Kogame K, Kawai H, Boo SM (2007) Genetic diversity of Scytosiphon lomentaria (Scytosiphonaceae, Phaeophyceae) from the Pacific and Europe based on RuBisCo large subunit and spacer, and ITS nrDNA sequences. Phycologia 46:657–665CrossRefGoogle Scholar
  13. Cole KM, Sheath RG (1995) Biology of the Red Sea weeds. Cambridge University Press, New YorkGoogle Scholar
  14. Compendium of Materia Medica. Source: Accessed 30 Jan 2017
  15. Conklin KY, Kurihara AA, Sherwood AR (2009) A molecular method for identification of the morphologically plastic invasive algal genera Eucheuma and Kappaphycus (Rhodophyta, Gigartinales) in Hawaii. J Appl Phycol 21:691–699CrossRefGoogle Scholar
  16. Coyer JA, Hoarau G, Stam WT, Olsen JL (2004) Geographically specific heteroplasmy of mitochondrial DNA in the seaweed, Fucus serratus (Heterokontophyta, Phaeophyceae, Fucales). Mol Ecol 13:1323–1326PubMedCrossRefGoogle Scholar
  17. Donaldson SL, Chopin T, Saunders GW (2000) An assessment of the AFLP method for investigating populations structure in the red alga Chondus crispus. J Appl Phycol 12:25–35CrossRefGoogle Scholar
  18. Ellis R (2008) Rethinking the value of biological specimens: laboratories, museums and the Barcoding of Life Initiative. Mus Soc 6(2):172–191Google Scholar
  19. Erdŭgan H, Akı C, Acar O, Dural B, Aysel V (2009) New record for the east Mediterranean, Dardanelles (Turkey) and its distribution: Polysiphonia morrowii Harvey (Ceramiales, Rhodophyta). Turk J Fish Aquat Sci 9:231–232CrossRefGoogle Scholar
  20. Erickson DL, Kress WJ (2012) Future directions. In: Kress JW, Erickson DL (eds) DNA barcodes: methods and protocols, Methods in molecular biology, vol 858. Humana Press, New York, pp 459–465CrossRefGoogle Scholar
  21. Fazekas AJ, Kuzmina ML, Newmaster SG, Hollingsworth PM (2012) DNA barcodingmethods for land plants. In: Kress JW, Erickson DL (eds) DNA barcodes: methods and protocols, Methods in molecular biology, vol 858. Springer, New York, pp 223–252CrossRefGoogle Scholar
  22. Féral JP (2002) How useful are the genetic markers in attempts to understand and manage marine biodiversity? J Exp Mar Biol Ecol 268:121–145CrossRefGoogle Scholar
  23. Floyd R, Abebe E, Papert A, Blaxter M (2002) Molecular barcodes for soil nematode identification. Mol Ecol 11:839–850PubMedCrossRefGoogle Scholar
  24. Food and Agriculture Organization of the United Nations (2014) Fisheries and aquaculture information and statistics services. Accessed 2 Feb 2017
  25. Freshwater DW (2000) Rhodophyta. Red Algae. Version 24 March 2000 (under construction). in The Tree of Life Web Project
  26. Freshwater W, Fredericq S, Hommersand MH (1995) A molecular phylogeny of the Gelidiales (Rhodophyta) based on analysis of plastid rbcL nucleotide sequences. J Phycol 31:616–632CrossRefGoogle Scholar
  27. Geoffroy A, Gallc LL, Destombe C (2012) Cryptic introduction of the red alga Polysiphonia morrowii Harvey (Rhodomelaceae, Rhodophyta) in the North Atlantic Ocean highlighted by a DNA barcoding approach. Aquat Bot 100:67–71CrossRefGoogle Scholar
  28. Geraldino PJL, Yang EC, Boo SM (2006) Morphology and molecular phylogeny of Hypnea flexicaulis (Gigartinales, Rhodophyta) from Korea. Algae 21:417–423CrossRefGoogle Scholar
  29. Graham LE, Graham JM, Wilcox JW (2009) Red algae. In: Algae, 2nd edn. Pearson Benjamin Cummings, San Francisco, CAGoogle Scholar
  30. Guiry MD (2012) How many species of algae are there? J Phycol 48:1057–1063PubMedCrossRefGoogle Scholar
  31. Gurgel CFD, Fredericq S (2004) Systematics of Gracilariaceae (Gracilariales, Rhodophyata): a critical assessment based on rbcL sequence analyses. J Phycol 40:138–159CrossRefGoogle Scholar
  32. Hebert PDN, Cywinska A, Ball SL, de Waard JR (2003) Biological identifications through DNA barcodes. Proc Biol Sci 270:313–321PubMedPubMedCentralCrossRefGoogle Scholar
  33. Hebert PDN, Stoeckle MY, Zemlak TS, Francis CM (2004) Identification of birds through DNA barcodes. PLoS Biol 2(10):e312PubMedPubMedCentralCrossRefGoogle Scholar
  34. Heinrichs J, Kreier HP, Feldberg K, Schmidt AR, Zhu RL, Shaw B, Shaw AJ, Wissemann V (2011) Formalizing morphologically cryptic biological entities: new insights from DNA taxonomy, hybridization, and biogeography in the leafy liverwort Porella platyphylla (Jungermanniopsida, Porellales). Am J Bot 98(8):1252–1262PubMedCrossRefGoogle Scholar
  35. Hubby JL, Lewontin RC (1966) A molecular approach to the study of genic heterozygosity in natural populations. I. The number of alleles at different loci in Drosophila pseudoobscura. Genetics 54:577–594PubMedPubMedCentralGoogle Scholar
  36. Hurtado AQ, Agbayani RF (2002) Deep-sea farming of Kappaphycus using the multiple raft, long-line method. Bot Mar 45:438–444CrossRefGoogle Scholar
  37. Kamikawa R, Masuda I, Oyawa K, Yoshimatsu S, Sako Y (2007) Genetic variation in mitochondrial genes and intergenic spacer region in harmful algae Chattonella species. Fish Sci 73:871–880CrossRefGoogle Scholar
  38. Kim MS, Yang EC (2006) Taxonomy and phylogeny of Neosiphonia japonica (Rhodomelaceae, Rhodophyta) based on rbcL and cpeA/B gene sequences. Algae 2:287–294CrossRefGoogle Scholar
  39. Kim MS, Lee IK, Boo SM (1994) Morphological studies of the red alga Polysiphonia morrowii Harvey on the Korean coast. Korean J Phycol 9:185–192Google Scholar
  40. Kim MS, Maggs C, McIvor L, Guiry M (2000) Reappraisal of the type species of Polysiphonia (Rhodomelaceae, Rhodophyta). Eur J Phycol 35:83–92CrossRefGoogle Scholar
  41. Kim MS, Yang EC, Mansilla A, Boo SM (2004) Recent introduction of Polysiphonia morrowii (Ceramiales, Rhodophyta) to Punta Arenas, Chile. Bot Mar 47:389–394CrossRefGoogle Scholar
  42. Kim SY, Weinberger F, Boo SM (2010) Genetic diversity hints at a common donor region of the invasive Atlantic and Pacific populations of Gracilaria vermiculophylla (Rhodophyta). J Phycol 46:1346–1349CrossRefGoogle Scholar
  43. Kim KM, Hwang IK, Park JK, Boo SM (2011) A new agarophyte species, Gelidium eucorneum sp. nov. (Gelidiales, Rhodophyta), based on molecular and morphological data. J Phycol 47:904–910PubMedCrossRefGoogle Scholar
  44. Kim KM, Hoarau GG, Boo SM (2012) Genetic structure and distribution of Gelidium elegans (Gelidiales, Rhodophyta) in Korea based on mitochondrial cox1 sequence data. Aquat Bot 98:27–33CrossRefGoogle Scholar
  45. Kress WJ, Erickson DL (2012) DNA barcodes: methods and protocols. Methods Mol Biol 858:3–8PubMedCrossRefGoogle Scholar
  46. Kress WJ, Erickson DL, Swenson NG, Thompson J, Uriarte M, Zimmerman JK (2010) Advances in the use of DNA barcodes to build a community phylogeny for tropical trees in a Puerto Rican forest dynamics plot. PLoS One 5(11):e15409PubMedPubMedCentralCrossRefGoogle Scholar
  47. Kudo T, Masuda M (1992) Taxonomic features of Polysiphonia morrowii Harvey (Ceramiales, Rhodophyta). Korean J Phycol 7:13–26Google Scholar
  48. Lee RE (2008) Phycology, vol 107. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  49. Li S (2003) In Xiwen L (ed) Compendium of Materia Medica: Bencao Gangmu. Foreign Languages Press, BeijingGoogle Scholar
  50. Lindstrom SC (2008) Cryptic diversity, biogeography and genetic variation in Northeast Pacific species of Porphyra sensu lato (Bangiales, Rhodophyta). J Appl Phycol 20:501–512Google Scholar
  51. Llana EG (1991) Production and utilisation of seaweeds in the Philippines. INFOFISH Int 1/91:12–17Google Scholar
  52. Loureiro R, Gachon CMM, Rebours C (2015) Seaweed cultivation: potential and challenges of crop domestication at an unprecedented pace. New Phytol 206(2):489–492PubMedCrossRefGoogle Scholar
  53. Maggs CA, Stegenga H (1999) Red algal exotics on North Sea coasts. Helgoländer Meeresun 52:243–258CrossRefGoogle Scholar
  54. Mamoozade NR, Freshwater DW (2011) Taxonomic notes on Caribbean Neosiphonia and Polysiphonia (Ceramiales, Florideophyceae): five species from Florida, USA and Mexico. Bot Mar 54:269–292Google Scholar
  55. May RM (1988) How many species are there on earth? Science 241:1441–1449PubMedCrossRefGoogle Scholar
  56. McAndrew BJ, Majumdar KC (1983) Tilapia stock identification using electrophoretic markers. Aquaculture 30(1–4):249–261CrossRefGoogle Scholar
  57. McDevit DC, Saunders GW (2010) A DNA barcode examination of the Laminariaceae (Phaeophyceae) in Canada reveals novel biogeographical and evolutionary insights. Phycologia 49:235–248CrossRefGoogle Scholar
  58. McHugh DJ (2003) A guide to the seaweed industry. Technical Report 441. Food and Agriculture Organization of the United Nations, Rome, ItalyGoogle Scholar
  59. Milstein D, Oliveira MC (2005) Molecular phylogeny of Bangiales (Rhodophyta) based on small subunit rDNA sequencing: emphasis on Brazilian Porphyra species. Phycologia 44:212–221CrossRefGoogle Scholar
  60. Milstein D, Medeiros AS, Oliveira EC, Oliveira MC (2012) Will a DNA barcoding approach be useful to identify Porphyra species (Bangiales, Rhodophyta)? A case study with Brazilian taxa. J Appl Phycol 24:837–845CrossRefGoogle Scholar
  61. Moniz MBJ, Kaczmarska I (2010) Barcoding of diatoms: nuclear encoded ITS revisited. Protist 161:7–34PubMedCrossRefGoogle Scholar
  62. Nam KW, Maggs CA, McIvor L, Stanhope MJ (2000) Taxonomy and phylogeny of Osmunder (Rhodomelaceae, Rhodophyta) in Atlantic. Eur J Phycol 36:759–772CrossRefGoogle Scholar
  63. Neefus CD, Mathieson AC, Klein AS, Teasdale B, Gray T, Yarish C (2002) Porphyra birdiae sp. nov. (Bangiales, Rhodophyta): a new species from the northwest Atlantic. Algae 17:203–216CrossRefGoogle Scholar
  64. Nelson WA, Broom JES (2005) Contributions of molecular biology to understanding systematics and phylogeny in the order Bangiales. Nat Hist Res Spec Issue 8:1–12Google Scholar
  65. Nelson WA, Maggs CA (1996) Records of adventive marine algae in New Zealand: Antithamnionella ternifolia, Polysiphonia senticulosa (Ceramiales, Rhodophyta), and Striaria attenuata (Dictyosiphonales, Phaeophyta). NZ J Mar Freshw Res 30:449–453CrossRefGoogle Scholar
  66. Packer L, Gibbs J, Sheffield C, Hanner R (2009) DNA barcoding and the mediocrity of morphology. Mol Ecol Resour 9(Suppl S1):42–50PubMedCrossRefGoogle Scholar
  67. Pang QQ, Sui ZH, Kang KH (2010) Application of SSR and AFLP to the analyses of genetic diversity in Gracilaria lemaneiformis (Rhodopyta). J Appl Phycol 22:607–612CrossRefGoogle Scholar
  68. Peěnikar ŽF, Buzan EV (2014) 20 years since the introduction of DNA barcoding: from theory to application. J Appl Genet 55:43–52CrossRefGoogle Scholar
  69. Perestenko LP (1980) Algae of Peter the Great Bay. Nauka, Leningrad, pp 232–239Google Scholar
  70. Pires AC, Marinoni L (2010) DNA barcoding and traditional taxonomy unified through Integrative Taxonomy: a view that challenges the debate questioning both methodologies. Biota Neotrop 10:339–346CrossRefGoogle Scholar
  71. Puillandre N, Bouchet P, Boisselier-Dubayle M-C, Brisset J, Buge B, Castelin M, Chagnoux S, Christophe T, Corbari L, Lambourdière J, Lozouet P, Marani G, Rivasseau A, Silva N, Terryn Y, Tillier S, Utge J, Samadi S (2012) New taxonomy and old collections: integrating DNA barcoding into the collection curation process. Mol Ecol Resour 12:396–402PubMedCrossRefGoogle Scholar
  72. Rebours C, Marinho-Soriano E, Zertuche-González JA, Hayashi L, Vásquez JA, Kradolfer P, Soriano G, Ugarte R, Abreu MH, Bay-Larsen I, Hovelsrud G, Rødven R, Robledo D (2014) Seaweeds: an opportunity for wealth and sustainable livelihood for coastal communities. J Appl Phycol 26:1939–1951PubMedPubMedCentralCrossRefGoogle Scholar
  73. Rindi F, Guiry MD, López-Bautista JM (2008) Distribution, morphology, and phylogeny of Klebsormidium (Klebsormidiales, Charophyceae) in urban environments in Europe. J Phycol 44:1529–1540PubMedCrossRefGoogle Scholar
  74. Robba L, Russell SJ, Barker GL, Brodie J (2006) Assessing the use of the mitochondrial cox1 marker for use in DNA barcoding of red algae (Rhodophyta). Am J Bot 93:1101–1108PubMedCrossRefGoogle Scholar
  75. Robins JH, Hingston M, Matisoo-Smith E, Ross HA (2007) Identifying Rattus species using mitochondrial DNA. Mol Ecol Notes 7(5):717–729CrossRefGoogle Scholar
  76. Ruangchuay R, Notoya M (2007) Reproductive strategy and occurrence of gametophytes of Thai laver Porphyra vietnamensis Tanaka et Pham-Hoang Ho (Bangiales, Rhodophyta) from Songkhla Province. Kasetsart J (Nat Sci) 41:143–152Google Scholar
  77. Saunders GW (2005) Applying DNA barcoding to red macroalgae: a preliminary appraisal holds promise for future application. Philos Trans R Soc B 360:1879–1888CrossRefGoogle Scholar
  78. Saunders GW (2008) A DNA barcode examination of the red algal family Dumontiaceae in Canadian waters reveals substantial cryptic species diversity. 1. The foliose Dilsea–Neodilsea complex and Weeksia. Botany 86:773–789CrossRefGoogle Scholar
  79. Savolainen V, Cowan RS, Vogler AP, Roderick GK, Lane R (2005) Towards writing the encyclopedia of life: an introduction to DNA barcoding. Philos Trans R Soc Lond Ser B Biol Sci 360(1462):1805–1811CrossRefGoogle Scholar
  80. Seena S, Pascoal C, Marvanová L, Cássio F (2010) DNA barcoding of fungi: a case study using ITS sequences for identifying aquatic hyphomycete species. Fungal Divers 44:77–87CrossRefGoogle Scholar
  81. Segi T (1951) Systematic study of the genus Polysiphonia from Japan and its vicinity. J Fac Fish Prefect Univ Mie 1:169–272Google Scholar
  82. Sherwood AR (2008) Phylogeography of Asparagopsis taxiformis (Bonnemaisoniales, Rhodophyta) in the Hawaiian Islands: two mtDNA markers support three separate introductions. Phycologia 47:79–88CrossRefGoogle Scholar
  83. Sherwood AR, Presting GG (2007) Universal primers amplify a 23S rDNA plastid marker in eukaryotic algae and cyanobacteria. J Phycol 43:605–608CrossRefGoogle Scholar
  84. Shimada S, Horiguchi T, Masuda M (2000) Two new species of Gelidium (Rhodophyta, Gelidiales), Gelidium tenuifolium and Gelidium koshikianum, from Japan. Phycol Res 48:37–46CrossRefGoogle Scholar
  85. Siow RS, Teo SS, Ho WY, Shukor MYA, Phang SM, Ho CL (2012) Molecular cloning and biochemical characterization of galactose-1-phosphate uridylytransferase from Gracilaria changii (Rhodophta). J Phycol 48:155–162PubMedCrossRefGoogle Scholar
  86. Steel DJ, Trewick SA, Wallis GP (2000) Heteroplasmy of mitochondrial DNA in the ophiuroid Asterobrachion constricum. J Hered 91:146–149PubMedCrossRefGoogle Scholar
  87. Turner NJ (2003) The ethnobotany of edible seaweed (Porphyra abbottae and related species; Rhodophyta: Bangiales) and its use by First Nations on the Pacific coast of Canada. Can J Bot 81:283–293CrossRefGoogle Scholar
  88. Uwai S, Yotsukura N, Serisawa Y, Muraoka D, Hiraoka M, Kogame K (2006) Intraspecific genetic diversity of Undaria pinnatifida in Japan, based on the mitochondrial of cox3 gene and ITS1 of nrDNA. Hydrobiologia 553:345–356CrossRefGoogle Scholar
  89. Van de Velde, Knutsen SH, Usov AI, Cerezo AS (2002) 1H and 13C high resolution NMR spectroscopy of carrageenans: application in research and industry. Trends Food Sci Technol 13:73–92CrossRefGoogle Scholar
  90. Vidal R (2008) Phylogeography of the genus Spongites (Corallinales, Rhodophyta) from Chile. J Phycol 44:173–182PubMedCrossRefGoogle Scholar
  91. Villanueva RD, Montaño MNE, Romero JB (2008) Iota-carrageenan from a newly farmed, rare variety of eucheumoid seaweed–“endong”. J Appl Phycol 21:27–30CrossRefGoogle Scholar
  92. Vis ML, Hodge JC, Necchi OJR (2008) Phylogeography of Batrachospermum macrosporum (Batrachospermales, Rhodophyta) from North and South America. J Phycol 44:882–888PubMedCrossRefGoogle Scholar
  93. Vis ML, Feng J, Chiasson WB, Xie SL, Stancheva R, Entwisle TJ, Wang WL (2010) Investigation of the molecular and morphological variability in Batrachospermum arcuatum (Batrachospermales, Rhodophyta) from geographically distant locations. Phycologia 49:545–553CrossRefGoogle Scholar
  94. Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PD (2005) DNA barcoding Australia’s fish species. Philos Trans R Soc Lond Ser B Biol Sci 360(1462):1847–1857CrossRefGoogle Scholar
  95. Woelkerling WJ (1990) An introduction. In: Cole KM, Sheath RG (eds) Biology of the red algae. Cambridge University Press, Cambridge, pp 1–6Google Scholar
  96. Wolf MA, Sfriso A, Andreolia C, Moroa I (2011) The presence of exotic Hypnea flexicaulis (Rhodophyta) in the Mediterranean Sea as indicated by morphology, rbcL and cox1 analyses. Aquat Bot 95(2011):55–58CrossRefGoogle Scholar
  97. Yang YM, Kim MS (2015) Molecular analyses for identification of the Gracilariaceae (Rhodophyta) from the Asia–Pacific region. Genes Genomics 37:775–787CrossRefGoogle Scholar
  98. Yang EC, Kim MS, Geraldino PJL, Sahoo D, Shin JA, Boo SM (2007) Mitochondrial cox1 and plastid rbcL genes of Gracilaria vermiculophylla (Gracilariaceae, Rhodophyta). J Appl Phycol 20:161–168CrossRefGoogle Scholar
  99. Yang EC, Kim MS, Paul JL, Geraldino PJL, Sahoo D, Shin J-M, Boo SM (2008) Mitochondrial cox1 and plastid rbcL genes of Gracilaria vermiculophylla (Gracilariaceae, Rhodophyta). J Appl Phycol 20:161–168CrossRefGoogle Scholar
  100. Yang MY, Han EG, Kim MS (2013) Molecular identification of Grateloupia elliptica and G. lanceolata (Rhodophyta) inferred from plastid rbcL and mitochondrial COI genes sequence data. Genes Genomics 35:239–246CrossRefGoogle Scholar
  101. Yeong HY, Khalid N, Phang SM (2008) Protoplast isolation and regeneration from Gracilaria changii (Gracilariales, Rhodophyta). J Appl Phycol 20:641–651CrossRefGoogle Scholar
  102. Yow YY, Lim PE, Phang SM (2011) Genetic diversity of Gracilaria changii (Gracilariacea, Rhodopyta) from west coast, Peninsular Malaysia based on mitochondrial cox1 gene analysis. J Appl Phycol 23:219–226CrossRefGoogle Scholar
  103. Yow YY, Lim PE, Phang SM (2013) Assessing the use of mitochondrial cox1 gene and cox 2-3 spacer for genetic diversity study of Malaysian Gracilaria changii (Gracilariaceae, Rhodophyta) from Peninsular Malaysia. J Appl Phycol 25:831–838CrossRefGoogle Scholar
  104. Zhang XC, He Y, Xu D (2009) Screening microsatellite sequences from Gracilaria lemaneiformis and its phylogenetic analysis. Period Ocean Univ China 39:259–264Google Scholar
  105. Zhao F, Liu F, Liu J, Put O, Jr A, Duan D (2008) Genetic structure analysis of natural Sargassum muticum (Fucales, Phaeophyta) populations using RAPD and ISSR markers. J Appl Phycol 20:191–198CrossRefGoogle Scholar
  106. Zuccarello GC, West JA (2002) Phylogeography of the Bostrychia callipteraB. pinnata complex (Rhodomelaceae, Rhodophyta) and divergence rates based on nuclear, mitochondrial and plastid DNA markers. Phycologia 41:49–60CrossRefGoogle Scholar
  107. Zuccarello GC, Buchanan J, West JA (2006) Increased sampling for inferring phylogeographic patterns in Bostrychia radicans/B. moritziana (Rhodomelaceae, Rhodophyta) in the eastern USA. J Phycol 42:1349–1352CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Zahid Hameed Siddiqui
    • 1
  • Zahid Khorshid Abbas
    • 1
  • Khalid Rehman Hakeem
    • 2
  • Mather Ali Khan
    • 3
  • Abdul Ilah
    • 4
  1. 1.Department of Biology, Faculty of ScienceUniversity of TabukTabukKingdom of Saudi Arabia
  2. 2.Department of Biological Sciences, Faculty of ScienceKing Abdulaziz UniversityJeddahKingdom of Saudi Arabia
  3. 3.Bond Life Sciences Center, University of Missouri-ColumbiaColumbiaUSA
  4. 4.Faculty of Medical TechnologyOmar Al Mukhtar UniversityAl BaydaLibya

Personalised recommendations