Advertisement

Transgenic Plants for Improved Salinity and Drought Tolerance

  • Saikat Paul
  • Aryadeep Roychoudhury
Chapter

Abstract

Salinity and drought are the two most brutal environmental stresses that greatly affect plant growth and productivity. The worldwide increase in human population has made such stress assume a more disastrous form. In order to provide sufficient food and mitigate global hunger, a more sustainable and sufficient means of crop production is of urgent necessity. In the last decade, scientists have carried out extensive research to develop salt- and drought-tolerant crops through conventional breeding, but the outcome of these programs was not found to be convincing, as indicated by the limited number of salt- and drought-tolerant genotypes released so far. This is because hybridization is time-consuming and labor intensive. Whole genome sequencing, proteomic and metabolomic analysis of different crop plants under salt and drought stress has led scientists to identify different groups of genes involved in stress tolerance. Genetic engineering approach provides a comprehensive and more promising or practical tool to clone single gene or gene clusters and precisely characterize their function by introgression into other crop species, as compared to traditional crossing technique. The present chapter highlights the recent developments in transgenic research through incorporation and overexpression of single or multiple genes, either in homologous or heterologous background, thereby enhancing tolerance to salt and drought stress.

Keywords

Abiotic stress Salinity Drought Transgenics Gene overexpression 

Notes

Acknowledgment

The financial support from the Council of Scientific and Industrial Research (CSIR), Government of India, through the project [38(1387)/14/EMR-II] to Dr. Aryadeep Roychoudhury is gratefully acknowledged. The authors are thankful to University Grants Commission (UGC), Government of India, for providing Senior Research Fellowship to Saikat Paul.

References

  1. Abass M, Morris PC (2013) The Hordeum vulgare signalling protein MAP kinase 4 is a regulator of biotic and abiotic stress responses. J Plant Physiol 170:1353–1359PubMedCrossRefGoogle Scholar
  2. Agarwal P, Dabi M, Sapara KK et al (2016) Ectopic expression of JcWRKY transcription factor confers salinity tolerance via salicylic acid signaling. Front Plant Sci 7:1541PubMedPubMedCentralGoogle Scholar
  3. Ahmad R, Kim YH, Kim MD et al (2010) Simultaneous expression of choline oxidase, superoxide dismutase and ascorbate peroxidase in potato plant chloroplasts provides synergistically enhanced protection against various abiotic stresses. Physiol Plant 138:520–533PubMedCrossRefGoogle Scholar
  4. Ahmed AAM, Roosens N, Dewaele E et al (2015) Overexpression of a novel feedback-desensitized Δ1-pyrroline-5-carboxylate synthetase increases proline accumulation and confers salt tolerance in transgenic Nicotiana plumbaginifolia. Plant Cell Tissue Organ Cult 122:383CrossRefGoogle Scholar
  5. Ahsan M, Zafar AY, Iqbal J et al (2011) Enhanced expression of AtNHX1, in transgenic groundnut (Arachis hypogaea L.) improves salt and drought tolerence. Mol Biotechnol 49:250–256CrossRefGoogle Scholar
  6. Alcázar R, Altabella T, Marco F et al (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237–1249PubMedCrossRefGoogle Scholar
  7. Alet AI, Sanchez DH, Cuevas JC et al (2011) Putrescine accumulation in Arabidopsis thaliana transgenic lines enhances tolerance to dehydration and freezing stress. Plant Signal Behav 6:278–286PubMedPubMedCentralCrossRefGoogle Scholar
  8. Almadanim MC, Alexandre BM, Rosa MTG et al (2017) Rice calcium-dependent protein kinase OsCPK17 targets plasma membrane intrinsic protein and sucrose-phosphate synthase and is required for a proper cold stress response. Plant Cell Environ. https://doi.org/10.1111/pce.12916
  9. Anjum NA, Sharma P, Gill SS et al (2016) Catalase and ascorbate peroxidase-representative H2O2-detoxifying heme enzymes in plants. Environ Sci Pollut Res 23:19002–19029CrossRefGoogle Scholar
  10. Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285:1256–1258PubMedCrossRefGoogle Scholar
  11. Árnadóttir J, Chalfie M (2010) Eukaryotic mechanosensitive channels. Annu Rev Biophys 39:111–137PubMedCrossRefGoogle Scholar
  12. Asano T, Hakata M, Nakamura H et al (2011) Functional characterisation of OsCPK21, a calcium-dependent protein kinase that confers salt tolerance in rice. Plant Mol Biol 75:179–191PubMedCrossRefGoogle Scholar
  13. Asano T, Hayashi N, Kobayashi M et al (2012) A rice calcium-dependent protein kinase OsCPK12 oppositely modulates salt-stress tolerance and blast disease resistance. Plant J 69:26–36PubMedCrossRefGoogle Scholar
  14. Ashraf M (2010) Inducing drought tolerance in plants: recent advances. Biotechnol Adv 28:169–183PubMedCrossRefGoogle Scholar
  15. Ashraf M, Akram NA (2009) Improving salinity tolerance of plants through conventional breeding and genetic engineering: an analytical comparison. Biotechnol Adv 27:744–752PubMedCrossRefGoogle Scholar
  16. Augustine SM, Ashwin Narayan J, Syamaladevi DP et al (2015) Overexpression of EaDREB2 and pyramiding of EaDREB2 with the pea DNA helicase gene (PDH45) enhance drought and salinity tolerance in sugarcane (Saccharum spp. hybrid). Plant Cell Rep 34:247–263PubMedCrossRefGoogle Scholar
  17. Babu RC, Zhang J, Blum A et al (2004) HVA1 , a LEA gene from barley confers dehydration tolerance in transgenic rice ( Oryza sativa L .) via cell membrane protection. Plant Sci 166:855–862CrossRefGoogle Scholar
  18. Baena-González E, Rolland F, Thevelein JM, Sheen J (2007) A central integrator of transcription networks in plant stress and energy signalling. Nature 448:938–942PubMedCrossRefGoogle Scholar
  19. Banerjee A, Roychoudhury A (2015) WRKY proteins: signaling and regulation of expression during abiotic stress responses. Sci World J 2015:807560CrossRefGoogle Scholar
  20. Banerjee A, Roychoudhury A (2016) Group II late embryogenesis abundant (LEA) proteins: structural and functional aspects in plant abiotic stress. Plant Growth Regul 79:1–17CrossRefGoogle Scholar
  21. Banerjee A, Roychoudhury A (2017) Abscisic-acid-dependent basic leucine zipper (bZIP) transcription factors in plant abiotic stress. Protoplasma 254:3–16PubMedCrossRefGoogle Scholar
  22. Banjara M, Zhu L, Shen G (2012) Expression of an Arabidopsis sodium / proton antiporter gene (AtNHX1) in peanut to improve salt tolerance. Plant Biotechnol Rep 6:59–67CrossRefGoogle Scholar
  23. Bao F, Du D, An Y et al (2017) Overexpression of Prunus mume Dehydrin genes in tobacco enhances tolerance to cold and drought. Front Plant Sci 8:151PubMedPubMedCentralGoogle Scholar
  24. Battaglia M, Olvera-Carrillo Y, Garciarrubio A et al (2008) The enigmatic LEA proteins and other hydrophilins. Plant Physiol 148:6–24PubMedPubMedCentralCrossRefGoogle Scholar
  25. Biedermannova L, Riley KE, Berka K et al (2008) Another role of proline: stabilization interactions in proteins and protein complexes concerning proline and tryptophane. Phys Chem Chem Phys 10:6350–6359PubMedCrossRefGoogle Scholar
  26. Bouaziz D, Pirrello J, Charfeddine M et al (2013) Overexpression of StDREB1 transcription factor increases tolerance to salt in transgenic potato plants. Mol Biotechnol 54:803–817PubMedCrossRefGoogle Scholar
  27. Cai G, Wang G, Wang L et al (2014) A maize mitogen-activated protein kinase kinase, ZmMKK1, positively regulated the salt and drought tolerance in transgenic Arabidopsis. J Plant Physiol 171:1003–1016PubMedCrossRefGoogle Scholar
  28. Cai H, Tian S, Dong H, Guo C (2015) Pleiotropic effects of TaMYB3R1 on plant development and response to osmotic stress in transgenic Arabidopsis. Gene 558:227–234PubMedCrossRefGoogle Scholar
  29. Cao ZH, Zhang SZ, Wang RK et al (2013) Genome wide analysis of the apple MYB transcription factor family allows the identification of MdoMYB121 gene confering abiotic stress tolerance in plants. PLoS One 8:e69955PubMedPubMedCentralCrossRefGoogle Scholar
  30. Capell T, Bassie L, Christou P (2004) Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proc Natl Acad Sci 101:9909–9914PubMedCrossRefGoogle Scholar
  31. Checker VG, Chhibbar AK, Khurana P (2012) Stress-inducible expression of barley Hva1 gene in transgenic mulberry displays enhanced tolerance against drought , salinity and cold stress. Transgenic Res 21:939–957PubMedCrossRefGoogle Scholar
  32. Chen THH, Murata N (2011) Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant Cell Environ 34:1–20PubMedCrossRefGoogle Scholar
  33. Chen ZQ, Liu Q, Zhu YS, Li YX (2002) Wheat LEA genes PMA80 and PMA 1959, enhance dehydration tolerance of transgenic rice (Oryza sativa L.). Mol Breed 10:71–82CrossRefGoogle Scholar
  34. Chen H, An R, Tang JH et al (2007) Over-expression of a vacuolar Na+/H+ antiporter gene improves salt tolerance in an upland rice. Mol Breed 19:215–225CrossRefGoogle Scholar
  35. Chen J, Xue B, Xia X, Yin W (2013a) A novel calcium-dependent protein kinase gene from Populus euphratica, confers both drought and cold stress tolerance. Biochem Biophys Res Commun 441:630–636PubMedCrossRefGoogle Scholar
  36. Chen JB, Yang JW, Zhang ZY et al (2013b) Two P5CS genes from common bean exhibiting different tolerance to salt stress in transgenic Arabidopsis. J Genet 92:461–469PubMedCrossRefGoogle Scholar
  37. Chen L, Wang QQ, Zhou L et al (2013c) Arabidopsis CBL-interacting protein kinase (CIPK6) is involved in plant response to salt/osmotic stress and ABA. Mol Biol Rep 40:4759–4767PubMedCrossRefGoogle Scholar
  38. Chen X, Huang Q, Zhang F et al (2014a) ZmCIPK21, a maize CBL-interacting kinase, enhances salt stress tolerance in Arabidopsis thaliana. Int J Mol Sci 15:14819–14834PubMedPubMedCentralCrossRefGoogle Scholar
  39. Chen X, Wang Y, Lv B et al (2014b) The NAC family transcription factor OsNAP confers abiotic stress response through the ABA pathway. Plant Cell Physiol 55:604–619PubMedCrossRefGoogle Scholar
  40. Chen H, Liu L, Wang L et al (2016) VrDREB2A, a DREB-binding transcription factor from Vigna radiata, increased drought and high-salt tolerance in transgenic Arabidopsis thaliana. J Plant Res 129:263–273PubMedCrossRefGoogle Scholar
  41. Cheng L, Zou Y, Ding S et al (2009) Polyamine accumulation in transgenic tomato enhances the tolerance to high temperature stress. J Integr Plant Biol 51:489–499PubMedCrossRefGoogle Scholar
  42. Cheng L, Li S, Hussain J et al (2013) Isolation and functional characterization of a salt responsive transcriptional factor, LrbZIP from lotus root (Nelumbo nucifera Gaertn). Mol Biol Rep 40:4033–4045PubMedCrossRefGoogle Scholar
  43. Chu X, Wang C, Chen X et al (2015) The cotton WRKY gene GhWRKY41 positively regulates salt and drought stress tolerance in transgenic Nicotiana benthamiana. PLoS One 10:e0143022PubMedPubMedCentralCrossRefGoogle Scholar
  44. Chun J, Li F-S, Ma Y et al (2014) Cloning and characterization of a SnRK2 gene from Jatropha curcas L. Genet Mol Res 13:10958–10975PubMedCrossRefGoogle Scholar
  45. Coello P, Hey SJ, Halford NG (2011) The sucrose non-fermenting-1-related (SnRK) family of protein kinases: potential for manipulation to improve stress tolerance and increase yield. J Exp Bot 62:883–893PubMedCrossRefGoogle Scholar
  46. Dalal M, Tayal D, Chinnusamy V, Bansal KC (2009) Abiotic stress and ABA-inducible Group 4 LEA from Brassica napus plays a key role in salt and drought tolerance. J Biotechnol 139:137–145PubMedCrossRefGoogle Scholar
  47. Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53CrossRefGoogle Scholar
  48. Dash M, Yordanov YS, Georgieva T et al (2017) Poplar PtabZIP1-like enhances lateral root formation and biomass growth under drought stress. Plant J 89:692–705PubMedCrossRefGoogle Scholar
  49. de Zelicourt A, Colcombet J, Hirt H (2016) The role of MAPK modules and ABA during abiotic stress signaling. Trends Plant Sci 21:677–685PubMedCrossRefGoogle Scholar
  50. Deng X, Hu W, Wei S et al (2013a) TaCIPK29, a CBL-interacting protein kinase gene from wheat, confers salt stress tolerance in transgenic tobacco. PLoS One 8:e69881PubMedPubMedCentralCrossRefGoogle Scholar
  51. Deng X, Zhou S, Hu W et al (2013b) Ectopic expression of wheat TaCIPK14, encoding a calcineurin B-like protein-interacting protein kinase, confers salinity and cold tolerance in tobacco. Physiol Plant 149:367–377PubMedGoogle Scholar
  52. Dey A, Samanta MK, Gayen S et al (2016a) Enhanced gene expression rather than natural polymorphism in coding sequence of the OsbZIP23 determines drought tolerance and yield improvement in rice genotypes. PLoS One 11:e0150763PubMedPubMedCentralCrossRefGoogle Scholar
  53. Dey A, Samanta MK, Gayen S, Maiti MK (2016b) The sucrose non-fermenting 1-related kinase 2 gene SAPK9 improves drought tolerance and grain yield in rice by modulating cellular osmotic potential, stomatal closure and stress-responsive gene expression. BMC Plant Biol 16:158PubMedPubMedCentralCrossRefGoogle Scholar
  54. Diaz-Vivancos P, Faize M, Barba-Espin G et al (2013) Ectopic expression of cytosolic superoxide dismutase and ascorbate peroxidase leads to salt stress tolerance in transgenic plums. Plant Biotechnol J 11:976–985PubMedCrossRefGoogle Scholar
  55. Ding Z, Li S, An X et al (2009) Transgenic expression of MYB15 confers enhanced sensitivity to abscisic acid and improved drought tolerance in Arabidopsis thaliana. J Genet Genomics 36:17–29PubMedCrossRefGoogle Scholar
  56. Dow GJ, Berry JA, Bergmann DC (2014) The physiological importance of developmental mechanisms that enforce proper stomatal spacing in Arabidopsis thaliana. New Phytol 201:1205–1217PubMedCrossRefGoogle Scholar
  57. Dubos C, Stracke R, Grotewold E et al (2010) MYB transcription factors in Arabidopsis. Trends Plant Sci 15:573–581PubMedCrossRefGoogle Scholar
  58. Dubrovina AS, Kiselev KV, Khristenko VS, Aleynova OA (2015) VaCPK20 , a calcium-dependent protein kinase gene of wild grapevine Vitis amurensis Rupr., mediates cold and drought stress tolerance. J Plant Physiol 185:1–12PubMedCrossRefGoogle Scholar
  59. Fang L, Su L, Sun X et al (2016) Expression of Vitis amurensis NAC26 in Arabidopsis enhances drought tolerance by modulating jasmonic acid synthesis. J Exp Bot 67:2829–2845PubMedPubMedCentralCrossRefGoogle Scholar
  60. Ganguly M, Datta K, Roychoudhury A, Gayen D, Sengupta DN, Datta SK (2012) Overexpression of Rab16A gene in indica rice variety for generating enhanced salt tolerance. Plant Signal Behav 7:502–509PubMedPubMedCentralCrossRefGoogle Scholar
  61. Gao SQ, Chen M, Xu ZS et al (2011) The soybean GmbZIP1 transcription factor enhances multiple abiotic stress tolerances in transgenic plants. Plant Mol Biol 75:537–553PubMedCrossRefGoogle Scholar
  62. Golldack D, Li C, Mohan H, Probst N (2014) Tolerance to drought and salt stress in plants: unraveling the signaling networks. Front Plant Sci 5:151PubMedPubMedCentralCrossRefGoogle Scholar
  63. Gong X, Zhang J, Hu J et al (2015) FcWRKY70, a WRKY protein of Fortunella crassifolia, functions in drought tolerance and modulates putrescine synthesis by regulating arginine decarboxylase gene. Plant Cell Environ 38:2248–2262PubMedCrossRefGoogle Scholar
  64. Gosal SS, Wani SH, Kang MS (2009) Biotechnology and drought tolerance. J Crop Improv 23:19–54CrossRefGoogle Scholar
  65. Gu L, Liu Y, Zong X, et al (2010) Overexpression of maize mitogen-activated protein kinase gene, ZmSIMK1 in Arabidopsis increases tolerance to salt stress. Mol Biol Rep 37:4067–4073PubMedCrossRefGoogle Scholar
  66. Guedes Corrêa LG, Riaño-Pachón DM, Guerra Schrago C, et al. (2008) The role of bZIP transcription factors in green plant evolution: Adaptive features emerging from four founder genes. PLoS One 3:e2944.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Gunapati S, Naresh R, Ranjan S et al (2016) Expression of GhNAC2 from G. herbaceum, improves root growth and imparts tolerance to drought in transgenic cotton and Arabidopsis. Sci Rep 6:24978PubMedPubMedCentralCrossRefGoogle Scholar
  68. Guo Y, Halfter U, Ishitani M, Zhu JK (2001) Molecular characterization of functional domains in the protein kinase SOS2 t7hat is required for plant salt tolerance. Plant Cell 13:1383–1400PubMedPubMedCentralCrossRefGoogle Scholar
  69. Guo Y, Qiu Q-S, Quintero FJ et al (2004) Transgenic evaluation of activated mutant alleles of SOS2 reveals a critical requirement for its kinase activity and C-terminal regulatory domain for salt tolerance in Arabidopsis thaliana. Plant Cell 16:435–449PubMedPubMedCentralCrossRefGoogle Scholar
  70. Halford NG, Hey S, Jhurreea D et al (2003) Metabolic signalling and carbon partitioning: role of Snf1-related (SnRK1) protein kinase. J Exp Bot 54:467–475PubMedCrossRefGoogle Scholar
  71. Hao Y-J, Wei W, Song Q-X et al (2011) Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants. Plant J 68:302–313PubMedCrossRefGoogle Scholar
  72. Hao L, Wen Y, Zhao Y et al (2015) Wheat mitogen-activated protein kinase gene TaMPK4 improves plant tolerance to multiple stresses through modifying root growth, ROS metabolism, and nutrient acquisitions. Plant Cell Rep 34:2081–2097PubMedCrossRefGoogle Scholar
  73. Hasthanasombut S, Ntui V, Supaibulwatana K et al (2010) Expression of Indica rice OsBADH1 gene under salinity stress in transgenic tobacco. Plant Biotechnol Rep 4:75–83CrossRefGoogle Scholar
  74. Hasthanasombut S, Supaibulwatana K, Mii M, Nakamura I (2011) Genetic manipulation of Japonica rice using the OsBADH1 gene from Indica rice to improve salinity tolerance. Plant Cell Tissue Organ Cult 104:79–89CrossRefGoogle Scholar
  75. Hayat S, Hayat Q, Alyemeni MN et al (2012) Role of proline under changing environments: a review. Plant Signal Behav 7:1456–1466PubMedPubMedCentralCrossRefGoogle Scholar
  76. He Y, Li W, Lv J et al (2012) Ectopic expression of a wheat MYB transcription factor gene, TaMYB73, improves salinity stress tolerance in Arabidopsis thaliana. J Exp Bot 63:1511–1522PubMedCrossRefGoogle Scholar
  77. He G-H, Xu J-Y, Wang Y-X et al (2016) Drought-responsive WRKY transcription factor genes TaWRKY1 and TaWRKY33 from wheat confer drought and/or heat resistance in Arabidopsis. BMC Plant Biol 16:116PubMedPubMedCentralCrossRefGoogle Scholar
  78. Hirayama T, Shinozaki K (2007) Perception and transduction of abscisic acid signals: keys to the function of the versatile plant hormone ABA. Trends Plant Sci 12:343–351PubMedCrossRefGoogle Scholar
  79. Hobo T, Kowyama Y, Hattori T (1999) A bZIP factor, TRAB1, interacts with VP1 and mediates abscisic acid-induced transcription. Proc Natl Acad Sci U S A 96:15348–15353PubMedPubMedCentralCrossRefGoogle Scholar
  80. Hong Y, Zhang H, Huang L et al (2016) Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice. Front Plant Sci 7:4PubMedPubMedCentralCrossRefGoogle Scholar
  81. Hossain M, Lee Y, Cho J-I et al (2010) The bZIP transcription factor OsABF1 is an ABA responsive element binding factor that enhances abiotic stress signaling in rice. Plant Mol Biol 72:557–566CrossRefGoogle Scholar
  82. Hu DG, Li M, Luo H et al (2012) Molecular cloning and functional characterization of MdSOS2 reveals its involvement in salt tolerance in apple callus and Arabidopsis. Plant Cell Rep 31:713–722PubMedCrossRefGoogle Scholar
  83. Hu DG, Ma QJ, Sun CH et al (2016) Overexpression of MdSOS2L1, a CIPK protein kinase, increases the antioxidant metabolites to enhance salt tolerance in apple and tomato. Physiol Plant 156:201–214PubMedCrossRefGoogle Scholar
  84. Huang Q, Wang Y (2016) Overexpression of TaNAC2D displays opposite responses to abiotic stresses between seedling and mature stage of transgenic Arabidopsis. Front Plant Sci 7:1754PubMedPubMedCentralGoogle Scholar
  85. Huang X-S, Liu J-H, Chen X-J (2010) Overexpression of PtrABF gene, a bZIP transcription factor isolated from Poncirus trifoliata, enhances dehydration and drought tolerance in tobacco via scavenging ROS and modulating expression of stress-responsive genes. BMC Plant Biol 10:230PubMedPubMedCentralCrossRefGoogle Scholar
  86. Huang Q, Wang Y, Li B et al (2015) TaNAC29, a NAC transcription factor from wheat, enhances salt and drought tolerance in transgenic Arabidopsis. BMC Plant Biol 15:268PubMedPubMedCentralCrossRefGoogle Scholar
  87. Huang L, Hong Y, Zhang H et al (2016a) Rice NAC transcription factor ONAC095 plays opposite roles in drought and cold stress tolerance. BMC Plant Biol 16:203PubMedPubMedCentralCrossRefGoogle Scholar
  88. Huang Z, Zhong X-J, He J et al (2016b) Genome-wide identification, characterization, and stress-responsive expression profiling of genes encoding LEA (late embryogenesis abundant) proteins in Moso Bamboo (Phyllostachys edulis). PLoS One 11:e0165953PubMedPubMedCentralCrossRefGoogle Scholar
  89. Hundertmark M, Hincha DK (2008) LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics 9:118PubMedPubMedCentralCrossRefGoogle Scholar
  90. Hwang I, Manoharan RK, Kang J et al (2016) Genome-wide identification and characterization of bZIP transcription factors in Brassica oleracea under cold stress. Biomed Res Int 2016:4376598PubMedPubMedCentralGoogle Scholar
  91. Ibragimova SM, Trifonova EA, Filipenko EA, Shymny VK (2015) Evaluation of salt tolerance of transgenic tobacco plants bearing with P5CS1 gene of Arabidopsis thaliana. Genetika 51:1368–1375PubMedGoogle Scholar
  92. Jakoby M, Weisshaar B, Dröge-Laser W et al (2002) bZIP transcription factors in Arabidopsis. Trends Plant Sci 7:106–111PubMedCrossRefGoogle Scholar
  93. Jeong JS, Kim YS, Baek KH et al (2010) Root-specific expression of OsNAC10 improves drought tolerance and grain yield in Rice under field drought conditions. Plant Physiol 153:185–197PubMedPubMedCentralCrossRefGoogle Scholar
  94. Jeong JS, Kim YS, Redillas MCFR et al (2013) OsNAC5 overexpression enlarges root diameter in rice plants leading to enhanced drought tolerance and increased grain yield in the field. Plant Biotechnol J 11:101–114PubMedCrossRefGoogle Scholar
  95. Jia H, Wang C, Wang F et al (2015) GhWRKY68 reduces resistance to salt and drought in transgenic Nicotiana benthamiana. PLoS One 10:e0120646PubMedPubMedCentralCrossRefGoogle Scholar
  96. Jia H, Hao L, Guo X et al (2016) A Raf-like MAPKKK gene, GhRaf19, negatively regulates tolerance to drought and salt and positively regulates resistance to cold stress by modulating reactive oxygen species in cotton. Plant Sci 252:267–281PubMedCrossRefGoogle Scholar
  97. Jiang S, Zhang D, Wang L et al (2013) A maize calcium-dependent protein kinase gene, ZmCPK4, positively regulated abscisic acid signaling and enhanced drought stress tolerance in transgenic Arabidopsis. Plant Physiol Biochem 71:112–120PubMedCrossRefGoogle Scholar
  98. Jing X, Hou P, Lu Y et al (2015) Overexpression of copper/zinc superoxide dismutase from mangrove Kandelia candel in tobacco enhances salinity tolerance by the reduction of reactive oxygen species in chloroplast. Front Plant Sci 6:23PubMedPubMedCentralCrossRefGoogle Scholar
  99. Joo J, Choi HJ, Lee YH et al (2013) A transcriptional repressor of the ERF family confers drought tolerance to rice and regulates genes preferentially located on chromosome 11. Planta 238:155–170PubMedCrossRefGoogle Scholar
  100. Joshi R, Wani SH, Singh B et al (2016) Transcription factors and plants response to drought stress: current understanding and future directions. Front Plant Sci 7:1029PubMedPubMedCentralCrossRefGoogle Scholar
  101. Kang JY, Choi HI, Im MY, Kim SY (2002) Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell 14:343–357PubMedPubMedCentralCrossRefGoogle Scholar
  102. Kaouthar F, Ameny FK, Yosra K et al (2016) Responses of transgenic Arabidopsis plants and recombinant yeast cells expressing a novel durum wheat manganese superoxide dismutase TdMnSOD to various abiotic stresses. J Plant Physiol 198:56–68PubMedCrossRefGoogle Scholar
  103. Kasukabe Y (2004) Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiol 45:712–722PubMedCrossRefGoogle Scholar
  104. Kasukabe Y, He L, Watakabe Y et al (2006) Improvement of environmental stress tolerance of sweet potato by introduction of genes for spermidine synthase. Plant Biotechnol 23:75–83CrossRefGoogle Scholar
  105. Ke Q, Wang Z, Ji CY et al (2016a) Transgenic poplar expressing codA exhibits enhanced growth and abiotic stress tolerance. Plant Physiol Biochem 100:75–84PubMedCrossRefGoogle Scholar
  106. Ke YT, Lu CA, Wu SJ, Yeh CH (2016b) Characterization of Rice Group 3 LEA genes in developmental stages and under abiotic stress. Plant Mol Biol Report 34:1003–1015CrossRefGoogle Scholar
  107. Kerr TCC, Abdel-Mageed H, Aleman L et al (2017) Ectopic expression of two AREB/ABF orthologs increase dehydration tolerance in cotton (Gossypium hirsutum). Plant Cell Environ. https://doi.org/10.1111/pce.12906
  108. Khan MS, Ahmad D, Khan MA (2015) Utilization of genes encoding osmoprotectants in transgenic plants for enhanced abiotic stress tolerance. Electron J Biotechnol 18:257–266CrossRefGoogle Scholar
  109. Kim G-B, Nam Y-W (2013) A novel Δ1-pyrroline-5-carboxylate synthetase gene of Medicago truncatula plays a predominant role in stress-induced proline accumulation during symbiotic nitrogen fixation. J Plant Physiol 170:291–302PubMedCrossRefGoogle Scholar
  110. Kim CY, Vo KTX, Nguyen CD et al (2016) Functional analysis of a cold-responsive rice WRKY gene, OsWRKY71. Plant Biotechnol Rep 10:13–23CrossRefGoogle Scholar
  111. Kishor PBK, Hong ZL, Miao GH et al (1995) Overexpression of ð-Pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108:1387–1394PubMedPubMedCentralCrossRefGoogle Scholar
  112. Kobayashi Y, Yamamoto S, Minami H et al (2004) Differential activation of the rice sucrose nonfermenting1-related protein kinase2 family by hyperosmotic stress and abscisic acid. Plant Cell 16:1163–1177PubMedPubMedCentralCrossRefGoogle Scholar
  113. Kong X, Pan J, Zhang M et al (2011) ZmMKK4, a novel group C mitogen-activated protein kinase kinase in maize (Zea mays), confers salt and cold tolerance in transgenic Arabidopsis. Plant Cell Environ 34:1291–1303PubMedCrossRefGoogle Scholar
  114. Kudla J, Batistic O, Hashimoto K (2010) Calcium signals: the lead currency of plant information processing. Plant Cell 22:541–563PubMedPubMedCentralCrossRefGoogle Scholar
  115. Kudo M, Kidokoro S, Yoshida T et al (2017) Double overexpression of DREB and PIF transcription factors improves drought stress tolerance and cell elongation in transgenic plants. Plant Biotechnol J 15:458–471PubMedCrossRefGoogle Scholar
  116. Kumar K, Sinha AK (2013) Overexpression of constitutively active mitogen activated protein kinase kinase 6 enhances tolerance to salt stress in rice. Rice 6:25PubMedPubMedCentralCrossRefGoogle Scholar
  117. Kumar V, Shriram V, Kishor PBK et al (2010) Enhanced proline accumulation and salt stress tolerance of transgenic indica rice by over-expressing P5CSF129A gene. Plant Biotechnol Rep 4:37–48CrossRefGoogle Scholar
  118. Kumar MN, Jane W-N, Verslues PE (2013) Role of the putative osmosensor Arabidopsis histidine kinase 1 in dehydration avoidance and low-water-potential response. Plant Physiol 161:942–953PubMedCrossRefGoogle Scholar
  119. Le DT, Nishiyama R, Watanabe YA et al (2011) Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress. DNA Res 18:263–276PubMedPubMedCentralCrossRefGoogle Scholar
  120. Lee D-K, Chung PJ, Jeong JS et al (2016) The rice OsNAC6 transcription factor orchestrates multiple molecular mechanisms involving root structural adaptions and nicotianamine biosynthesis for drought tolerance. Plant Biotechnol J:1–11Google Scholar
  121. Leidi EO, Barragán V, Rubio L et al (2010) The AtNHX1 exchanger mediates potassium compartmentation in vacuoles of transgenic tomato. Plant J 61:495–506PubMedCrossRefGoogle Scholar
  122. Li Q, Liu J, Tan D et al (2013) A genome-wide expression profile of salt-responsive genes in the apple rootstock Malus zumi. Int J Mol Sci 14:21053–21070PubMedPubMedCentralCrossRefGoogle Scholar
  123. Li C, Chang PP, Ghebremariam KM et al (2014a) Overexpression of tomato SpMPK3 gene in Arabidopsis enhances the osmotic tolerance. Biochem Biophys Res Commun 443:357–362PubMedCrossRefGoogle Scholar
  124. Li JB, Luan YS, Yin YL (2014b) SpMYB overexpression in tobacco plants leads to altered abiotic and biotic stress responses. Gene 547:145–151PubMedCrossRefGoogle Scholar
  125. Li D, Fu F, Zhang H, Song F (2015a) Genome-wide systematic characterization of the bZIP transcriptional factor family in tomato (Solanum lycopersicum L.). BMC Genomics 16:771PubMedPubMedCentralCrossRefGoogle Scholar
  126. Li J b, Luan Y s, Liu Z (2015b) Overexpression of SpWRKY1 promotes resistance to Phytophthora nicotianae and tolerance to salt and drought stress in transgenic tobacco. Physiol Plant 155:248–266PubMedCrossRefGoogle Scholar
  127. Li X, Feng B, Zhang F et al (2016) Bioinformatic analyses of subgroup-a members of the wheat bZIP transcription factor family and functional identification of TabZIP174 involved in drought stress response. Front Plant Sci 7:1643PubMedPubMedCentralGoogle Scholar
  128. Li K, Xing C, Yao Z, Huang X (2017a) PbrMYB21, a novel MYB protein of Pyrus betulaefolia, functions in drought tolerance and modulates polyamine levels by regulating arginine decarboxylase gene. Plant Biotechnol J. https://doi.org/10.1111/pbi.12708
  129. Li Y, Cai H, Liu P et al (2017b) Arabidopsis MAPKKK18 positively regulates drought stress resistance via downstream MAPKK3. Biochem Biophys Res Commun 484:292–297PubMedCrossRefGoogle Scholar
  130. Liang C, Meng Z, Meng Z et al (2016a) GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.). Sci Rep 6:35040PubMedPubMedCentralCrossRefGoogle Scholar
  131. Liang Y, Xiong Z, Zheng J et al (2016b) Genome-wide identification, structural analysis and new insights into late embryogenesis abundant (LEA) gene family formation pattern in Brassica napus. Sci Rep 6:24265PubMedPubMedCentralCrossRefGoogle Scholar
  132. Liao X, Guo X, Wang Q et al (2016) Overexpression of MsDREB6.2 results in cytokinin-deficient developmental phenotypes and enhances drought tolerance in transgenic apple plants. Plant J 89:510–526CrossRefGoogle Scholar
  133. Liu X, Chu Z (2015) Genome-wide evolutionary characterization and analysis of bZIP transcription factors and their expression profiles in response to multiple abiotic stresses in Brachypodium distachyon. BMC Genomics 16:227PubMedPubMedCentralCrossRefGoogle Scholar
  134. Liu J, Ishitani M, Halfter U et al (2000) The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc Natl Acad Sci 97:3730–3734PubMedCrossRefGoogle Scholar
  135. Liu H, Yang W, Liu D et al (2011) Ectopic expression of a grapevine transcription factor VvWRKY11 contributes to osmotic stress tolerance in Arabidopsis. Mol Biol Rep 38:417–427PubMedCrossRefGoogle Scholar
  136. Liu X, Liu S, Wu J et al (2013) Overexpression of Arachis hypogaea NAC3 in tobacco enhances dehydration and drought tolerance by increasing superoxide scavenging. Plant Physiol Biochem 70:354–359PubMedCrossRefGoogle Scholar
  137. Liu C, Mao B, Ou S et al (2014) OsbZIP71, a bZIP transcription factor, confers salinity and drought tolerance in rice. Plant Mol Biol 84:19–36PubMedCrossRefGoogle Scholar
  138. Liu J-H, Wang W, Wu H et al (2015a) Polyamines function in stress tolerance: from synthesis to regulation. Front Plant Sci 6:827PubMedPubMedCentralGoogle Scholar
  139. Liu ZB, Zhang WJ, Gong XD et al (2015b) A Cu/Zn superoxide dismutase from Jatropha curcas enhances salt tolerance of Arabidopsis thaliana. Genet Mol Res 14:2086–2098PubMedCrossRefGoogle Scholar
  140. Liu L, Zhang Z, Dong J, Wang T (2016a) Overexpression of MtWRKY76 increases both salt and drought tolerance in Medicago truncatula. Environ Exp Bot 123:50–58CrossRefGoogle Scholar
  141. Liu X, Song Y, Xing F et al (2016b) GhWRKY25, a group I WRKY gene from cotton, confers differential tolerance to abiotic and biotic stresses in transgenic Nicotiana benthamiana. Protoplasma 253:1265–1281PubMedCrossRefGoogle Scholar
  142. Liu Z, Liu P, Qi D et al (2017) Enhancement of cold and salt tolerance of Arabidopsis by transgenic expression of the S-adenosylmethionine decarboxylase gene from Leymus chinensis. J Plant Physiol 211:90–99PubMedCrossRefGoogle Scholar
  143. Lovas Á, Bimbó A, Szabó L, Bánfalvi Z (2003) Antisense repression of StubGAL83 affects root and tuber development in potato. Plant J 33:139–147PubMedCrossRefGoogle Scholar
  144. Lu Z, Liu D, Liu S (2007) Two rice cytosolic ascorbate peroxidases differentially improve salt tolerance in transgenic Arabidopsis. Plant Cell Rep 26:1909–1917PubMedCrossRefGoogle Scholar
  145. Lu G, Gao C, Zheng X, Han B (2009) Identification of OsbZIP72 as a positive regulator of ABA response and drought tolerance in rice. Planta 229:605–615PubMedCrossRefGoogle Scholar
  146. Lu W, Chu X, Li Y et al (2013) Cotton GhMKK1 induces the tolerance of salt and drought stress, and mediates defence responses to pathogen infection in transgenic Nicotiana benthamiana. PLoS One 8:e68503PubMedPubMedCentralCrossRefGoogle Scholar
  147. Luo X, Bai X, Sun X et al (2013) Expression of wild soybean WRKY20 in Arabidopsis enhances drought tolerance. J Exp Bot 64:2155–2169PubMedCrossRefGoogle Scholar
  148. Lv F, Zhang H, Xia X, Yin W (2014) Expression profiling and functional characterization of a CBL-interacting protein kinase gene from Populus euphratica. Plant Cell Rep 33:807–818PubMedCrossRefGoogle Scholar
  149. Lv Z, Wang S, Zhang F et al (2016) Overexpression of a novel NAC domain-containing transcription factor (AaNAC1) enhances the content of artemisinin and increases tolerance to drought and Botrytis cinerea in Artemisia annua. Plant Cell Physiol 57:1961–1971PubMedCrossRefGoogle Scholar
  150. Ma DM, Xu WR, Li HW et al (2014) Co-expression of the Arabidopsis SOS genes enhances salt tolerance in transgenic tall fescue (Festuca arundinacea Schreb.). Protoplasma 251:219–231PubMedCrossRefGoogle Scholar
  151. Mallikarjuna G, Mallikarjuna K, Reddy MK, Kaul T (2011) Expression of OsDREB2A transcription factor confers enhanced dehydration and salt stress tolerance in rice (Oryza sativa L.). Biotechnol Lett 33:1689–1697PubMedCrossRefGoogle Scholar
  152. Mao X, Zhang H, Tian S et al (2010) TaSnRK2.4, an SNF1-type serine/threonine protein kinase of wheat (Triticum aestivum L.), confers enhanced multistress tolerance in Arabidopsis. J Exp Bot 61:683–696PubMedCrossRefGoogle Scholar
  153. Mao X, Chen S, Li A et al (2014) Novel NAC transcription factor TaNAC67 confers enhanced multi-abiotic stress tolerances in Arabidopsis. PLoS One 9:e84359PubMedPubMedCentralCrossRefGoogle Scholar
  154. Meng X, Wang J-R, Wang G-D et al (2015) An R2R3-MYB gene, LeAN2, positively regulated the thermo-tolerance in transgenic tomato. J Plant Physiol 175:1–8PubMedCrossRefGoogle Scholar
  155. Mohanty A, Kathuria H, Ferjani A et al (2002) Transgenics of an elite indica rice variety Pusa Basmati 1 harbouring the codA gene are highly tolerant to salt stress. Theor Appl Genet 106:51–57PubMedCrossRefGoogle Scholar
  156. Monshausen GB, Gilroy S (2009) Feeling green: mechanosensing in plants. Trends Cell Biol 19:228–235PubMedCrossRefGoogle Scholar
  157. Nakashima K, Shinwari ZK, Sakuma Y et al (2000) Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration- and high-salinity-responsive gene expression. Plant Mol Biol 42:657–665PubMedCrossRefGoogle Scholar
  158. Negi NP, Shrivastava DC, Sharma V, Sarin NB (2015) Overexpression of CuZnSOD from Arachis hypogaea alleviates salinity and drought stress in tobacco. Plant Cell Rep 34:1109–1126PubMedCrossRefGoogle Scholar
  159. Nguyen TX, Sticklen M (2013) Barley HVA1 gene confers drought and salt tolerance in transgenic maize (Zea mays L.). Adv crop. Sci Technol 1:105Google Scholar
  160. Nijhawan A, Jain M, Tyagi AK, Khurana JP (2008) Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice. Plant Physiol 146:333–350PubMedPubMedCentralCrossRefGoogle Scholar
  161. Ning J, Li X, Hicks LM, Xiong L (2010) A Raf-like MAPKKK gene DSM1 mediates drought resistance through reactive oxygen species scavenging in rice. Plant Physiol 152:876–890PubMedPubMedCentralCrossRefGoogle Scholar
  162. Niu X, Zheng W, Lu B-R et al (2007) An unusual posttranscriptional processing in two betaine aldehyde dehydrogenase loci of cereal crops directed by short, direct repeats in response to stress conditions. Plant Physiol 143:1929–1942PubMedPubMedCentralCrossRefGoogle Scholar
  163. Niu CF, Wei W, Zhou QY et al (2012) Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants. Plant Cell Environ 35:1156–1170PubMedCrossRefGoogle Scholar
  164. Nuruzzaman M, Manimekalai R, Sharoni AM et al (2010) Genome-wide analysis of NAC transcription factor family in rice. Gene 465:30–44PubMedCrossRefGoogle Scholar
  165. Oraby HF, Ransom CB, Kravchenko AN, Sticklen MB (2005) Barley HVA1 gene confers salt tolerance in R3 transgenic oat. Crop Sci 45:2218–2227CrossRefGoogle Scholar
  166. Osakabe Y, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS (2014) ABA control of plant macroelement membrane transport systems in response to water deficit and high salinity. New Phytol 202:35–49PubMedCrossRefGoogle Scholar
  167. Pasquali G, Biricolti S, Locatelli F et al (2008) Osmyb4 expression improves adaptive responses to drought and cold stress in transgenic apples. Plant Cell Rep 27:1677–1686PubMedCrossRefGoogle Scholar
  168. Pathak MR, Teixeira JA, Wani SH (2014) Polyamines in response to abiotic stress tolerance through transgenic approaches. GM Crop Food 5:87–96CrossRefGoogle Scholar
  169. Paz-Ares J, Ghosal D, Wienand U et al (1987) The regulatory c1 locus of Zea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators. EMBO J 6:3553–3558PubMedPubMedCentralCrossRefGoogle Scholar
  170. Pehlivan N, Sun L, Jarrett P et al (2016) Co-overexpressing a plasma membrane and a vacuolar membrane sodium/proton antiporter significantly improves salt tolerance in transgenic Arabidopsis plants. Plant Cell Physiol 57:1069–1084PubMedPubMedCentralCrossRefGoogle Scholar
  171. Peng X, Zhang L, Zhang L et al (2013) The transcriptional factor LcDREB2 cooperates with LcSAMDC2 to contribute to salt tolerance in Leymus chinensis. Plant Cell Tissue Organ Cult 113:245–256CrossRefGoogle Scholar
  172. Puranik S, Sahu PP, Srivastava PS, Prasad M (2012) NAC proteins: regulation and role in stress tolerance. Trends Plant Sci 17:369–381PubMedCrossRefGoogle Scholar
  173. Puranik S, Sahu PP, Mandal SN et al (2013) Comprehensive genome-wide survey, genomic constitution and expression profiling of the NAC transcription factor family in foxtail millet (Setaria italica L.). PLoS One 8:e64594PubMedPubMedCentralCrossRefGoogle Scholar
  174. Qi L, Yang J, Yuan Y et al (2015) Overexpression of two R2R3-MYB genes from Scutellaria baicalensis induces phenylpropanoid accumulation and enhances oxidative stress resistance in transgenic tobacco. Plant Physiol Biochem 94:235–243PubMedCrossRefGoogle Scholar
  175. Qin Y, Wang M, Tian Y et al (2012) Over-expression of TaMYB33 encoding a novel wheat MYB transcription factor increases salt and drought tolerance in Arabidopsis. Mol Biol Rep 39:7183–7192PubMedCrossRefGoogle Scholar
  176. Qin Y, Tian Y, Liu X (2015) A wheat salinity-induced WRKY transcription factor TaWRKY93 confers multiple abiotic stress tolerance in Arabidopsis thaliana. Biochem Biophys Res Commun 464:428–433PubMedCrossRefGoogle Scholar
  177. Qiu Y, Yu D (2009) Over-expression of the stress-induced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis. Environ Exp Bot 65:35–47CrossRefGoogle Scholar
  178. Qiu Q-S, Guo Y, M a D et al (2002) Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc Natl Acad Sci U S A 99:8436–8441PubMedPubMedCentralCrossRefGoogle Scholar
  179. Rahman H, Ramanathan V, Nallathambi J et al (2016) Over-expression of a NAC 67 transcription factor from finger millet (Eleusine coracana L.) confers tolerance against salinity and drought stress in rice. BMC Biotechnol 16:35PubMedPubMedCentralCrossRefGoogle Scholar
  180. Ravikumar G, Manimaran P, Voleti SR et al (2014) Stress-inducible expression of AtDREB1A transcription factor greatly improves drought stress tolerance in transgenic indica rice. Transgenic Res 23:421–439PubMedPubMedCentralCrossRefGoogle Scholar
  181. Redillas MCFR, Jeong JS, Kim YS et al (2012) The overexpression of OsNAC9 alters the root architecture of rice plants enhancing drought resistance and grain yield under field conditions. Plant Biotechnol J 10:792–805PubMedCrossRefGoogle Scholar
  182. Riechmann JL, Meyerowitz EM (1998) The AP2/EREBP family of plant transcription factors. Biol Chem 379:633–646PubMedGoogle Scholar
  183. Rong W, Qi L, Wang A et al (2014) The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat. Plant Biotechnol J 12:468–479PubMedCrossRefGoogle Scholar
  184. Roychoudhury A, Banerjee A (2016) Endogenous glycine betaine accumulation mediates abiotic stress tolerance in plants. Tropical Plant Res 3:105–111Google Scholar
  185. Roychoudhury A, Chakraborty M (2013) Biochemical and molecular basis of varietal difference in plant salt tolerance. Annu Rev Res Biol 3:422–454Google Scholar
  186. Roychoudhury A, Das K (2014) Functional role of polyamines and polyamine-metabolizing enzymes during salinity, drought and cold stresses. In: Anjum N, Gill S, Gill R (eds) Plant adaptation to environmental change. CAB International, London, UK, pp 141–156Google Scholar
  187. RoyChoudhury A, Roy C, Sengupta DN (2007) Transgenic tobacco plants overexpressing the heterologous lea gene Rab16A from rice during high salt and water deficit display enhanced tolerance to salinity stress. Plant Cell Rep 26:1839–1859PubMedCrossRefGoogle Scholar
  188. Roychoudhury A, Paul S, Basu S (2013) Cross-talk between abscisic acid-dependent and abscisic acid-independent pathways during abiotic stress. Plant Cell Rep 32:985–1006PubMedCrossRefGoogle Scholar
  189. Roychoudhury A, Banerjee A, Lahiri V (2015) Metabolic and molecular-genetic regulation of proline signaling and its crosstalk with major effectors mediates abiotic stress tolerance in plants. Turk J Bot 39:887–910CrossRefGoogle Scholar
  190. Rushton PJ, Somssich IE, Ringler P, Shen QJ (2010) WRKY transcription factors. Trends Plant Sci 15:247–258PubMedCrossRefGoogle Scholar
  191. Saad AS, Li X, Li H-P et al (2013) A rice stress-responsive NAC gene enhances tolerance of transgenic wheat to drought and salt stresses. Plant Sci 203–204:33–40PubMedCrossRefGoogle Scholar
  192. Sah SK, Kaur G, Wani SH (2016) Metabolic engineering of compatible solute trehalose for abiotic stress tolerance in plants. In: Osmolytes and plants acclimation to changing environment: emerging omics technologies. Springer, New Delhi, pp 83–96CrossRefGoogle Scholar
  193. Saha J, Brauer EK, Sengupta A et al (2015) Polyamines as redox homeostasis regulators during salt stress in plants. Front Environ Sci 3:21CrossRefGoogle Scholar
  194. Sakamoto A, Alia MN (1998) Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold. Plant Mol Biol 38:1011–1019PubMedCrossRefGoogle Scholar
  195. Sakuma Y, Liu Q, Dubouzet JG et al (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun 290:998–1009PubMedCrossRefGoogle Scholar
  196. Sakuma Y, Maruyama K, Osakabe Y et al (2006) Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell 18:1292–1309PubMedPubMedCentralCrossRefGoogle Scholar
  197. Shafi A, Chauhan R, Gill T et al (2015) Expression of SOD and APX genes positively regulates secondary cell wall biosynthesis and promotes plant growth and yield in Arabidopsis under salt stress. Plant Mol Biol 87:615–631PubMedCrossRefGoogle Scholar
  198. Sharma A, Kumar D, Kumar S et al (2016) Ectopic expression of an atypical hydrophobic group 5 LEA protein from wild peanut, Arachis diogoi confers abiotic stress tolerance in tobacco. PLoS One 11:e0150609PubMedPubMedCentralCrossRefGoogle Scholar
  199. Sharoni AM, Nuruzzaman M, Satoh K et al (2011) Gene structures, classification and expression models of the AP2/EREBP transcription factor family in Rice. Plant Cell Physiol 52:344–360PubMedCrossRefGoogle Scholar
  200. Shen H, Liu C, Zhang Y et al (2012) OsWRKY30 is activated by MAP kinases to confer drought tolerance in rice. Plant Mol Biol 80:241–253PubMedCrossRefGoogle Scholar
  201. Shi H, Lee B, Wu S-J, Zhu J-K (2003) Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotechnol 21:81–85PubMedCrossRefGoogle Scholar
  202. Shin D, Moon S-J, Han S et al (2011) Expression of StMYB1R-1, a novel potato single MYB-like domain transcription factor, increases drought tolerance. Plant Physiol 155:421–432PubMedCrossRefGoogle Scholar
  203. Shriram V, Kumar V, Devarumath RM et al (2016) MicroRNAs as potential targets for abiotic stress tolerance in plants. Front Plant Sci 7:817PubMedPubMedCentralCrossRefGoogle Scholar
  204. Shukla PS, Gupta K, Agarwal P et al (2015) Overexpression of a novel SbMYB15 from Salicornia brachiata confers salinity and dehydration tolerance by reduced oxidative damage and improved photosynthesis in transgenic tobacco. Planta 242:1291–1308PubMedCrossRefGoogle Scholar
  205. Song Y, Jing SJ, Yu DQ (2010) Overexpression of the stress-induced OsWRKY08 improves osmotic stress tolerance in Arabidopsis. Chinese Sci Bull 54:4671–4678Google Scholar
  206. Song X, Yu X, Hori C et al (2016) Heterologous overexpression of poplar SnRK2 genes enhanced salt stress tolerance in Arabidopsis thaliana. Front Plant Sci 7:612PubMedPubMedCentralGoogle Scholar
  207. Su J, Hirji R, Zhang L et al (2006) Evaluation of the stress-inducible production of choline oxidase in transgenic rice as a strategy for producing the stress-protectant glycine betaine. J Exp Bot 57:1129–1135PubMedCrossRefGoogle Scholar
  208. Su LT, Li JW, Liu DQ et al (2014) A novel MYB transcription factor, GmMYBJ1, from soybean confers drought and cold tolerance in Arabidopsis thaliana. Gene 538:46–55PubMedCrossRefGoogle Scholar
  209. Sun P, Zhu X, Huang X, Liu JH (2014a) Overexpression of a stress-responsive MYB transcription factor of Poncirus trifoliata confers enhanced dehydration tolerance and increases polyamine biosynthesis. Plant Physiol Biochem 78:71–79PubMedCrossRefGoogle Scholar
  210. Sun Z-M, Zhou M-L, Xiao X-G et al (2014b) Genome-wide analysis of AP2/ERF family genes from Lotus corniculatus shows LcERF054 enhances salt tolerance. Funct Integr Genomics 14:453–466PubMedCrossRefGoogle Scholar
  211. Sun J, Hu W, Zhou R et al (2015) The Brachypodium distachyon BdWRKY36 gene confers tolerance to drought stress in transgenic tobacco plants. Plant Cell Rep 34:23–35PubMedCrossRefGoogle Scholar
  212. Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97PubMedCrossRefGoogle Scholar
  213. Taj G, Agarwal P, Grant M, Kumar A (2014) MAPK machinery in plants. Plant Signal Behav 5:1370–1378CrossRefGoogle Scholar
  214. Tak H, Negi S, Ganapathi TR (2016) Banana NAC transcription factor MusaNAC042 is positively associated with drought and salinity tolerance. Protoplasma 254:803–816PubMedCrossRefGoogle Scholar
  215. Tang L, Kwon S-Y, Kim S-H et al (2006) Enhanced tolerance of transgenic potato plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against oxidative stress and high temperature. Plant Cell Rep 25:1380–1386PubMedCrossRefGoogle Scholar
  216. Tang N, Zhang H, Li X et al (2012a) Constitutive activation of transcription factor OsbZIP46 improves drought tolerance in rice. Plant Physiol 158:1755–1768PubMedPubMedCentralCrossRefGoogle Scholar
  217. Tang Y, Liu M, Gao S et al (2012b) Molecular characterization of novel TaNAC genes in wheat and overexpression of TaNAC2a confers drought tolerance in tobacco. Physiol Plant 144:210–224PubMedCrossRefGoogle Scholar
  218. Tran L-SP, Urao T, Qin F et al (2007) Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis. Proc Natl Acad Sci U S A 104:20623–20628PubMedPubMedCentralCrossRefGoogle Scholar
  219. Tripathi V, Parasuraman B, Laxmi A, Chattopadhyay D (2009) CIPK6, a CBL-interacting protein kinase is required for development and salt tolerance in plants. Plant J 58:778–790PubMedCrossRefGoogle Scholar
  220. Tseng MJ, Liu CW, Yiu JC (2007) Enhanced tolerance to sulfur dioxide and salt stress of transgenic Chinese cabbage plants expressing both superoxide dismutase and catalase in chloroplasts. Plant Physiol Biochem 45:822–833PubMedCrossRefGoogle Scholar
  221. Tu M, Wang X, Feng T et al (2016) Expression of a grape (Vitis vinifera) bZIP transcription factor, VlbZIP36, in Arabidopsis thaliana confers tolerance of drought stress during seed germination and seedling establishment. Plant Sci 252:311–323PubMedCrossRefGoogle Scholar
  222. Tuteja N, Mahajan S (2007) Calcium signaling network in plants: an overview. Plant Signal Behav 2:79–85PubMedPubMedCentralCrossRefGoogle Scholar
  223. Umezawa T, Yoshida R, Maruyama K et al (2004) SRK2C, a SNF1-related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana. Proc Natl Acad Sci 101:17306–17311PubMedCrossRefGoogle Scholar
  224. Urao T, Yakubov B, Satoh R et al (1999) A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an Osmosensor. Plant Cell 11:1743–1754PubMedPubMedCentralCrossRefGoogle Scholar
  225. Virk N, Li D, Tian L et al (2015) Arabidopsis Raf-like mitogen-activated protein kinase kinase kinase gene Raf43 is required for tolerance to multiple abiotic stresses. PLoS One 10:e0133975PubMedPubMedCentralCrossRefGoogle Scholar
  226. Vivek PJ, Tuteja N, Soniya EV (2013) CDPK1 from ginger promotes salinity and drought stress tolerance without yield penalty by improving growth and photosynthesis in Nicotiana tabacum. PLoS One 8:e76392PubMedPubMedCentralCrossRefGoogle Scholar
  227. Wang X-S, Zhu H-B, Jin G-L et al (2007) Genome-scale identification and analysis of LEA genes in rice (Oryza sativa L.). Plant Sci 172:414–420CrossRefGoogle Scholar
  228. Wang BQ, Zhang QF, Liu JH, Li GH (2011a) Overexpression of PtADC confers enhanced dehydration and drought tolerance in transgenic tobacco and tomato: effect on ROS elimination. Biochem Biophys Res Commun 413:10–16PubMedCrossRefGoogle Scholar
  229. Wang J, Sun PP, Chen CL et al (2011b) An arginine decarboxylase gene PtADC from Poncirus trifoliata confers abiotic stress tolerance and promotes primary root growth in Arabidopsis. J Exp Bot 62:2899–2914PubMedCrossRefGoogle Scholar
  230. Wang R-K, Li L-L, Cao Z-H et al (2012) Molecular cloning and functional characterization of a novel cotton CBL-interacting protein kinase gene (GhCIPK6) reveals its involvement in multiple abiotic stress tolerance in transgenic plants. Plant Mol Biol 79:123–135PubMedCrossRefGoogle Scholar
  231. Wang C, Deng P, Chen L et al (2013) A wheat WRKY transcription factor TaWRKY10 confers tolerance to multiple abiotic stresses in transgenic tobacco. PLoS One 8:e65120PubMedPubMedCentralCrossRefGoogle Scholar
  232. Wang L, Liu Y, Cai G et al (2014a) Ectopic expression of ZmSIMK1 leads to improved drought tolerance and activation of systematic acquired resistance in transgenic tobacco. J Biotechnol 172:18–29PubMedCrossRefGoogle Scholar
  233. Wang RK, Cao ZH, Hao YJ (2014b) Overexpression of a R2R3 MYB gene MdSIMYB1 increases tolerance to multiple stresses in transgenic tobacco and apples. Physiol Plant 150:76–87PubMedCrossRefGoogle Scholar
  234. Wang T, Tohge T, Ivakov A et al (2015a) Salt-related MYB1 coordinates abscisic acid biosynthesis and signaling during salt stress in Arabidopsis. Plant Physiol 169:1027–1041PubMedPubMedCentralCrossRefGoogle Scholar
  235. Wang X, Zeng J, Li Y et al (2015b) Expression of TaWRKY44, a wheat WRKY gene, in transgenic tobacco confers multiple abiotic stress tolerances. Front Plant Sci 6:615PubMedPubMedCentralGoogle Scholar
  236. Wang C, Lu W, He X et al (2016a) The cotton mitogen-activated protein kinase kinase 3 functions in drought tolerance by regulating stomatal responses and root growth. Plant Cell Physiol 57:1629–1642PubMedPubMedCentralCrossRefGoogle Scholar
  237. Wang FW, Wang ML, Guo C et al (2016b) Cloning and characterization of a novel betaine aldehyde dehydrogenase gene from Suaeda corniculata. Genet Mol Res 15:gmr7848Google Scholar
  238. Wang H, Wang H, Shao H, Tang X (2016c) Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology. Front Plant Sci 7:67PubMedPubMedCentralGoogle Scholar
  239. Wang J, Li Q, Mao X et al (2016d) Wheat transcription factor TaAREB3 participates in drought and freezing tolerances in Arabidopsis. Int J Biol Sci 12:257–269PubMedPubMedCentralCrossRefGoogle Scholar
  240. Wang Y, Sun T, Li T et al (2016e) A CBL-interacting protein kinase TaCIPK2 confers drought tolerance in transgenic tobacco plants through regulating the stomatal movement. PLoS One 11:e0167962PubMedPubMedCentralCrossRefGoogle Scholar
  241. Wang Z, Su G, Li M et al (2016f) Overexpressing Arabidopsis ABF3 increases tolerance to multiple abiotic stresses and reduces leaf size in alfalfa. Plant Physiol Biochem 109:199–208PubMedCrossRefGoogle Scholar
  242. Wang H, Wu Y, Yang X et al (2017) SmLEA2, a gene for late embryogenesis abundant protein isolated from Salvia miltiorrhiza, confers tolerance to drought and salt stress in Escherichia coli and S. miltiorrhiza. Protoplasma 254:685–696PubMedCrossRefGoogle Scholar
  243. Wani SH, Singh NB, Haribhushan A, Mir JI (2013) Compatible solute engineering in plants for abiotic stress tolerance - role of glycine betaine. Curr Genomics 14:157–165PubMedPubMedCentralCrossRefGoogle Scholar
  244. Wani SH, Kumar V, Shriram V, Sah SK (2016) Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J 4:1–15CrossRefGoogle Scholar
  245. Wei KA, Chen JUAN, Wang YA et al (2012) Genome-wide analysis of bZIP-encoding genes in maize. DNA Res 19:463–476PubMedPubMedCentralCrossRefGoogle Scholar
  246. Wei S, Hu W, Deng X et al (2014) A rice calcium-dependent protein kinase OsCPK9 positively regulates drought stress tolerance and spikelet fertility. BMC Plant Biol 14:133PubMedPubMedCentralCrossRefGoogle Scholar
  247. Wei T, Deng K, Liu D et al (2016) Ectopic expression of DREB transcription factor, AtDREB1A, confers tolerance to drought in transgenic Salvia miltiorrhiza. Plant Cell Physiol 57:1593–1609PubMedCrossRefGoogle Scholar
  248. Wen XP, Pang XM, Matsuda N et al (2008) Over-expression of the apple spermidine synthase gene in pear confers multiple abiotic stress tolerance by altering polyamine titers. Transgenic Res 17:251–263PubMedCrossRefGoogle Scholar
  249. Wen X-P, Ban Y, Inoue H et al (2010) Spermidine levels are implicated in heavy metal tolerance in a spermidine synthase overexpressing transgenic European pear by exerting antioxidant activities. Transgenic Res 19:91–103PubMedCrossRefGoogle Scholar
  250. Wi SJ, Kim WT, Park KY (2006) Overexpression of carnation S-adenosylmethionine decarboxylase gene generates a broad-spectrum tolerance to abiotic stresses in transgenic tobacco plants. Plant Cell Rep 25:1111–1121PubMedCrossRefGoogle Scholar
  251. Xia Z, Wei T, Jia L, Yongsheng L (2014) Co-expression of rice OsP5CS1 and OsP5CS2 genes in transgenic tobacco resulted in elevated proline biosynthesis and enhanced abiotic stress tolerance. Chinese J Appl Environ Biol 20:717–722Google Scholar
  252. Xiang Y, Tang N, Du H et al (2008) Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiol 148:1938–1952PubMedPubMedCentralCrossRefGoogle Scholar
  253. Xiao B, Huang Y, Tang N, Xiong L (2007) Over-expression of a LEA gene in rice improves drought resistance under the field conditions. Theor Appl Genet 115:35–46PubMedCrossRefGoogle Scholar
  254. Xing Y, Chen W-H, Jia W, Zhang J (2015) Mitogen-activated protein kinase kinase 5 (MKK5)-mediated signalling cascade regulates expression of iron superoxide dismutase gene in Arabidopsis under salinity stress. J Exp Bot 66:5971–5981PubMedPubMedCentralCrossRefGoogle Scholar
  255. Xiong H, Li J, Liu P et al (2014) Overexpression of OsMYB48-1, a novel MYB-related transcription factor, enhances drought and salinity tolerance in rice. PLoS One 9:e92913PubMedPubMedCentralCrossRefGoogle Scholar
  256. Xu D, Duan X, Wang B et al (1996) Expression of a late embryogenesis abundant protein gene, HVA7, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110:249–257PubMedPubMedCentralCrossRefGoogle Scholar
  257. Xu Z-S, Liu L, Ni Z-Y et al (2009) W55a encodes a novel protein kinase that is involved in multiple stress responses. J Integr Plant Biol 51:58–66PubMedCrossRefGoogle Scholar
  258. Xu H, Li K, Yang F et al (2010a) Overexpression of CsNMAPK in tobacco enhanced seed germination under salt and osmotic stresses. Mol Biol Rep 37:3157–3163PubMedCrossRefGoogle Scholar
  259. Xu J, Tian Y-S, Peng R-H et al (2010b) AtCPK6, a functionally redundant and positive regulator involved in salt/drought stress tolerance in Arabidopsis. Planta 231:1251–1260PubMedCrossRefGoogle Scholar
  260. Xu J, Duan X, Yang J et al (2013) Coupled expression of Cu/Zn-superoxide dismutase and catalase in cassava improves tolerance against cold and drought stresses. Plant Signal Behav 8:e24525PubMedPubMedCentralCrossRefGoogle Scholar
  261. Yamaguchi-shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803PubMedCrossRefGoogle Scholar
  262. Yan H, Li Q, Park SC et al (2016) Overexpression of CuZnSOD and APX enhance salt stress tolerance in sweet potato. Plant Physiol Biochem 109:20–27PubMedCrossRefGoogle Scholar
  263. Yang W, Kong Z, Omo-Ikerodah E et al (2008) Calcineurin B-like interacting protein kinase OsCIPK23 functions in pollination and drought stress responses in rice (Oryza sativa L.). J Genet Genomics 35:531–543PubMedCrossRefGoogle Scholar
  264. Yang Q, Chen ZZ, Zhou XF et al (2009) Overexpression of SOS (salt overly sensitive) genes increases salt tolerance in transgenic Arabidopsis. Mol Plant 2:22–31PubMedCrossRefGoogle Scholar
  265. Yang A, Dai X, Zhang W-H (2012a) A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. J Exp Bot 63:2541–2556PubMedPubMedCentralCrossRefGoogle Scholar
  266. Yang L, Ji W, Gao P et al (2012c) GsAPK, an ABA-activated and calcium-independent SnRK2-type kinase from G. soja, mediates the regulation of plant tolerance to salinity and ABA stress. PLoS One 7:e33838PubMedPubMedCentralCrossRefGoogle Scholar
  267. Yang X, Wang X, Ji L et al (2015) Overexpression of a Miscanthus lutarioriparius NAC gene MlNAC5 confers enhanced drought and cold tolerance in Arabidopsis. Plant Cell Rep 34:943–958PubMedCrossRefGoogle Scholar
  268. Yang G, Yu L, Zhang K et al (2017) A ThDREB gene from Tamarix hispida improved the salt and drought tolerance of transgenic tobacco and T. hispida. Plant Physiol Biochem 113:187–197PubMedCrossRefGoogle Scholar
  269. Yao L, Jiang Y, Lu X et al (2016) A R2R3-MYB transcription factor from Lablab purpureus induced by drought increases tolerance to abiotic stress in Arabidopsis. Mol Biol Rep 43:1089–1100PubMedCrossRefGoogle Scholar
  270. Yin X-Y, Yang A-F, Zhang K-W, Zhang J-R (2004) Production and analysis of transgenic maize with improved salt tolerance by the introduction of AtNHX1 gene. Acta Bot Sin 7:854–861Google Scholar
  271. Ying S, Zhang D-F, Fu J et al (2012) Cloning and characterization of a maize bZIP transcription factor, ZmbZIP72, confers drought and salt tolerance in transgenic Arabidopsis. Planta 235:253–266PubMedCrossRefGoogle Scholar
  272. Yokotani N, Ichikawa T, Kondou Y et al (2009) Tolerance to various environmental stresses conferred by the salt-responsive rice gene ONAC063 in transgenic Arabidopsis. Planta 229:1065–1075PubMedCrossRefGoogle Scholar
  273. Yu J, Lai Y, Wu X et al (2016) Overexpression of OsEm1 encoding a group I LEA protein confers enhanced drought tolerance in rice. Biochem Biophys Res Commun 478:703–709PubMedCrossRefGoogle Scholar
  274. Yuan F, Yang H, Xue Y et al (2014) OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis. Nature 514:367–371PubMedCrossRefGoogle Scholar
  275. Yue Y, Zhang M, Zhang J et al (2012) SOS1 gene overexpression increased salt tolerance in transgenic tobacco by maintaining a higher K +/Na + ratio. J Plant Physiol 169:255–261PubMedCrossRefGoogle Scholar
  276. Zhai Y, Wang Y, Li Y et al (2013) Isolation and molecular characterization of GmERF7, a soybean ethylene-response factor that increases salt stress tolerance in tobacco. Gene 513:174–183PubMedCrossRefGoogle Scholar
  277. Zhang H-X, Hodson JN, Williams JP, Blumwald E (2001) Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proc Natl Acad Sci 98:12832–12836PubMedCrossRefGoogle Scholar
  278. Zhang H, Liu W, Wan L et al (2010a) Functional analyses of ethylene response factor JERF3 with the aim of improving tolerance to drought and osmotic stress in transgenic rice. Transgenic Res 19:809–818PubMedCrossRefGoogle Scholar
  279. Zhang H, Mao X, Wang C, Jing R (2010b) Overexpression of a common wheat gene Tasnrk2.8 enhances tolerance to drought, salt and low temperature in Arabidopsis. PLoS One 5:e16041PubMedPubMedCentralCrossRefGoogle Scholar
  280. Zhang H, Mao X, Jing R et al (2011a) Characterization of a common wheat (Triticum aestivum L.) TaSnRK2.7 gene involved in abiotic stress responses. J Exp Bot 62:975–988PubMedCrossRefGoogle Scholar
  281. Zhang L, Xi D, Li S et al (2011b) A cotton group C MAP kinase gene, GhMPK2, positively regulates salt and drought tolerance in tobacco. Plant Mol Biol 77:17–31PubMedCrossRefGoogle Scholar
  282. Zhang X, Wang L, Meng H et al (2011c) Maize ABP9 enhances tolerance to multiple stresses in transgenic Arabidopsis by modulating ABA signaling and cellular levels of reactive oxygen species. Plant Mol Biol 75:365–378PubMedPubMedCentralCrossRefGoogle Scholar
  283. Zhang D, Jiang S, Pan J et al (2014a) The overexpression of a maize mitogen-activated protein kinase gene (ZmMPK5) confers salt stress tolerance and induces defence responses in tobacco. Plant Biol 16:558–570PubMedCrossRefGoogle Scholar
  284. Zhang J, Zou D, Li Y et al (2014b) GhMPK17, a cotton mitogen-activated protein kinase, is involved in plant response to high salinity and osmotic stresses and ABA signaling. PLoS One 9:e95642PubMedPubMedCentralCrossRefGoogle Scholar
  285. Zhang L, Liu G, Zhao G et al (2014c) Characterization of a wheat R2R3-MYB transcription factor gene, TaMYB19, involved in enhanced abiotic stresses in Arabidopsis. Plant Cell Physiol 55:1802–1812PubMedCrossRefGoogle Scholar
  286. Zhang L, Zhang L, Xia C et al (2015a) The novel wheat transcription factor TaNAC47 enhances multiple abiotic stress tolerances in transgenic plants. Front Plant Sci 6:1174PubMedGoogle Scholar
  287. Zhang L, Zhang L, Xia C et al (2015b) A novel wheat bZIP transcription factor, TabZIP60, confers multiple abiotic stress tolerances in transgenic Arabidopsis. Physiol Plant 153:538–554PubMedCrossRefGoogle Scholar
  288. Zhang X, Liu X, Wu L et al (2015c) The SsDREB transcription factor from the succulent halophyte Suaeda salsa enhances abiotic stress tolerance in transgenic tobacco. Int J Genomics 2015:875497PubMedPubMedCentralGoogle Scholar
  289. Zhao J, Sun Z, Zheng J et al (2009) Cloning and characterization of a novel CBL-interacting protein kinase from maize. Plant Mol Biol 69:661–674PubMedCrossRefGoogle Scholar
  290. Zhao X, Yang X, Pei S et al (2016) The Miscanthus NAC transcription factor MlNAC9 enhances abiotic stress tolerance in transgenic Arabidopsis. Gene 586:158–169PubMedCrossRefGoogle Scholar
  291. Zheng L, Liu G, Meng X et al (2013) A WRKY gene from Tamarix hispida, ThWRKY4, mediates abiotic stress responses by modulating reactive oxygen species and expression of stress-responsive genes. Plant Mol Biol 82:303–320PubMedCrossRefGoogle Scholar
  292. Zhou S, Zhang Z, Tang Q et al (2011) Enhanced V-ATPase activity contributes to the improved salt tolerance of transgenic tobacco plants overexpressing vacuolar Na+/H+ antiporter AtNHX1. Biotechnol Lett 33:375–380PubMedCrossRefGoogle Scholar
  293. Zhou X, Jin Y, Yoo C, Lin X (2013) CYCLIN H; 1 regulates drought stress responses and blue light-induced stomatal opening by inhibiting reactive oxygen species accumulation in Arabidopsis. Plant Physiol 162:1030–1041PubMedPubMedCentralCrossRefGoogle Scholar
  294. Zhou L, Wang NN, Gong SY et al (2015) Overexpression of a cotton (Gossypium hirsutum) WRKY gene, GhWRKY34, in Arabidopsis enhances salt-tolerance of the transgenic plants. Plant Physiol Biochem 96:311–320PubMedCrossRefGoogle Scholar
  295. Zhu N, Cheng S, Liu X et al (2015) The R2R3-type MYB gene OsMYB91 has a function in coordinating plant growth and salt stress tolerance in rice. Plant Sci 236:146–156PubMedCrossRefGoogle Scholar
  296. Zhu Y, Yan J, Liu W et al (2016) Phosphorylation of a NAC transcription factor by ZmCCaMK regulates abscisic acid-induced antioxidant defense in maize. Plant Physiol 171:1651–1664PubMedPubMedCentralCrossRefGoogle Scholar
  297. Zou J-J, Wei F-J, Wang C et al (2010) Arabidopsis calcium-dependent protein kinase CPK10 functions in abscisic acid- and Ca2+-mediated stomatal regulation in response to drought stress. Plant Physiol 154:1232–1243PubMedPubMedCentralCrossRefGoogle Scholar
  298. Zou J-J, Li X-D, Ratnasekera D et al (2015) Arabidopsis CALCIUM-DEPENDENT PROTEIN KINASE8 and CATALASE3 function in abscisic acid-mediated signaling and H2O2 homeostasis in stomatal guard cells under drought stress. Plant Cell 27:1445–1460PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Saikat Paul
    • 1
  • Aryadeep Roychoudhury
    • 1
  1. 1.Post Graduate Department of BiotechnologySt. Xavier’s College (Autonomous)KolkataIndia

Personalised recommendations