Advertisement

RNA Interference: A Promising Approach for Crop Improvement

  • B. Mamta
  • Manchikatla V. Rajam
Chapter

Abstract

RNA interference (RNAi) is a naturally occurring biological process that regulates plant growth and development, defense against pathogens, and environmental stresses. It is a sequence-specific homology-based silencing mechanism in which the function of a gene is interfered or suppressed. Small interfering RNAs (siRNAs) and microRNAs (miRNAs) are produced inside the plant cell through the activation of RNAi machinery, which downregulates the expression of the target genes at transcriptional and translational levels. RNAi is more specific, precise in its action, and considered as a potential technology for functional genomics studies. In the last 15 years, it has emerged as a scientific breakthrough for crop improvement without affecting other agronomic traits. It has also been employed as a novel method in understanding the basic phenomenon of plant defense and metabolism. Several desirable traits have been improved in the crop varieties through RNAi, which include crop protection against biotic and abiotic stresses, enhancement of nutritional value, alteration in plant architecture for better adaptation to environmental conditions, overexpression or removal of secondary metabolites, enhancement of shelf life of fruits and vegetables, generation of male sterile lines, and development of seedless fruits. In this book chapter, we have discussed RNAi and its applications in crop improvement.

Keywords

RNA interference siRNAs miRNAs Gene silencing Crop improvement Transgenic plants Stress tolerance Plant architecture 

Notes

Acknowledgments

The financial assistance from the Department of Biotechnology (DBT) and Department of Science and Technology (DST), New Delhi, for RNAi work in the lab is acknowledged. We also thank the University Grants Commission (UGC) for Special Assistance Programme (DRS-III), DST for FIST (Level 2) program, and DU-DST PURSE (Phase II) grant.

References

  1. Allen RS, Millgate AG, Chitty JA, Thisleton J, Miller JA, Fist AJ, Gerlach WL, Larkin PJ (2004) RNAi mediated replacement of morphine with the non-narcotic alkaloid reticuline in opium poppy. Nat Biotechnol 22:1559–1566CrossRefPubMedGoogle Scholar
  2. Andika IB, Kondo H, Tamada T (2005) Evidence that RNA silencing mediated resistance to beet necrotic yellow vein virus is less effective in roots than in leaves. Mol Plant-Microbe Interact 18:194–204CrossRefPubMedGoogle Scholar
  3. Angaji SA, Hedayati SS, Poor RH, Poor SS, Shiravi S, Madani S (2010) Application of RNA interference in plants. Plant Omics J 3:77–84Google Scholar
  4. Axtell MJ (2013) Classification and comparison of small RNAs from plants. Annu Rev Plant Biol 64:137–159CrossRefPubMedGoogle Scholar
  5. Banerjee S, Banerjee A, Gill SS, Gupta OP, Dahuja A, Jain PK, Sirohi A (2017) RNA interference: a novel source of resistance to combat plant parasitic nematodes. Front Plant Sci 8:834. https://doi.org/10.3389/fpls.2017.00834 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bao N, Lye KW, Barton MK (2004) MicroRNA binding sites in Arabidopsis class III HD-ZIP mRNAs are required for methylation of the template chromosome. Dev Cell 7:653–662CrossRefPubMedGoogle Scholar
  7. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297CrossRefGoogle Scholar
  8. Baulcombe D (2000) Unwinding RNA silencing. Science 290:1108–1109. https://doi.org/10.1126/science.290.5494.1108 CrossRefPubMedGoogle Scholar
  9. Baum JA, Bogaert T, Clinton W, Heck GR, Feldmann P, Ilagan O (2007) Control of coleopteran insect pests through RNA interference. Nat Biotechnol 25:1322–1326CrossRefPubMedGoogle Scholar
  10. Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366CrossRefGoogle Scholar
  11. Bezanilla M, Pan A, Quatrano RS (2003) RNA interference in the moss Physcomitrella patens. Plant Physiol 133:470–474CrossRefPubMedPubMedCentralGoogle Scholar
  12. Borgio JF (2009) RNA interference (RNAi) technology: a promising tool for medicinal plant research. J Med Plant Res 3:1176–1183Google Scholar
  13. Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L, Voinnet O (2008) Widespread translational inhibition by plant miRNAs and siRNAs. Science 320:1185–1190. https://doi.org/10.1126/science.1159151 CrossRefPubMedGoogle Scholar
  14. Camp WV (2005) Yield enhancement genes: seeds for growth. Curr Opin Biotechnol 16:147–153CrossRefPubMedGoogle Scholar
  15. Campo S, Peris-Peris C, Sire C, Moreno AB, Donaire L, Zytnicki M, Notredame C, Llave C, San Segundo B (2013) Identification of a novel microRNA (miRNA) from rice that targets an alternatively spliced transcript of the Nramp6 (Natural resistance-associated macrophage protein 6) gene involved in pathogen resistance. New Phytol 199:212–227CrossRefPubMedGoogle Scholar
  16. Canter PH, Thomas H, Ernst E (2005) Bringing medicinal plants into cultivation: opportunities and challenges for biotechnology. Trends Biotechnol 23:180–185CrossRefPubMedGoogle Scholar
  17. Castel SE, Martienssen RA (2013) RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond. Nat Rev Genet 14:100–112CrossRefPubMedPubMedCentralGoogle Scholar
  18. Cerutti H, Ma X, Msanne J, Repas T (2011) RNA-mediated silencing in algae: biological roles and tools for analysis of gene function. Eukaryot Cell 10:1164–1172. https://doi.org/10.1128/EC.05106-11 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Chen S, Hajirezaei MR, Zanor MI, Hornyik C, Debast S, Lacomme C, Fernie AR, Sonnewald U, Bornke F (2008) RNA interference-mediated repression of sucrose-phosphatase in transgenic potato tubers (Solanum tuberosum) strongly affects the hexose-to-sucrose ratio upon cold storage only minor effects on total soluble carbohydrate accumulation. Plant Cell Environ 31:165–176CrossRefPubMedGoogle Scholar
  20. Chen W, Kastner C, Nowara D, Oliveira-Garcia E, Rutten T, Zhao Y, Deising HB, Kumlehn J, Schweizer P (2016) Host-induced silencing of Fusarium culmorum genes protects wheat from infection. J Exp Bot 67:4979–4991. https://doi.org/10.1093/jxb/erw263 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Choubey A, Rajam MV (2017) Transcriptome response and developmental implications of RNAi-mediated ODC knockdown in tobacco. Funct Integr Genomics DOI. https://doi.org/10.1007/s10142-016-0539-3
  22. Chuck GS, Tobias C, Sun L, Kraemer F, Li C, Dibble D, Arora R, Bragg JN, Vogel JP, Singh S, Simmons BA, Pauly M, Hake S (2011) Overexpression of the maize corngrass1 microRNA prevents flowering, improves digestibility, and increases starch content of switchgrass. Proc Natl Acad Sci U S A 108:17550–17555. https://doi.org/10.1073/pnas.1113971108 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Chung MY, Vrebalov J, Alba R, Lee J, McQuinn R, Chung JD, Klein P, Giovannoni J (2010) A tomato (Solanum lycopersicum) APETALA2/ERF gene, SlAP2a, is a negative regulator of fruit ripening. Plant J 64:936–947CrossRefPubMedGoogle Scholar
  24. Da-Hong L, Hui L, Yan-li Y, Ping-ping Z, Jian-sheng L (2009) Down-regulated expression of RACK1 gene by RNA interference enhances drought tolerance in rice. Rice Sci 16:14–20CrossRefGoogle Scholar
  25. Davuluri GR, Tuinen A, Fraser PD, Manfredonia A, Newman R, Burgess D, Brummell DA, King SR, Palys J, Uhlig J, Bramley PM, Pennings HMJ, Bowle C (2005) Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes. Nat Biotechnol 23:890–895CrossRefPubMedGoogle Scholar
  26. de Dorlodot S, Forster B, Pages L, Price A, Tuberosa R, Draye X (2007) Root system architecture: opportunities and constraints for genetic improvement of crops. Trends Plant Sci 12:474–481CrossRefPubMedGoogle Scholar
  27. De Jong M, Wolters-Arts M, Feron R, Mariani C, Vriezen WH (2009) The Solanum lycopersicum 7 (auxin response factorSlARF7) regulates auxin signaling during tomato fruit set and development. Plant J 57:160–117Google Scholar
  28. Duvick DN (1999) Heterosis: feeding people and protecting natural resources. In: Coors JG, Pandey S (eds) Genetics and exploitation of heterosis in crops. American Society of Agronomy/Crop Science Society of America, Madison, pp 19–29Google Scholar
  29. Eady CC, Kamoi T, Kato M, Porter NG, Davis S, Shaw M, Kamoi A, Imai S (2008) Silencing onion lachrymatory factor synthase causes a significant change in the sulfur secondary metabolite profile. Plant Physiol 147:2096–2106. https://doi.org/10.1104/pp.108.123273 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–508CrossRefPubMedGoogle Scholar
  31. Fang YN, Qiu WM, Wang Y, Wu XM, Xu Q, Guo WW (2014) Identification of differentially expressed microRNAs from a male sterile Ponkan mandarin (Citrus reticulata Blanco) and its fertile wild type by small RNA and degradome sequencing. Tree Genet Genome 10:1567–1581. https://doi.org/10.1007/s11295-014-0780-7 CrossRefGoogle Scholar
  32. FAO (2013) The state of food insecurity in the world, executive summary. Rome, Italy, FAOGoogle Scholar
  33. Feldmann KA (2006) Steroid regulation improves crop yield. Nat Biotechnol 24:46–47CrossRefPubMedGoogle Scholar
  34. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811CrossRefGoogle Scholar
  35. Flores T, Karpova O, Su X, Zeng P, Bilyeu K, Sleper DA, Nguyen HT, Zhang ZJ (2008) Silencing of GmFAD3 gene by siRNA leads to low alpha-linolenic acids (18:3) of fad 3-mutant phenotype in soybean [Glycine max (Merr.)]. Transgenic Res 17:839–850CrossRefPubMedGoogle Scholar
  36. Gao P, Bai X, Yang L, Lv D, Pan X, Li Y, Cai H, Ji W, Chen Q, Zhu Y (2011) osa-MIR393: a salinity and alkaline stress-related microRNA gene. Mol Biol Rep 38:237–242. https://doi.org/10.1007/s11033-010-0100-8 CrossRefPubMedGoogle Scholar
  37. Gao C, Ju Z, Cao D, Zhai B, Qin G, Zhu H, Fu D, Luo Y, Zhu B (2015) MicroRNA profiling analysis throughout tomato fruit development and ripening reveals potential regulatory role of RIN on microRNAs accumulation. Plant Biotechnol J 13:370–382CrossRefPubMedGoogle Scholar
  38. Gentile A, Dias LI, Mattos RS, Ferreira TH, Menossi M (2015) MicroRNAs and drought responses in sugarcane. Front Plant Sci 6:58. https://doi.org/10.3389/fpls.2015.00058 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Gilisen LJ, Bolhaar ST, Matos CI, Rouwendal GJ, Boone MJ, Krens FA et al (2005) Silencing of major apple allergen Mal d 1 by using the RNA interference approach. J Allergy Clin Immunol 115:364–369. https://doi.org/10.1016/j.jaci.2004.10.014 CrossRefGoogle Scholar
  40. Gorguet B, van Heusden AW, Lindhout P (2005) Parthenocarpic fruit development in tomato. Plant Biol 7:131–139CrossRefPubMedGoogle Scholar
  41. Goswami S, Kumar RR, Rai RD (2014) Heat-responsive microRNAs regulate the transcription factors and heat shock proteins in modulating thermo-stability of starch biosynthesis enzymes in wheat (Triticum aestivum L.) under the heat stress. Aust J Crop Sci 8:697–705Google Scholar
  42. Guan Q, Lu X, Zeng H, Zhang Y, Zhu J (2013) Heat stress induction of miR398 triggers a regulatory loop that is critical for thermo tolerance in Arabidopsis. Plant J 74:840–851. https://doi.org/10.1111/tpj.12169 CrossRefPubMedGoogle Scholar
  43. Gupta A, Pal RK, Rajam MV (2013) Delayed ripening and improved fruit processing quality in tomato by RNAi-mediated silencing of three homologs of 1-aminopropane-1-carboxylate synthase gene. J Plant Physiol 170:987–995CrossRefPubMedGoogle Scholar
  44. Hamilton AJ, Baulcombe DC (1999) A novel species of small antisense RNA in posttranscriptional gene silencing. Science 286:950–952CrossRefPubMedGoogle Scholar
  45. Hammond SM, Bernstein E, Beach D, Hannon GJ (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404:293–296CrossRefPubMedGoogle Scholar
  46. He H, Ke H, Keting H, Qiaoyan X, Silan D (2013) Flower colour modification of Chrysanthemum by suppression of F3'H and overexpression of the exogenous Senecio cruentus F3' 5' H gene. PLoS One 8:e74395CrossRefPubMedPubMedCentralGoogle Scholar
  47. Hisano H, Nandakumar R, Wang ZY (2009) Genetic modification of lignin biosynthesis for improved biofuel production. In Vitro Cell Dev Biol Plant 45:306–313. https://doi.org/10.1007/s11627-009-9219-5 CrossRefGoogle Scholar
  48. Huang G, Allen R, Davis E, Baum T, Hussey R (2006) Engineering broad rootknot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene. Proc Natl Acad Sci U S A 103:14302–14306CrossRefPubMedPubMedCentralGoogle Scholar
  49. Jagtap UB, Gurav RG, Bapat VA (2011) Role of RNA interference in plant improvement. Naturwissenschaften 98:473–492CrossRefPubMedGoogle Scholar
  50. Jan A, Maruyama K, Todaka D, Kidokoro S, Abo M, Yoshimura E, Shinozaki K, Nakashima K, Yamaguchi-Shinozaki K (2013) OsTZF1, a CCCH-tandem zinc finger protein, confers delayed senescence and stress tolerance in rice by regulating stress-related genes. Plant Physiol 161:1202–1216CrossRefPubMedPubMedCentralGoogle Scholar
  51. Jiao Y, Wang Y, Xue D, Wang J, Yan M, Liu G, Dong G, Zeng D, Lu Z, Zhu X, Qian Q, Li J (2010) Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet 42:541–544CrossRefPubMedGoogle Scholar
  52. Jin S, Singh ND, Li L, Zhang X, Daniell H (2015) Engineered chloroplast dsRNA silences cytochrome p450 monooxygenase, V-ATPase and chitin synthase genes in the insect gut and disrupts Helicoverpa armigera larval development and pupation. Plant Biotech J 13:435–446CrossRefGoogle Scholar
  53. Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53CrossRefGoogle Scholar
  54. Jørgensen K, Bak S, Busk PK, Sørensen C, Olsen CE, Puonti-Kaerlas J, Moller BL (2005) Cassava plants with a depleted cyanogenic glucoside content in leaves and tubers. Plant Physiol 139:363–374CrossRefPubMedPubMedCentralGoogle Scholar
  55. Kamachi S, Mochizuki A, Nishiguchi M, Tabei Y (2007) Transgenic Nicotiana benthamiana plants resistant to cucumber green mottle mosaic virus based on RNA silencing. Plant Cell Rep 26:1283–1288. https://doi.org/10.1007/s00299-007-0358-z CrossRefPubMedGoogle Scholar
  56. Kamiishi Y, Otani M, Takagi H, Han DS, Mori S, Tatsuzawa F, Okuhara H, Kobayashi H, Nakano M (2012) Flower color alteration in the liliaceous ornamental Tricyrtis sp. by RNA interference-mediated suppression of the chalcone synthase gene. Mol Breed 30:671–680CrossRefGoogle Scholar
  57. Kamthan A, Chaudhuri A, Kamthan M, Datta A (2015) Small RNAs in plants: recent development and application for crop improvement. Front Plant Sci 6:208. https://doi.org/10.3389/fpls.2015.00208 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Karlova R, Rosin FM, Busscher-Lange J, Parapunova V, Do PT, Fernie AR, Fraser PD, Baxter C, Angenent GC, de Maagd RA (2011) Transcriptome and metabolite profiling show that APETALA2a is a major regulator of tomato fruit ripening. Plant Cell 23:923–941CrossRefPubMedPubMedCentralGoogle Scholar
  59. Karlova R, van Haarst JC, Maliepaard C, van de Geest H, Bovy AG, Lammers M, Angenent GC, de Maagd RA (2013) Identification of microRNA targets in tomato fruit development using high-throughput sequencing and degradome analysis. J Exp Bot 64:1863–1878CrossRefPubMedPubMedCentralGoogle Scholar
  60. Katoch R, Thakur N (2013) RNA interference: a promising technique for the improvement of traditional crops. Int J Food Sci Nutr 64:248–259. https://doi.org/10.3109/09637486.2012.713918 CrossRefPubMedGoogle Scholar
  61. Ketting RF (2011) The many faces of RNAi. Dev Cell 20:148–161CrossRefPubMedGoogle Scholar
  62. Khraiwesh B, Arif MA, Seumel GI, Ossowski S, Weigel D, Reski R, Frank W (2010) Transcriptional control of gene expression by microRNAs. Cell 140:111–122. https://doi.org/10.1016/j.cell.2009.12.023 CrossRefPubMedGoogle Scholar
  63. Khraiwesh B, Zhu JK, Zhu J (2012) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta 1819:137–148CrossRefPubMedGoogle Scholar
  64. Khush GS (2001) Green revolution: the way forward. Nat Rev Genet 2:815–822CrossRefPubMedGoogle Scholar
  65. Kim YS, Lee YH, Kim HS, Kim MS, Hahn KW, Ko JH, Joung H, Jeon JH (2008) Development of patatin knockdown potato tubers using RNA interference (RNAi) technology, for the production of human-therapeutic glycoproteins. BMC Biotechnol 8:36. https://doi.org/10.1186/1472-6750-8-36 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Koch A, Kogel KH (2014) New wind in the sails: improving the agronomic value of crop plants through RNAi-mediated gene silencing. Plant Biotechnol J 12:821–831. https://doi.org/10.1111/pbi.12226 CrossRefPubMedGoogle Scholar
  67. Koch A, Biedenkopf D, Furch A, Weber L, Rossbach O, Abdellatef E, Linicus L, Johannsmeier J, Jelonek L, Goesmann A, Cardoza V, McMillan J, Mentzel T, Kogel KH (2016) An RNAi-based control of Fusarium graminearum infections through spraying of long dsRNAs involves a plant passage and is controlled by the fungal silencing machinery. PLoS Pathog 12:e1005901CrossRefPubMedPubMedCentralGoogle Scholar
  68. Kruszka K, Pacak A, Swida-Barteczka A, Nuc P, Alaba S, Wroblewska Z, Karlowski W, Jarmolowski A, Szweykowska-Kulinska Z (2014) Transcriptionally and post-transcriptionally regulated microRNAs in heat stress response in barley. J Exp Bot 65:6123–6135. https://doi.org/10.1093/jxb/eru353 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Kumar R (2014) Role of microRNAs in biotic and abiotic stress responses in crop plants. Appl Biochem Biotechnol 174:93–115CrossRefPubMedGoogle Scholar
  70. Kumar P, Pandit SS, Baldwin IT (2012) Tobacco rattle virus vector: a rapid and transient means of silencing Manduca sexta genes by plant mediated RNA interference. PLoS One 7:e31347CrossRefPubMedPubMedCentralGoogle Scholar
  71. Kusaba M, Miyahara K, Iida S, Fukuoka H, Takano T, Sassa H, Nishimura M, Nishio T (2003) Low glutelin content 1: a dominant mutation that suppresses the glutelin multigene family via RNA silencing in rice. Plant Cell 15:1455–1467CrossRefPubMedPubMedCentralGoogle Scholar
  72. Le LQ, Lorenz Y, Scheurer S, Fotisch K, Enrique E, Bartra J, Biemelt S, Vieths S, Sonnewald U (2006) Design of tomato fruits with reduced allergenicity by dsRNAi-mediated inhibition of ns-LTP (Lyc e 3) expression. Plant Biotechnol J 4:231–242. https://doi.org/10.1111/j.1467-7652.2005.00175.x CrossRefPubMedGoogle Scholar
  73. Lewis RS, Jack AM, Morris JW, Robert VJ, Gavilano LB, Siminszky B, Bush LP, Hayes AJ, Dewey RE (2008) RNA interference (RNAi)-induced suppression of nicotine demethylase activity reduces levels of a key carcinogen in cured tobacco leaves. Plant Biotechnol J 6:346–354. https://doi.org/10.1111/j.1467-7652.2008.00324.x CrossRefPubMedGoogle Scholar
  74. Li JC, Guo JB, Xu WZ, Ma M (2007) RNA interference-mediated silencing of phytochelatin synthase gene reduces cadmium accumulation in rice seeds. J Integr Plant Biol 49:1032–1037. https://doi.org/10.1111/j.1672-9072.2007.00473.x CrossRefGoogle Scholar
  75. Li X, Wang X, Zhang S, Liu D, Duan Y, Dong W (2012) Identification of soybean microRNAs involved in soybean cyst nematode infection by deep sequencing. PLoS One 7:e39650. https://doi.org/10.1371/journal.pone.0039650 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Liu F, Wang XD, Zhao YY, Li YJ, Liu YC, Sun J (2015) Silencing the HaAK gene by transgenic plant-mediated RNAi impairs larval growth of Helicoverpa armigera. Int J Biol Sci 11:67–74. https://doi.org/10.7150/ijbs.10468 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Luo Z, Zhang J, Li J, Yang C, Wang T, Ouyang B, Li H, Giovannoni J, Ye Z (2013) A STAY-GREEN protein SlSGR1 regulates lycopene and β-carotene accumulation by interacting directly with SlPSY1 during ripening processes in tomato. New Phytol 198:442–452. https://doi.org/10.1111/nph.12175 CrossRefPubMedGoogle Scholar
  78. Mahajan M, Ahuja PS, Yadav SK (2011) Post-transcriptional silencing of flavonol synthase mRNA in tobacco leads to fruits with arrested seed set. PLoS One 6:e28315. https://doi.org/10.1371/journal.pone.0028315 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Mamta, Reddy KR, Rajam MV (2015) Targeting chitinase gene of Helicoverpa armigera by host-induced RNA interference confers insect resistance in tobacco and tomato. Plant Mol Biol 90:281–292CrossRefPubMedGoogle Scholar
  80. Manavalan LP, Chen X, Clarke J, Salmeron J, Nguyen HT (2012) RNAi-mediated disruption of squalene synthase improves drought tolerance and yield in rice. J Exp Bot 63:163–175CrossRefPubMedGoogle Scholar
  81. Manning K, Tor M, Poole M, Hong Y, Thompson AJ, King GJ, Giovannoni J, Seymour GB (2006) A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat Genet 38:948–952CrossRefPubMedGoogle Scholar
  82. Mao YB, Cai WJ, Wang JW, Hong GJ, Tao XY, Wang LJ, Huang YP, Chen X (2007) Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat Biotechnol 25:1307–1313CrossRefPubMedGoogle Scholar
  83. Mao YB, Xue XY, Tao XY, Yang CQ, Wang LJ, Chen XY (2013) Cysteine protease enhances plant-mediated bollworm RNA interference. Plant Mol Biol 83:119–129CrossRefPubMedPubMedCentralGoogle Scholar
  84. Matzke M, Matzke A, Pruss G, Vance V (2001) RNA-based silencing strategies in plants. Curr Opin Genet Dev 11:221–227. https://doi.org/10.1016/S0959-437X(00)00183-0 CrossRefPubMedGoogle Scholar
  85. Miura K, Ikeda M, Matsubara A, Song XJ, Ito M, Asano K, Matsuoka M, Kitano H, Ashikari M (2010) OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat Genet 42:545–549CrossRefPubMedGoogle Scholar
  86. Mohanpuria P, Kumar V, Ahuja PS, Yadav SK (2011) Producing low-caffeine tea through post-transcriptional silencing of caffeine synthase mRNA. Plant Mol Biol 76:523–234. https://doi.org/10.1007/s11103-011-9785-x CrossRefPubMedGoogle Scholar
  87. Molesini B, Pandolfini T, Rotino GL, Dani V, Spena A (2009) Aucsia gene silencing causes parthenocarpic fruit development in tomato[C][W]. Plant Physiol 149:534–548CrossRefPubMedPubMedCentralGoogle Scholar
  88. Molesini B, Pii Y, Pandolfini T (2012) Fruit improvement using intragenesis and artificial microRNA. Trends Biotechnol 30:80–88. https://doi.org/10.1016/j.tibtech.2011.07.005 CrossRefPubMedGoogle Scholar
  89. Molnar A, Melnyk CW, Bassett A, Hardcastle TJ, Dunn R, Baulcombe DC (2010) Small silencing RNAs in plants are mobile and direct epigenetic modification in recipient cells. Science 328:872–875. https://doi.org/10.1126/science.1187959 CrossRefPubMedGoogle Scholar
  90. Moxon S, Jing R, Szittya G, Schwach F, Rusholme Pilcher RL, Moulton V, Dalmay T (2008) Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening. Genome Res 18:1602–1609CrossRefPubMedPubMedCentralGoogle Scholar
  91. Nakatsuka T, Mishiba K, Abe Y, Kubota A, Kakizaki Y, Yamamura S, Nishihara M (2008) Flower color modification of gentian plants by RNAi-mediated gene silencing. Plant Biotechnol TOKYO 25:61–68CrossRefGoogle Scholar
  92. Nakatsuka T, Mishiba KI, Kubota A, Abe Y, Yamamura S, Nakamura N, Tanaka Y, Nishihara M (2010) Genetic engineering of novel flower colour by suppression of anthocyanin modification genes in gentian. J Plant Physiol 167:231–237CrossRefPubMedGoogle Scholar
  93. Napoli C, Lemieux C, Jorgensen R (1990) Introduction of chimeric chalcone synthase gene into Petunia results in reversible cosuppression of homologous genes in trans. Plant Cell 2:279–289. https://doi.org/10.1105/tpc.2.4.279 CrossRefPubMedPubMedCentralGoogle Scholar
  94. Nawaz-ul-Rehman MS, Mansoor S, Khan AA, Zafar Y, Briddon RW (2007) RNAi-mediated male sterility of tobacco by silencing TA29. Mol Biotechnol 36:159–165CrossRefPubMedGoogle Scholar
  95. Naya L, Paul S, Valdés-López O, Mendoza-Soto AB, Nova-Franco B, Sosa-Valencia G, Reyes JL, Hernández G (2014) Regulation of copper homeostasis and biotic interactions by microRNA 398b in common bean. PLoS One 9:e84416. https://doi.org/10.1371/journal.pone.0084416 CrossRefPubMedPubMedCentralGoogle Scholar
  96. Ni Z, Hu Z, Jiang Q, Zhang H (2013) GmNFYA3, a target gene of miR169, is a positive regulator of plant tolerance to drought stress. Plant Mol Biol 82:113–129CrossRefPubMedGoogle Scholar
  97. Nowara D, Gay A, Lacomme C, Shaw J, Ridout C, Douchkov D, Hensel G, Kumlehn J, Schweizer P (2010) HIGS: host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis. Plant Cell 22:3130–3141CrossRefPubMedPubMedCentralGoogle Scholar
  98. Nunes CC, Dean RA (2012) Host – induced gene silencing: a tool for understanding fungal host interaction and for developing novel disease control strategies. Mol Plant Pathol 13:519–529. https://doi.org/10.1111/j.1364-3703.2011.00766.x CrossRefPubMedGoogle Scholar
  99. Oerke EC (2006) Crop losses to pests. J Agric Sci 144:31–43CrossRefGoogle Scholar
  100. Ogita S, Usefuji H, Yamaguchi Y, Koizumi N, Sano H (2003) Producing decaffeinated coffee plants. Nature 423:823. https://doi.org/10.1038/423823a CrossRefPubMedGoogle Scholar
  101. Pandolfini T (2009) Seedless fruit production by hormonal regulation of fruit set. Nutrients 1:168–177CrossRefPubMedPubMedCentralGoogle Scholar
  102. Papolu PK, Gantasala NP, Kamaraju D, Banakar P, Sreevathsa R, Rao U (2013) Utility of host delivered RNAi of two FMRF amide like peptides, flp-14 and flp-18, for the management of root knot nematode, Meloidogyne incognita. PLoS One 8:e80603CrossRefPubMedPubMedCentralGoogle Scholar
  103. Pareek M, Yogindran S, Mukherjee SK, Rajam MV (2015) Plant micro RNAs: biogenesis, functions and applications. In: Bahadur B, Rajam MV, Sahijram L, Krishnamurthy KV (eds) Plant biology and biotechnology, vol II.: Plant Genomics and Biotechnology. Springer, India, pp 639–661CrossRefGoogle Scholar
  104. Peng T, Jia MM, Liu JH (2015) RNAi-based functional elucidation of PtrPRP, a gene encoding a hybrid proline rich protein, in cold tolerance of Poncirus trifoliata. Front Plant Sci 29(6):808. https://doi.org/10.3389/fpls.2015.00808 CrossRefGoogle Scholar
  105. Rajam MV, Madhulatha P, Pandey R, Hazarika PJ, Razdan MK (2007) Applications of genetic engineering in tomato. In: Razdan MK, Mattoo AK (eds) Genetic improvement of Solanaceae Crops: tomato, vol 2. Science Publishers, Enfield, pp 285–311Google Scholar
  106. Rathore KS, Sundaram S, Sunilkumar G, Campbell LM, Puckhaber L, Marcel S, Palle SR, Stipanovic RD, Wedegaertner TC (2012) Ultra-low gossypol cottonseed: generational stability of the seed-specific, RNAi-mediated phenotype and resumption of terpenoid profile following seed germination. Plant Biotechnol J 10:174–183. https://doi.org/10.1111/j.1467-7652.2011.00652.x CrossRefPubMedGoogle Scholar
  107. Regina A, Bird A, Topping D, Bowden S, Freeman J, Barsby T, Kosar-Hashemi B, Li Z, Rahman S, Morell M (2006) High amylose wheat generated by RNA-Interference improves indices of large bowel health in rats. Proc Natl Acad Sci U S A 103:3546–3551CrossRefGoogle Scholar
  108. Romano N, Macino G (1992) Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Mol Microbiol 6:3343–3353CrossRefPubMedGoogle Scholar
  109. Rubinelli PM, Chuck G, Li X, Meilan R (2013) Constitutive expression of the corn-grass1 microRNA in poplar affects plant architecture and stem lignin content and composition. Biomass Bioenergy 54:312–321CrossRefGoogle Scholar
  110. Saurabh S, Vidyarthi AS, Prasad D (2014) RNA interference: concept to reality in crop improvement. Planta 239:543–564. https://doi.org/10.1007/s00425-013-2019-5 CrossRefPubMedGoogle Scholar
  111. Schijlen EGWM, de Vos RCH, Martens S, Jonker HH, Rosin FM, Molthoff JW, Tikunov YM, Angenent GC, van Tunen AJ, Bovy AG (2007) RNA interference silencing of chalcone synthase, the first step in the flavonoid biosynthesis pathway, leads to parthenocarpic tomato fruits. Plant Physiol 144:1520–1530CrossRefPubMedPubMedCentralGoogle Scholar
  112. Shriram V, Kumar V, Devarumath RM, Khare TS, Wani SH (2016) MicroRNAs as potential targets for abiotic stress tolerance in plants. Front Plant Sci 7:817. https://doi.org/10.3389/fpls.2016.00817 CrossRefPubMedPubMedCentralGoogle Scholar
  113. Sindhu AS, Maier TR, Mitchum MG, Hussey RS, Davis EL, Baum TJ (2009) Effective and specific in planta RNAi in cyst nematodes: expression interference of four parasitism genes reduces parasitic success. J Exp Bot 60:315–324CrossRefPubMedGoogle Scholar
  114. Singh A, Taneja J, Dasgupta I, Mukherjee SK (2014) Development of plants resistant to tomato Gemini viruses using artificial trans-acting small interfering RNA. Mol Plant Pathol 16:725–734Google Scholar
  115. Sinha R, Rajam MV (2013) RNAi silencing of three homologues of S-adenosylmethionine decarboxylase gene in tapetal tissue of tomato results in male sterility. Plant Mol Biol 82:169–180CrossRefPubMedGoogle Scholar
  116. Sun X, Xu L, Wang Y, Yu R, Zhu X, Luo X, Gong Y, Wang R, Limera C, Zhang K, Liu L (2015) Identification of novel and salt-responsive miRNAs to explore miRNA-mediated regulatory network of salt stress response in radish (Raphanus sativus L.). BMC Genomics 16:197. https://doi.org/10.1186/s12864-015-1416-5 CrossRefPubMedPubMedCentralGoogle Scholar
  117. Sunilkumar G, Campbell LM, Puckhaber L, Stipanovic RD, Rathore KS (2006) Engineering cottonseed for use in human nutrition by tissue-specifi c reduction of toxic gossypol. Proc Natl Acad Sci U S A 103:18054–18059CrossRefPubMedPubMedCentralGoogle Scholar
  118. Tamilarasan S, Rajam MV (2013) Engineering crop plants for nematode resistance through host-derived RNA interference. Cell Dev Biol 2:114. https://doi.org/10.4172/2168-9296.1000114 CrossRefGoogle Scholar
  119. Tehseen M, Imran M, Hussain M, Irum S, Ali S, Mansoor S, Zafar Y (2010) Development of male sterility by silencing Bcp1 gene of Arabidopsis through RNA interference. Afr J Biotechnol 9:2736–2741Google Scholar
  120. Thakur N, Upadhyay SK, Verma PC, Chandrashekar K, Tuli R, Singh PK (2014) Enhanced whitefly resistance in transgenic tobacco plants expressing double stranded RNA of v-ATPase A gene. PLoS One 9:e87235CrossRefPubMedPubMedCentralGoogle Scholar
  121. Tinoco ML, Dias BB, Dall’Astta RC, Pamphile JA, Aragao FJ (2010) In vivo trans-specific gene silencing in fungal cells by in planta expression of a double-stranded RNA. BMC Biol 31:27CrossRefGoogle Scholar
  122. Tuschl T (2001) RNA interference and small interfering RNAs. Chembiochem 2:239–245CrossRefPubMedGoogle Scholar
  123. Varoquaux F, Blanvillain R, Delseny M, Gallois P (2000) Less is better: new approaches for seedless fruit production. Trends Biotechnol 18:233–242CrossRefPubMedGoogle Scholar
  124. Vazquez F (2006) Arabidopsis endogenous small RNAs: highways and byways. Trends Plant Sci 11:460–468. https://doi.org/10.1016/j.tplants.2006.07.006 CrossRefPubMedGoogle Scholar
  125. Wang Y, Li J (2006) Genes controlling plant architecture. Curr Opin Biotechnol 17:123–129CrossRefPubMedGoogle Scholar
  126. Wang H, Jones B, Li Z, Frasse P, Delalande C, Regad F, Chaabouni S, Latche A, Pech J-C, Bouzayen M (2005) The tomato Aux/IAA transcription factor IAA9 is involved in fruit development and leaf morphogenesis. Plant Cell 17:2676–2692CrossRefPubMedPubMedCentralGoogle Scholar
  127. Wang S, Wu K, Yuan Q, Liu X, Liu Z, Lin X, Zeng R, Zhu H, Dong G, Qian Q, Zhang G, Fu X (2012) Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet 44:950–954. https://doi.org/10.1038/ng.2327 CrossRefPubMedGoogle Scholar
  128. Wei MM, Wei HL, Wu M, Song MZ, Zhang JF, Yu JW, Fan S, Yu S (2013) Comparative expression profiling of miRNA during anther development in genetic male sterile and wild type cotton. BMC Plant Biol 13:66. https://doi.org/10.1186/1471-2229-13-66 CrossRefPubMedPubMedCentralGoogle Scholar
  129. Weise SE, Aung K, Jarou ZJ, Mehrshahi P, Li Z, Hardy AC, Carr DJ, Sharkey TD (2012) Engineering starch accumulation by manipulation of phosphate metabolism of starch. Plant Biotechnol J 10:545–554. https://doi.org/10.1111/j.1467-7652.2012.00684.x CrossRefPubMedGoogle Scholar
  130. Wilson RC, Doudna JA (2013) Molecular mechanisms of RNA interference. Annu Rev Biophys 42:217–239CrossRefPubMedPubMedCentralGoogle Scholar
  131. Xie Z, Kasschau KD, Carrington JC (2003) Negative feedback regulation of Dicer-Like1 in Arabidopsis by microRNA-guided mRNA degradation. Curr Biol 13:784–789. https://doi.org/10.1016/S0960-9822(03)00281-1 CrossRefPubMedGoogle Scholar
  132. Xiong A, Yao Q, Peng R, Li X, Han P, Fan H (2005) Different effects on ACC oxidase gene silencing triggered by RNA interference in transgenic tomato. Plant Cell Rep 23:639–646CrossRefPubMedGoogle Scholar
  133. Xue B, Hamamouch N, Li C, Huang G, Hussey RS (2013) The 8D05 parasitism gene of Meloidogyne incognita is required for successful infection of host roots. Phytopathology 103:175–181CrossRefPubMedGoogle Scholar
  134. Yadav BC, Veluthambi K, Subramaniam K (2006) Host-generated double stranded RNA induces RNAi in plant-parasitic nematodes and protects the host from infection. Mol Biochem Parasitol 148:219–222CrossRefPubMedGoogle Scholar
  135. Yang C, Li D, Mao D, Liu X, Ji C, Li X, Zhao X, Cheng Z, Chen C, Zhu L (2013) Overexpression of microRNA319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice (Oryza sativa L.). Plant Cell Environ 36:2207–2218. https://doi.org/10.1111/pce.12130 CrossRefPubMedGoogle Scholar
  136. Yang X, Zhao Y, Xie D, Sun Y, Zhu X, Esmaeili N, Yang Z, Wang Y, Yin G, Lv S, Nie L, Tang Z, Zhao F, Li W, Mishra N, Sun L, Zhu W, Fang W (2016) Identification and functional analysis of microRNAs involved in the anther development in cotton genic male sterile line Yu98-8A. Int J Mol Sci 17:1677. https://doi.org/10.3390/ijms17101677 CrossRefPubMedCentralGoogle Scholar
  137. Yin C, Jurgenson JE, Hulbert SH (2011) Development of a host-induced RNAi system in the wheat stripe rust fungus Puccinia striiformis f. sp. tritici. Mol Plant-Microbe Interact 24:554–561CrossRefPubMedGoogle Scholar
  138. Yogindran S, Rajam MV (2015) RNAi for crop improvement. In: Bahadur B, Rajam MV, Sahijram L, Krishnamurthy KV (eds) Plant biology and biotechnology: Volume II: Plant genomics and biotechnology. Springer, India, pp 623–637Google Scholar
  139. Youssef RM, Kim KH, Haroon SA, Matthews BF (2013) Post-transcriptional gene silencing of the gene encoding aldolase from soybean cyst nematode by transformed soybean roots. Exp Parasitol 134:266–274CrossRefPubMedGoogle Scholar
  140. Yu B, Lydiate DJ, Young LW, Schafer UA, Hannoufa A (2007) Enhancing the carotenoid content of Brassica napus seeds by down regulating lycopene epsilon cyclase. Transgenic Res 17:573–585CrossRefPubMedGoogle Scholar
  141. Yu R, Xu X, Liang Y, Tian H, Pan Z, Jin S, Wang N, Zhang W (2014) The insect ecdysone receptor is a good potential target for RNAi-based pest control. Int J Biol Sci 10:1171–1180CrossRefPubMedPubMedCentralGoogle Scholar
  142. Zamore PD, Haley B (2005) Ribo-genome: the big world of small RNAs. Science 309:1519–1524CrossRefPubMedGoogle Scholar
  143. Zha WJ, Peng XX, Chen RZ, Du B, Zhu LL, He GC (2011) Knockdown of midgut genes by dsRNA-transgenic plant-mediated RNA interference in the Hemipteran insect Nilaparvata lugens. PLoS One 6:e20504CrossRefPubMedPubMedCentralGoogle Scholar
  144. Zhang B (2015) MicroRNA: a new target for improving plant tolerance to abiotic stress. J Exp Bot 66:1749–1761. https://doi.org/10.1093/jxb/erv013 CrossRefPubMedPubMedCentralGoogle Scholar
  145. Zhang YC, Yu Y, Wang CY, Li ZY, Liu Q, Xu J, Liao JY, Wang XJ, Qu LH, Chen F, Xin P, Yan C, Chu J, Li HQ, Chen YQ (2013) Over expression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching. Nat Biotechnol 31:848–852CrossRefPubMedGoogle Scholar
  146. Zhang W, Xie Y, Xu L, Wang Y, Zhu X, Wang R, Zhang Y, Muleke EM, Liu L (2016) Identification of microRNAs and their target genes explores miRNA-mediated regulatory network of cytoplasmic male sterility occurrence during anther development in radish (Raphanus sativus L.). Front Plant Sci 7:1054. https://doi.org/10.3389/fpls.2016.01054 CrossRefPubMedPubMedCentralGoogle Scholar
  147. Zhou Y, Yuan Y, Yuan F, Wang M, Zhong H, Gu M, Liang G (2012) RNAi-directed down-regulation of RSV results in increased resistance in rice (Oryza sativa L.). Biotechnol Lett 34:965–972. https://doi.org/10.1007/s10529-012-0848-0 CrossRefPubMedGoogle Scholar
  148. Zhu JK (2008) Reconstituting plant miRNA biogenesis. Proc Natl Acad Sci U S A 105:9851–9852CrossRefPubMedPubMedCentralGoogle Scholar
  149. Zhu JQ, Liu S, Ma Y, Zhang JQ, Qi HS, Wei ZJ, Yao Q, Zhang WQ, Li S (2012) Improvement of pest resistance in transgenic tobacco plants expressing dsRNA of an insect associated gene EcR. PLoS One 7:e3857Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of GeneticsUniversity of Delhi South CampusNew DelhiIndia

Personalised recommendations