Advertisement

DNA Barcoding Significance and Utilities

  • Sambashiva Daravath
  • Reddya Naik Bannoth
  • Manickam Tamil Selvi
  • Srinivas Ankanagari
Chapter

Abstract

DNA barcoding is a genetic-based tool and used as an integrated approach with taxonomy for species identification and authentication. In recent years, different genetic and genomic approaches are taken in identifying gene markers for universal applicable DNA barcode in different taxonomic groups and samples. In the postgenomics era, combination of molecular biology techniques, bioinformatics, DNA barcoding, and metabarcoding is giving an opportunity to change the existing use of biodiversity information for basic and practical applications. DNA barcoding projects in different organisms are establishing the reference libraries with known sequences available for open access databases to identify unknown specimens. SOPs in DNA barcoding are important for each species from sampling to analysis by the researchers. DNA barcoding is aiding to catalogue the list of species biodiversity and answer fundamental questions in ecology, evolution, and conservation biology. DNA barcoding can be used by regulatory authorities and have advantages as quality control test. DNA barcoding can also improve quality assurance of industrial products. There is also emerging significance in implementing DNA barcoding in consumer, environmental, health, and agricultural protection.

Keywords

DNA barcoding DNA metabarcoding Informatics SOP Quality control Biodiversity assessment 

Notes

Acknowledgments

SD acknowledges the funding of UGC-RGNF, New Delhi. BRN gratefully acknowledges funding of DSTPURSE programme. The research in the laboratory of AS supported by DST-FIST, UGC-CAS and DST-PURSE, New Delhi are gratefully acknowledged.

References

  1. Agriculture and Agri-Food Canada (2015) DNA barcoding – science helping farmers identify friend from foe. Media RelationsGoogle Scholar
  2. Anklam E (1998) A review of the analytical methods to determine the geographical and botanical origin of honey. Food Chem 63(4):549–562CrossRefGoogle Scholar
  3. Baird N, Etter P, Atwood T et al (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 3:e3376CrossRefPubMedPubMedCentralGoogle Scholar
  4. Barcaccia G, Lucchin M, Cassandro M (2015) DNA barcoding as a molecular tool to track down mislabeling and food piracy. Diversity 8(1):2CrossRefGoogle Scholar
  5. Batovska J, Blacket MJ, Brown K, Lynch SE (2016) Molecular identification of mosquitoes (Diptera: Culicidae) in southeastern Australia. Ecol Evol 9(9):3001–3011CrossRefGoogle Scholar
  6. Bell KL, Burgess KS, Okamoto KC, Aranda R, Brosi BJ (2016) Review and future prospects for DNA barcoding methods in forensic palynology. Forensic Sci Int Genet 21:110–116CrossRefPubMedGoogle Scholar
  7. Besnard G, Christin P-A, Malé P-JG et al (2014) From museums to genomics: old herbarium specimens shed light on a C3 to C4 transition. J Exp Bot 65:6711–6721CrossRefPubMedGoogle Scholar
  8. Briskin DP (2000) Medicinal plants and phytomedicines. Linking plant biochemistry and physiology to human health. Plant Physiol 124:507–514CrossRefPubMedPubMedCentralGoogle Scholar
  9. Brosi BJ, Daily GC, Shih TM, Oviedo F, Durán G (2007) The effects of forest fragmentation on bee communities in tropical countryside. J Appl Ecol 45:773–783CrossRefGoogle Scholar
  10. Bruni I, De Mattia F, Galimberti A, Galasso G, Banfi E, Casiraghi M, Labra M (2010) Identification of poisonous plants by DNA barcoding approach. Int J Legal Med 124:595–603CrossRefPubMedGoogle Scholar
  11. Bruni I, Galimberti A, Caridi L, Scaccabarozzi D, De Mattia F, Casiraghi M, Labra M (2015) A DNA barcoding approach to identify plant species in multiflower honey. Food Chem 170:308–315CrossRefPubMedGoogle Scholar
  12. Burgess KS, Fazekas AJ, Kesanakurti PR, Graham SW, Husband BC, Newmaster SG, Percy DM, Hajibabaei M, Barrett SCH (2011) Discriminating plant species in a local temperate flora using the rbcL+matK DNA barcode. Methods Ecol Evol 2:333–340CrossRefGoogle Scholar
  13. Coghlan ML, Haile J, Houston J, Murray DC, White NE, Moolhuijzen P, Bellgard MI, Bunce M (2012) Deep sequencing of plant and animal DNA contained within traditional Chinese medicines reveals legality issues and health safety concerns. PLoS Genet 8(4):e1002657.  https://doi.org/10.1371/journal.pgen.1002657 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Cook CN, Mascia MB, Schwartz MW, Possingham HP, Fuller RA (2013) Achieving conservation science that bridges the knowledge-action boundary. Conserv Biol 27:669–678CrossRefPubMedPubMedCentralGoogle Scholar
  15. Crane E (1975) Honey. A comprehensive survey. William Heinemann, LondonGoogle Scholar
  16. D’Amato G, Liccardi G, D’Amato M, Holgate S (2005) Environmental risk factors and allergic bronchial asthma. Clin Exp Allergy 35(9):1113–1124CrossRefPubMedGoogle Scholar
  17. Davies JM, Beggs PJ, Medek DE, Newnham RM, Erbas B, Thibaudon M, Katelaris CH, Haberle SG, Newbigin EJ, Huete AR (2015) Trans-disciplinary research in synthesis of grass pollen aerobiology and its importance for respiratory health in Australasia. Sci Total Environ 534:85–96CrossRefPubMedGoogle Scholar
  18. De Mattia F, Gentili R, Bruni I, Galimberti A, Sgorbati S et al (2012) A multi-marker DNA barcoding approach to save time and resources in vegetation surveys. Bot J Linn Soc 169:518–529CrossRefGoogle Scholar
  19. DeSalle R (2006) Species discovery versus species identification in DNA barcoding efforts: response to Rubinoff. Conserv Biol 20:1545–1547CrossRefPubMedGoogle Scholar
  20. Dunning LT, Savolainen V (2010) Broad-scale amplification of matK for DNA barcoding plants, a technical note. Bot J Linn Soc 164:1–9CrossRefGoogle Scholar
  21. Edgar B, Doherty J, Meert H (2002) Access to housing, homelessness and vulnerability in Europe. Policy Press, the JCSHR and FEANTSA, BristolGoogle Scholar
  22. Falade MO, Opene AJ, Benson O (2016) DNA barcoding of Clarias gariepinus, Coptodon zillii and Sarotherodon melanotheron from Southwestern Nigeria. F1000Res eCollectionGoogle Scholar
  23. Fan H, Ives AR, Surge-groba Y, Cannon AH (2015) An assembly and alignment-free method of phylogeny reconstruction from next-generation sequencing data. BMC Genomics 16:522CrossRefPubMedPubMedCentralGoogle Scholar
  24. Fazekas AJ, Kesanakurti PR, Burgess KS, Percy DM, Graham SW, Barrett SC, Newmaster SG, Hajibabaei M, Husband BC (2009) Are plant species inherently harder to discriminate than animal species using DNA barcoding markers? Mol Ecol Resour 9:130–139CrossRefPubMedGoogle Scholar
  25. Ficetola GF, Miaud C, Pompanon F, Taberlet P (2008) Species detection using environmental DNA from water samples. Biol Lett 4:423–425CrossRefPubMedPubMedCentralGoogle Scholar
  26. Frias-Lopez J, Shi Y, Tyson GW, Coleman ML, Schuster SC, Chisholm SW, Delong EF (2008) Microbial community gene expression in ocean surface waters. Proc Natl Acad Sci USA 105(10):3805–3810CrossRefPubMedGoogle Scholar
  27. Galimberti A, De Mattia F, Bruni I, Scaccabarozzi D, Sandionigi A, Barbuto M, Casiraghi M, Labra M (2014) A DNA barcoding approach to characterize pollen collected by honeybees. PLoS One 9(10):e109363.  https://doi.org/10.1371/journal.pone.0109363 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Goodman FJ, Doughty JW, Gary C, Christou CT, Hu BB, Hultman EA, et al (2015) PIGLT: a pollen identification and geolocation system for forensic applications. In: 2015 I.E. international symposium on Technologies for Homeland Security (HST). pp 1–7Google Scholar
  29. Hajibabaei M, Shokralla S, Zhou X, Singer GA, Baird DJ (2011) Environmental barcoding: a next-generation sequencing approach for biomonitoring applications using river benthos. PLoS One 6:e17497CrossRefPubMedPubMedCentralGoogle Scholar
  30. Hawkins J, de Vere N, Griffith A, Ford CR, Allainguillaume J, Hegarty MJ, Baillie L, Adams-Groom B (2015) Using DNA metabarcoding to identify the floral composition of honey: a new tool for investigating honey bee foraging preferences. PLoS One 10(8):e0134735.  https://doi.org/10.1371/journal.pone.0134735 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Hebert PD, Cywinska A, Ball SL (2003a) Biological identifications through DNA barcodes. Proc R Soc Lond B Biol Sci 270(1512):313–321CrossRefGoogle Scholar
  32. Hebert PD, Ratnasingham S, de Waard JR (2003b) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc Lond B Biol Sci 270(Suppl 1):S96–S99CrossRefGoogle Scholar
  33. Hegland SJ, Nielsen A, Lázaro A, Bjerknes A-L, Totland Ø (2009) How does climate warming affect plant-pollinator interactions? Ecol Lett 12:184–195CrossRefPubMedGoogle Scholar
  34. Hohenlohe PA, Amish SJ, Catchen JM, Allendorf FW, Luikart G (2011) Next-generation RAD sequencing identifies thousands of SNPs for assessing hybridization between rainbow and westslope cutthroat trout. Mol Ecol Resour 11:117–122CrossRefPubMedGoogle Scholar
  35. Hollingsworth ML, Clark A, Forrest LL, Richardson JR, Pennington RT et al (2009) Selecting barcoding loci for plants: evaluation of seven candidate loci with species-level sampling in three divergent groups of land plants. Mol Ecol Resour 9:439–457CrossRefPubMedGoogle Scholar
  36. Hollingsworth PM, Graham SW, Little DP (2011) Choosing and using a plant DNA barcode. PLoS One 6:e19254CrossRefPubMedPubMedCentralGoogle Scholar
  37. Huber JA et al (2007) Microbial population structures in the deep marine biosphere. Science 318:97–100CrossRefPubMedGoogle Scholar
  38. http://www.barcodeoflife.org/content/about/what-cbol. The Consortium for the Barcode of Life (CBOL)
  39. Inouye DW (2008) Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers. Ecology 89:353–362CrossRefPubMedGoogle Scholar
  40. Janda JM, Abbott SL (2007) 16SrRNA gene sequencing for bacterial identification in the diagnostic laboratory pluses, perils and pitfalls. J Clin Microbiol 45:2761–2764CrossRefPubMedPubMedCentralGoogle Scholar
  41. Jones YL, Peters SM, Weland C, Ivanova NV, Yancy HF (2013) Potential use of DNA barcodes in regulatory science: identification of the US food and drug administrations “Dirty 22” contributors to the spread of foodborne pathogens. J Food Prot 76:144–149CrossRefPubMedGoogle Scholar
  42. Jordano P (2010) Pollen, seeds and genes: the movement ecology of plants. Heredity 105:329–330CrossRefPubMedGoogle Scholar
  43. Jorgensen T, Haile J, Moller P, Andreev A, Boessenkool S, Rasmussen M et al (2012a) A comparative study of ancient sedimentary DNA, pollen and macrofossils from permafrost sediments of northern Siberia reveals longterm vegetational stability. Mol Ecol 21(8):1989–2003CrossRefPubMedGoogle Scholar
  44. Jorgensen T, Kjaer KH, Haile J, Rasmussen M, Boessenkool S, Andersen K et al (2012b) Islands in the ice: detecting past vegetation on Greenlandic nunataks using historical records and sedimentary ancient DNA metabarcoding. Mol Ecol 21(8):1980–1988CrossRefPubMedGoogle Scholar
  45. Kane NC, Cronk Q (2008) Botany without borders: barcoding in focus. Mol Ecol 17:5175–5176CrossRefPubMedGoogle Scholar
  46. Keele J, Carmon J, Pucherelli SF, Hosler D (2014) Identification of unknown organisms by DNA barcoding: a molecular method for species classification research and development office invasive mussels. Final report 2014-01 (0045)Google Scholar
  47. Keller A, Danner N, Grimmer G, Ankenbrand M, von der Ohe K, von der Ohe W, Rost S, Härtel S, Steffan-Dewenter I (2015) Evaluating multiplexed next-generation sequencing as a method in palynology for mixed pollen samples. Plant Biol 17(2):558–566CrossRefPubMedGoogle Scholar
  48. Koca I, Koca AF (2007) Poisoning by mad honey: a brief review. Food Chem Toxicol 45(8):1315–1318CrossRefPubMedGoogle Scholar
  49. Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79(17):5112–5120CrossRefPubMedPubMedCentralGoogle Scholar
  50. Kraaijeveld K, de Weger LA, Ventayol García M, Buermans H, Frank J, Hiemstra PS, den Dunnen JT (2015) Efficient and sensitive identification and quantification of airborne pollen using next-generation DNA sequencing. Mol Ecol Resour 15(1):8–16CrossRefPubMedGoogle Scholar
  51. Kress WJ, Carlos G-R, Uriarte M, Erickson DL (2015) DNA barcodes for ecology, evolution, and conservation. Trends Ecol Evol 30(1):25–35CrossRefPubMedGoogle Scholar
  52. Laube I, Hird H, Brodmann P, Ullmann S, Schöne-Michling M, Chisholm J, Broll H (2010) Development of primer and probe sets for the detection of plant species in honey. Food Chem 118(4):979–986CrossRefGoogle Scholar
  53. Lebonah DE, Dileep A, Chandrasekhar K, Sreevani S, Sreedevi B, Pramoda Kumari J (2014) DNA barcoding on bacteria: a review. Article ID 541787, 9 pagesGoogle Scholar
  54. Li D-Z et al (2011) Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proc Natl Acad Sci U S A 108:19641–19646CrossRefPubMedPubMedCentralGoogle Scholar
  55. Links MG, Dumonceaux TJ, Hemmingsen SM, Hill JE (2012) The Chaperonin-60 universal target is a barcode for bacteria that enables de novo assembly of metagenomic sequence data. PLoS One 7(11):e49755CrossRefPubMedPubMedCentralGoogle Scholar
  56. Little DP (2014) A DNA mini-barcode for land plants. Mol Ecol Resour 14:437–446CrossRefPubMedGoogle Scholar
  57. Liu S-YV, Chan C-LC, Lin O, Hu C-S, Chen CA (2013) DNA barcoding of shark meats identify species composition and CITES-listed species from the markets in Taiwan. PLoS One 8(11):e79373CrossRefPubMedPubMedCentralGoogle Scholar
  58. Machida RJ, Hashiguchi Y, Nishida M, Nishid S (2009) Zooplankton diversity analysis through single-gene sequencing of a community sample. BMC Genomics 10(1):438CrossRefPubMedPubMedCentralGoogle Scholar
  59. Maillet N, Collet G, Vannier T, Lavenier D, Peterlongo P (2014) Commet: comparing and combining multiple metagenomic datasets. In: IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp 94–98Google Scholar
  60. Mathewes RW (2006) Forensic palynology in Canada: an overview with emphasis on archaeology and anthropology. Forensic Sci Int 163:198–203CrossRefPubMedGoogle Scholar
  61. Matsen FA, Kodner RB, Armbrust EV (2010) pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinformatics 11:538CrossRefPubMedPubMedCentralGoogle Scholar
  62. McCormack B, Rycroft-Malone J, DeCorby K, Hutchinson AM, Bucknall T, Kent B, Schultz A, Snelgrove-Clarke E, Stetler C, Titler M, Wallin L, Wilson V (2013) A realist review of interventions and strategies to promote evidence-informed healthcare: a focus on change agency. Implement Sci 8:107CrossRefPubMedPubMedCentralGoogle Scholar
  63. Medinger R, Nolte V, Pandey RV, Jost S, Ottenwälder B, Schlötterer C, Boenigk J (2010) Diversity in a hidden world: potential and limitation of next-generation sequencing for surveys of molecular diversity of eukaryotic microorganisms. Mol Ecol 19(1):32–40CrossRefPubMedPubMedCentralGoogle Scholar
  64. Mou X, Sun S, Edwards RA, Hodson RE, Moran MA (2008) Bacterial carbon processing by generalist species in the coastal ocean. Nature 451:708–711CrossRefPubMedGoogle Scholar
  65. Muturi CN, Ouma JO, Malele II, Ngure RM, Rutto JJ, Mithöfer KM, Enyaru J, Masiga DK (2011) Tracking the feeding patterns of tsetse flies (Glossina genus) by analysis of bloodmeals using mitochondrial cytochromes genes. PLoS One 6:e17284CrossRefPubMedPubMedCentralGoogle Scholar
  66. Natalie JWW (2013) Determining microbial diversity in chaparral soils before and after wildfires through DNA barcoding Project No. S-1119 California State Science Fair Project SummaryGoogle Scholar
  67. Newmaster SG, Ragupathy S, Janovec J (2009) A botanical renaissance: state-of-the-art DNA bar coding facilitates an automated identification technology system for plants. Int J Comput Appl Technol 35:50–60CrossRefGoogle Scholar
  68. Newsmaster SG, Grguric M, Shanmughanandhan D, Ramalingam S, Ragupathy S (2013) DNA barcoding detects contamination and substitution in North American herbal products. BMC Med 11:1–13CrossRefGoogle Scholar
  69. Olivieri C, Marota I, Rollo F, Luciani S (2012) Tracking plant, fungal, and bacterial dna in honey specimens. J Forensic Sci 57(1):222–227CrossRefPubMedGoogle Scholar
  70. Parducci L, Matetovici I, Fontana SL, Bennett KD, Suyama Y, Haile J, Kjaer KH, Larsen NK, Drouzas AD, Willerslev E (2013) Molecular- and pollen-based vegetation analysis in lake sediments from central Scandinavia. Mol Ecol 22(13):3511–3524CrossRefPubMedGoogle Scholar
  71. Pavan-Kumar A, Gireesh-Babu P, Lakra WS (2015) DNA metabarcoding: a new approach for rapid biodiversity assessment. J Cell Sci Mol Biol 2(1):111Google Scholar
  72. Pedersen MW, Ginolhac A, Orlando L, Olsen J, Andersen K, Holm J, Funder S, Willerslev E, Kjær KH (2013) A comparative study of ancient environmental DNA to pollen and macrofossils from lake sediments reveals taxonomic overlap and additional plant taxa. Quat Sci Rev 75:161–168CrossRefGoogle Scholar
  73. Pennisi E (2000) Taxonomic revival. Science 289:5488Google Scholar
  74. Persano Oddo L, Bogdanov S (2004) Determination of honey botanical origin: problems and issues. Apidologie 35(Suppl 1):S2–S3CrossRefGoogle Scholar
  75. Primack R, Rozzi R, Feinsinger P, Dirzo R, Massardo F (2001) Fundamentos de conservación biológica: Perspectivas Latinoamericanas. Fondo de Cultura Economica México D.F.797Google Scholar
  76. Ratnasingham S, Hebert PD (2007) bold: The Barcode of Life Data System (www.barcodinglife.org). Mol Ecol Notes 7:355–364
  77. Razgour O, Clare EL, Zeale MRK, Hanmer J, Schnell IB, Rasmussen M, Gilbert TP, Jones G (2011) High-throughput sequencing offers insight into mechanisms of resource partitioning in cryptic bat species. Ecol Evol 1(4):556–570CrossRefPubMedPubMedCentralGoogle Scholar
  78. Richardson RT, Lin C-H, Quijia JO, Riusech NS, Goodell K, Johnson RM (2015a) Rank-based characterization of pollen assemblages collected by honey bees using a multi-locus metabarcoding approach. Appl Plant Sci 3(11):1500043CrossRefGoogle Scholar
  79. Richardson RT, Lin C-H, Sponsler DB, Quijia JO, Goodell K, Johnson RM (2015b) Application of ITS2 metabarcoding to determine the provenance of pollen collected by honey bees in an agroecosystem. Appl Plant Sci 3(1):1400066CrossRefGoogle Scholar
  80. Ricketts TH, Regetz J, Steffan-Dewenter I, Cunningham SA, Kremen C, Bogdanski A, Gemmill-Herren B, Greenleaf SS, Klein AM, Mayfield MM, Morandin LA, Ochieng’ A, Viana BF (2008) Landscape effects on crop pollination services: are there general patterns? Ecol Lett 11:499–515CrossRefPubMedGoogle Scholar
  81. Roth F, Yachie N, Petsalaki E, Mellor JC, Weile J, Jacob Y, Verby M, Ozturk SB, Li S, Cote AG et al (2016) Pooled-matrix protein interaction screens using barcode fusion genetics. Mol Syst Biol 12:863CrossRefPubMedPubMedCentralGoogle Scholar
  82. Sahare P, Srinivasu T (2012) Barcoding for authentic identification of medicinal plants. Int J Eng Sci 1:33–36Google Scholar
  83. Scheifinger H, Belmonte J, Buters J, Celenk S, Damialis A, Dechamp C, García-Mozo H, Gehrig R, Grewling L, Halley JM, Hogda K-A, Jäger S, Karatzas K, Karlsen S-R, Koch E, Pauling A, Peel R, Sikoparija B, Smith M, Galán-Soldevilla C, Thibaudon M, Vokou D, de Weger LA (2013) Monitoring, modelling and forecasting of the pollen season. Allergenic Pollen 71–126. Springer Netherlands, Dordrecht.Google Scholar
  84. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, JL ALC, Chen W (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc Natl Acad Sci USA 109:6241–6246CrossRefPubMedGoogle Scholar
  85. Shaw J, Lickey EB, Schilling EE, Small RL (2007) Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Am J Bot 94(3):275–288CrossRefPubMedGoogle Scholar
  86. Shokralla S, Gibson JF, Nikbakht H, Janzen DH, Hallwachs W, Hajibabaei M (2014) Next-generation DNA barcoding: using next-generation sequencing to enhance and accelerate DNA barcode capture from single specimens. Mol Ecol Resour 14(5):892–901PubMedPubMedCentralGoogle Scholar
  87. Sickel W, Ankenbrand MJ, Grimmer G, Holzschuh A, Härtel S, Lanzen J, SteffanDewenter I, Keller A (2015) Increased efficiency in identifying mixed pollen samples by meta-barcoding with a dual-indexing approach. BMC Ecol 15(1):20CrossRefPubMedPubMedCentralGoogle Scholar
  88. Smith MA, Bertrand C, Crosby K, Eveleigh ES, Fernandez-Triana J, Fisher BL et al (2012) Wolbachia and DNA barcoding insects: patterns, potential and problems. PLoS One 7:e36514CrossRefPubMedPubMedCentralGoogle Scholar
  89. Sogin ML, Morrison HG, Huber JA et al (2006) Microbial diversity in the deep sea and the underexplored ‘rare biosphere’. Proc Natl Acad Sci USA 103(32):12115–12120CrossRefPubMedGoogle Scholar
  90. Stoeck T, Bass D, Nebel M, Christen R, Jones MD et al (2010) Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol Ecol 19(Suppl 1):21–31CrossRefPubMedGoogle Scholar
  91. Suyama Y, Kawamuro K, Kinoshita I, Yoshimura K, Tsumura Y, Takahara H (1996) DNA sequence from a fossil pollen of Abier spp. from Pleistocence peat. Genes Genet Syst 7(1):145–149CrossRefGoogle Scholar
  92. Taberlet P, Coissac E, Pompanon F, Gielly L, Miquel C, Valentini A, Vermat T, Corthier G, Brochmann C, Willerslev E (2007) Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. Nucleic Acids Res 35:e14–e14CrossRefGoogle Scholar
  93. Thao NP, Thu NB, Hoang XL, Van Ha C, Tran LS (2013) Differential expression analysis of a subset of drought-responsive GmNAC genes in two soybean cultivars differing in drought tolerance. Int J Mol Sci 14:23828–23841CrossRefPubMedPubMedCentralGoogle Scholar
  94. Valentini A, Miquel C, Nawaz MA, Bellemain E, Coissac E, Pompanon F, Gielly L, Cruaud C, Nascetti G, Wincker P, Swenson JE, Taberlet P (2009) New perspectives in diet analysis based on DNA barcoding and parallel pyrosequencing: the trnL approach. Mol Ecol Resour 9(1):51–60CrossRefPubMedGoogle Scholar
  95. Valentini A, Miquel C, Taberlet P (2010) DNA barcoding for honey biodiversity. Diversity 2:610–617CrossRefGoogle Scholar
  96. Vivas CV, Moraes RCS, Alves-Araújo A, Alves M, Mariano-Neto E, van den Berg C, Gaiotto FA (2014) DNA barcoding in Atlantic Forest plants: what is the best marker for Sapotaceae species identification? Genet Mol Biol 37(4):662–670CrossRefPubMedPubMedCentralGoogle Scholar
  97. Vohra P, Khera KS (2013) DNA barcoding: current advance and future prospects—a review. Asian J Biol Life Sci 3:185–189Google Scholar
  98. Walsh KA, Horrocks M (2008) Palynology: its position in the field of forensic science. J Forensic Sci 53(5):1053–1060CrossRefPubMedGoogle Scholar
  99. Williamson SJ, Rusch DB, Yooseph S, Halpern A, Heidelberg KB, Glass JI et al (2008) The sorcerer II global ocean sampling expedition: metagenomic characterization of viruses within aquatic microbial samples. PLoS One 1:e1456CrossRefGoogle Scholar
  100. Wilson EE, Sidhu CS, LeVan KE, Holway DA (2010) Pollen foraging behavior of solitary Hawaiian bees revealed through molecular pollen analysis. Mol Ecol 19:4823–4829CrossRefPubMedGoogle Scholar
  101. Wilson JJ, Sing KW, Halim MR, Ramli R, Hashim R, Sofian-Azirun M (2014) Utility of DNA barcoding for rapid and accurate assessment of bat diversity in Malaysia in the absence of formally described species. Genet Mol Res 13(1):920–925CrossRefPubMedGoogle Scholar
  102. Zhang AB, Muster C, Liang HB, Zhu CD, Crozier R, Wan P et al (2012) A fuzzy-set-theory-based approach to analyse species membership in DNA barcoding. Mol Ecol 21:1848–1863CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Sambashiva Daravath
    • 1
  • Reddya Naik Bannoth
    • 2
  • Manickam Tamil Selvi
    • 3
  • Srinivas Ankanagari
    • 4
  1. 1.Department of BiotechnologyNizam CollegeHyderabadIndia
  2. 2.Department of ZoologyOsmania UniversityHyderabadIndia
  3. 3.Value Added Corporate Services Pvt LtdChennaiIndia
  4. 4.Department of GeneticsOsmania UniversityHyderabadIndia

Personalised recommendations