Advertisement

Transgenic Research on Tomato: Problems, Strategies, and Achievements

  • Joydeep Banerjee
  • Saikat Gantait
  • Sutanu Sarkar
  • Prabir Kumar Bhattacharyya
Chapter

Abstract

Tomato is a climacteric fruit; it is widely consumed as vegetables worldwide either raw or cooked owing to the antioxidative and anticancer properties of lycopene, a dynamic carotenoid pigment of tomato. Nonetheless, since the past few decades, the productivity of tomato is compromised by an array of biotic and abiotic stresses along with deterioration of desirable quality parameters. Consequently, the development of stress-tolerant quality crops is a strategic challenge for agricultural biotechnology. Genetic transformation approach permits to insert defined gene simultaneously avoiding the elimination of any intrinsic genetic attributes unlike the occasion of conventional in situ or true in vitro screening. Till date, a number of attempts have been made to mitigate biotic and abiotic stress on tomato keeping the improvement of quality parameters in mind. Majority of such modifications comprise of the expression of stress-inducible genes, manipulation in the metabolic pathways, or the accumulation of low molecular compounds that function critically in retaining the agility of reactions. In this chapter, we offer an overview of the strategies based on frequently selected target sequences or molecules that are genetically transferred or modified to attain genetically transformed tomatoes tolerant to environmental stresses as well as to improve the quality traits of its fruits.

Keywords

Tomato Abiotic stress Biotic stress Genetic transformation Quality traits 

References

  1. Abbas DE, Abdallah NA, Madkour MM (2009) Production of transgenic tomato plants with enhanced resistance against the fungal pathogen Fusarium oxysporum. Arab J Biotech 12(1):73–84Google Scholar
  2. Abdallah NA, Shah D, Abbas D et al (2010) Stable integration and expression of a plant defensin in tomato confers resistance to fusarium wilt. GM Crops 1(5):344–350PubMedCrossRefGoogle Scholar
  3. Abel PP, Nelson RS, De B, Hoffmann N, Rogers SG, Fraley RT, Beachy RN (1986) Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232:738–743PubMedCrossRefGoogle Scholar
  4. Adato A, Mandel T, Mintz-Oron S, Venger I, Levy D, Yativ M, Domınguez E, Wang Z, De Vos RC, Jetter R, Schreiber L, Heredia A, Rogachev I, Aharoni A (2009) Fruit-surface flavonoid accumulation in tomato is controlled by a SlMYB12-regulated transcriptional network. PLoS Genet 512:e1000777CrossRefGoogle Scholar
  5. Agrios GN (2005) Plant pathology, 5th edn. Elsevier, New YorkGoogle Scholar
  6. Alćazar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco TAF (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237–1249PubMedCrossRefGoogle Scholar
  7. Alhagdow M, Mounet F, Gilbert L, Nunes-Nesi A, Garcia V, Just D, Petit J, Beauvoit B, Fernie AR, Rothan C, Baldet P (2007) Silencing of the mitochondrial ascorbate synthesizing enzyme L-galactono-1,4-lactone dehydrogenase (L-GalLDH) affects plant and fruit development in tomato. Plant Physiol 145:1408–1422PubMedPubMedCentralCrossRefGoogle Scholar
  8. Álvarez-Viveros MF, Inostroza-Blancheteau C, Timmermann T, González M, Arce-Johnson P (2013) Overexpression of GlyI and GlyII genes in transgenic tomato (Solanum lycopersicum Mill.) plants confers salt tolerance by decreasing oxidative stress. Mol Biol Rep (4):3281–3290PubMedCrossRefGoogle Scholar
  9. Antignus Y, Vunsh R, Lachman O, Pearlsman M, Maslenis L, Hananya U, Rosner A (2004) Truncated Rep gene originated from tomato yellow leaf curl virus – Israel [Mild] confers strain-specific resistance in transgenic tomato. Ann Appl Biol 144:39–44CrossRefGoogle Scholar
  10. Arrillaga I, Gil Mascarell R, Gisbert C, Sales E, Montesinos C, Serrano R, Moreno V (1998) Expression of the yeast HAL2 gene in tomato increases the in vitro salt tolerance of transgenic progenies. Plant Sci 136:219–226CrossRefGoogle Scholar
  11. Bai Y, Pavan S, Zheng Z et al (2008) Naturally occurring broad-spectrum powdery mildew resistance in a central American tomato accession is caused by loss of Mlo function. Mol Plant Microbe Interact 21:30–39PubMedCrossRefPubMedCentralGoogle Scholar
  12. Balaji V, Mayrose M, Sherf O et al (2008) Tomato transcriptional changes in response to Clavibacter michiganensis subsp. michiganensis reveal a role for ethylene in disease development. Plant Physiol 146(4):1797–1809PubMedPubMedCentralCrossRefGoogle Scholar
  13. Baldwin EA, Scott JW, Shewmaker CK, Schuch W (2000) Flavor trivia and tomato aroma: biochemistry and possible mechanisms for control of important aroma components. Hort Sci 35:1013–1021Google Scholar
  14. Ballester AR, Molthoff J, de Vos R, te Lintel Hekkert B, Orzaez D, Fernandez-Moreno JP, Tripodi P, Grandillo S, Martin C, Heldens J, Ykema M, Granell A, Bovy A (2010) Biochemical and molecular analysis of pink tomatoes: deregulated expression of the gene encoding transcription factor SlMYB12 leads to pink tomato fruit colour. Plant Physiol 1:71–84CrossRefGoogle Scholar
  15. Banerjee J, Das N, Dey P, Maiti MK (2010) Transgenically expressed rice germin-like protein1 in tobacco causes hyper-accumulation of H2O2 and reinforcement of the cell wall components. Biochem Biophys Res Commun 402 (4):637–643PubMedCrossRefGoogle Scholar
  16. Banerjee J, Sahoo DK, Dey N, Houtz RL, Maiti IB, Pandey GK (2013) An intergenic region shared by At4g35985 and At4g35987 in Arabidopsis thaliana is a tissue specific and stress inducible bidirectional promoter analyzed in transgenic Arabidopsis and Tobacco plants. PLoS One 8 (11):e79622PubMedPubMedCentralCrossRefGoogle Scholar
  17. Banerjee J, Sahoo DK, Raha S, Sarkar S, Dey N, Maiti IB (2015) A region containing an as-1 element of Dahlia Mosaic Virus (DaMV) subgenomic transcript promoter plays a key role in green tissue- and root-specific expression in plants. Plant Mol Biol Rep 33 (3):532–556CrossRefGoogle Scholar
  18. Baranova EN, Serenko EK, Balachnina TI, Kosobruhov AA, Kurenina LV, Gulevich AA, Maisuryan AN (2010) Activity of the photosynthetic apparatus and antioxidant enzymes in leaves of transgenic Solanum lycopersicum and Nicotiana tabacum plants, with FeSOD1 gene. Russ Agr Sci 36(4):242–249CrossRefGoogle Scholar
  19. Baranova YN, Akanov EN, Gulevich AA, Kurenina LV, Danilova SA, Khaliluev MR (2014) Dark respiration rate of transgenic tomato plants expressing FeSOD1 gene under chloride and sulfate salinity. Russ Agric Sci 40(1):14–17CrossRefGoogle Scholar
  20. Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58CrossRefGoogle Scholar
  21. Bartley GE, Viitanen PV, Bacot KO, Scolnik PA (1992) A tomato gene expressed during fruit ripening encodes an enzyme of the carotenoid biosynthesis pathway. J Biol Chem 267:5036–5039PubMedPubMedCentralGoogle Scholar
  22. Bartoszewski G, Niedziela A, Szwacka M, Niemirowicz-Szczyt K (2003) Modification of tomato taste in transgenic plants carrying a thaumatin gene from Thaumatococcus daniellii benth. Plant Breed (4):347–351CrossRefGoogle Scholar
  23. Bassa C, Mila I, Bouzayen M, Audran-Delalande C (2012) Phenotypes associated with down-regulation of Sl-IAA27 support functional diversity among Aux/IAA family members in tomato. Plant Cell Physiol (9):1583–1595PubMedCrossRefPubMedCentralGoogle Scholar
  24. Bassolino L, Zhang Y, Schoonbeek HJ, Kiferle C, Perata P, Martin C (2013) Accumulation of anthocyanins in tomato skin extends shelf life. New Phytol (3):650–655PubMedCrossRefPubMedCentralGoogle Scholar
  25. Benfey PN, Chua NH (1990) The cauliflower mosaic virus 35S promoter: combinatorial regulation of transcription in plants. Science 250:959–966PubMedCrossRefPubMedCentralGoogle Scholar
  26. Bettini PP, Santangelo E, Baraldi R, Rapparini F, Mosconi P, Crinò P, Mauro ML (2016) Agrobacterium rhizogenes rolA gene promotes tolerance to Fusarium oxysporum f. sp. lycopersici in transgenic tomato plants (Solanum lycopersicum L.). J Plant Biochem Biotechnol 25(3):225–233CrossRefGoogle Scholar
  27. Bhatnagar-Mathur P, Vadez V, Sharma KK (2008) Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. Plant Cell Rep 27:411–424PubMedCrossRefPubMedCentralGoogle Scholar
  28. Bird CR, Smith CJS, Ray JA, Moureau P, Bevan MW, Bird AS, Hughes S, Morris PC, Grierson D, Schuch W (1988) The tomato polygalacturonase gene and ripening-specific expression in transgenic plants. Plant Mol Biol 11:651–662PubMedCrossRefPubMedCentralGoogle Scholar
  29. Bird CR, Ray JA, Fletcher JD, Boniwell JM, Bird AS, Teulieres C, Blain I, Bramley PM, Schuch W (1991) Using antisense RNA to study gene function: inhibition of carotenoid biosynthesis in transgenic tomatoes. Biotechnol 9:635–639Google Scholar
  30. Bovy A, de Vos R, Kemper M, Schijlen E, Almenar Pertejo M, Muir S, Collins G, Robinson S, Verhoeyen M, Hughes S, Santos-Buelga C, van Tunen A (2002) High-flavonol tomatoes resulting from heterologous expression of the maize transcription factor gene Lc and C1. Plant Cell 14:2509–2526PubMedPubMedCentralCrossRefGoogle Scholar
  31. Butelli E, Titta L, Giorgio M, Mock HP, Matros A, Peterek S, Schijlen EGWM, Hall RD, Bovy AG, Luo J, Martin C (2008) Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat Biotechnol 26:1301–1308PubMedCrossRefPubMedCentralGoogle Scholar
  32. Campos L, Lisón P, López-Gresa MP et al (2014) Transgenic tomato plants overexpressing tyramine N-hydroxycinnamoyltransferase exhibit elevated hydroxycinnamic acid amide levels and enhanced resistance to Pseudomonas syringae. Mol Plant Microbe Interact 27(10):1159–1169PubMedCrossRefPubMedCentralGoogle Scholar
  33. Cao Y, Tang X, Giovannoni J, Xiao F, Liu Y (2012) Functional characterization of a tomato COBRA-like gene functioning in fruit development and ripening. BMC Plant Biol 12:211–225PubMedPubMedCentralCrossRefGoogle Scholar
  34. Carli P, Arima S, Fogliano V, Tardella L, Frusciante L, Ercolano MR (2009) Use of network analysis to capture key traits affecting tomato organoleptic quality. J Exp Bot 60:3379–3386PubMedPubMedCentralCrossRefGoogle Scholar
  35. Carmi N, Salts Y, Dedicova B, Shabtai S, Barg R (2003) Induction of parthenocarpy in tomato via specific expression of the rolB gene in the ovary. Planta 217:726–735PubMedCrossRefGoogle Scholar
  36. Carrari F, Nunes-Nesi A, Gibon Y, Lytovchenko A, Loureiro ME, Fernie AR (2003) Reduced expression of aconitase results in an enhanced rate of photosynthesis and marked shifts in carbon partitioning in illuminated leaves of wild species tomato. Plant Physiol 133:1322–1335PubMedPubMedCentralCrossRefGoogle Scholar
  37. Chen G (2004) Identification of a specific isoform of Tomato Lipoxygenase (TomloxC) involved in the generation of fatty acid-derived flavor compounds. Plant Physiol 136(1):2641–2651PubMedPubMedCentralCrossRefGoogle Scholar
  38. Chen R, Li H, Zhang L et al (2007) CaMi, a root-knot nematode resistance gene from hot pepper (Capsium annuum L.) confers nematode resistance in tomato. Plant Cell Rep 26(7):895–905PubMedCrossRefGoogle Scholar
  39. Cheng L, Zou Y, Ding S, Zhang J, Yu X, Cao J, Lu G (2009) Polyamine accumulation in transgenic tomato enhances the tolerance to high temperature stress. J Integr Plant Biol (5):489–499PubMedCrossRefGoogle Scholar
  40. Cheng X, Liu X, Wang H et al (2015) Effect of emamectin benzoate on root-knot nematodes and tomato yield. PLoS One 10(10):e0141235PubMedPubMedCentralCrossRefGoogle Scholar
  41. Chinnusamy V, Zhu J, Zhu JK (2007) Cold stress regulation of gene expression in plants. Trends Plant Sci 12:444–451PubMedCrossRefGoogle Scholar
  42. Chow S, Norris JF, Bilder B (2016) Insight into the genetically modified foods: from the concerns of safety to food development (part I). Sci Insigt. https://doi.org/10.15354/si.16.vi010
  43. Clayton EE (1923) The relation of temperature to the Fusarium wilt of the tomato. American J Bot 10(2):71–88CrossRefGoogle Scholar
  44. Cletus J, Balasubramanian V, Vashisht D et al (2013) Transgenic expression of plant chitinases to enhance disease resistance. Biotechnol Lett 35(11):1719–1732PubMedCrossRefGoogle Scholar
  45. Colliver S, Bovy A, Collins G, Muir S, Robinson S, de Vos CHR, Verhoeyen ME (2002) Improving the nutritional content of tomatoes through reprogramming their flavonoid biosynthetic pathway. Phytochem Rev 1:113–123CrossRefGoogle Scholar
  46. Cortina C, Culianez-Macia FA (2005) Tomato abiotic stress enhanced tolerance by trehalose biosynthesis. Plant Sci 169:75–82CrossRefGoogle Scholar
  47. Cuartero J, Boları´n MC, Ası´ns MJ, Moreno V (2006) Increasing salt tolerance in the tomato. J Exp Bot 57:1045–1058PubMedCrossRefGoogle Scholar
  48. D’Ambrosio C, Giorio G, Marino I, Merendino A, Petrozza A, Salfi L, Stigliani AL, Cellini F (2004) Virtually complete conversion of lycopene into b-carotene in fruits of tomato plants transformed with the tomato lycopene b-cyclase (tlcy-b) cDNA. Plant Sci 166:207–214CrossRefGoogle Scholar
  49. D’Ambrosio C, Stigliani AL, Giorio G (2011) Overexpression of CrtR-b2 (carotene beta hydroxylase 2) from S. lycopersicum L. differentially affects xanthophylls synthesis and accumulation in transgenic tomato plants. Transgenic Res 20:47–60PubMedCrossRefGoogle Scholar
  50. Davuluri GR, van Tuinen A, Fraser PD, Manfredonia A, Newman R, Burgess D, Brummell DA, King SR, Palys J, Uhlich J, Bramley PM, Pennings HMJ, Bowler C (2005) Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes. Nat Biotechnol 23:890–895CrossRefPubMedGoogle Scholar
  51. de Jong M, Wolters-Arts M, Garcıa-Martınez JL, Mariani C, Vriezen WH (2011) The Solanum lycopersicum AUXIN RESPONSE FACTOR 7 (SlARF7) mediates cross-talk between auxin and gibberellins signalling during tomato fruit set and development. J Exp Bot (2):617–626Google Scholar
  52. de Jonge R, van Esse HP, Maruthachalam K, Bolton MD, Santhanam P, Saber MK, Zhang Z, Usami T, Lievens B, Subbarao KV, Thomma BPHJ (2012) Tomato immune receptor Ve1 recognizes effector of multiple fungal pathogens uncovered by genome and RNA sequencing. Proc Natl Acad Sci 109(13):5110–5115Google Scholar
  53. de la Garza RID, Quinlivan PE, Klaus SMJ, Basset GJC, Gregory JF, Hanson AD (2004) Folate biofortification in tomatoes by engineering the pteridine branch of folate synthesis. PNAS (38):13720–13725Google Scholar
  54. de la Garza RID, Gregory JF, Hanson AD (2007) Folate biofortification of tomato fruit. PNAS (10):4218–4222Google Scholar
  55. Dominguez T, Hernandez LM, Pennycooke JC, Jimenez P, Martınez-Rivas JM, Sanz C, Stockinger EJ, Sanchez-Serrano JJ, Sanmartin M (2010) Increasing v-3 desaturase expression in tomato results in altered aroma profile and enhanced resistance to cold stress. Plant Physiol 153:655–665PubMedPubMedCentralCrossRefGoogle Scholar
  56. Duan M, Feng H-L, Wang L-Y, Li D, Meng Q-W (2012) Overexpression of thylakoidal ascorbate peroxidase shows enhanced resistance to chilling stress in tomato. J Plant Physiol 169(9):867–877PubMedCrossRefPubMedCentralGoogle Scholar
  57. Dutta TK, Papolu PK, Banakar P et al (2015) Tomato transgenic plants expressing hairpin construct of a nematode protease gene conferred enhanced resistance to root-knot nematodes. Front Microbiol 6:260PubMedPubMedCentralGoogle Scholar
  58. Eisenstein M (2013) Discovery in a dry spell. Nature 501:S7–S9PubMedCrossRefPubMedCentralGoogle Scholar
  59. El-Sharkawy I, Sherif SM, Jones B, Mila I, Kumar PP, Bouzayen M, Jayasankar S (2014) TIR1-like auxin-receptors are involved in the regulation of plum fruit development. J Exp Bot 65:5205–5215PubMedPubMedCentralCrossRefGoogle Scholar
  60. El-Sharkawy I, Sherif S, El-Kayal W, Jones B, Li Z, Sullivan AJ, Jayasankar S (2016) Overexpression of plum auxin receptor PslTIR1 in tomato alters plant growth, fruit development and fruit shelf-life characteristics. BMC Plant Biol 16:56–67PubMedPubMedCentralCrossRefGoogle Scholar
  61. Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55:307–319PubMedCrossRefPubMedCentralGoogle Scholar
  62. Foolad MR, Zhang LP, Khan AA, Niño-Liu D, Lin GY (2002) Identification of QTLs for early blight (Alternaria solani) resistance in tomato using backcross populations of a Lycopersicon esculentum × L. hirsutum cross. Theor Appl Genet 104(6-7):945–958Google Scholar
  63. Fradin EF, Thomma BP (2006) Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. albo-atrum. Mol Plant Pathol 7(2):71–86PubMedCrossRefPubMedCentralGoogle Scholar
  64. Fradin EF, Abd-El-Haliem A, Masini L et al (2011) Interfamily transfer of tomato Ve1 mediates Verticillium resistance in Arabidopsis. Plant Physiol 156(4):2255–2265PubMedPubMedCentralCrossRefGoogle Scholar
  65. Fraser PD, Romer S, Shipton CA, Mills PB, Kiano JW, Misawa N, Drake RG, Schuch W, Bramley PM (2002) Evaluation of transgenic tomato plants expressing an additional phytoene synthase in a fruit-specific manner. PNAS (2):1092–1109CrossRefGoogle Scholar
  66. Fraser PD, Enfissi EMA, Halket JM, Truesdale MR, Yu D, Gerrish C, Bramleya PM (2007) Manipulation of phytoene levels in tomato fruit: effects on isoprenoids, plastids, and intermediary metabolism. Plant Cell 19:3194–3211PubMedPubMedCentralCrossRefGoogle Scholar
  67. Fray RG, Grierson D (1993) Identification and genetic analysis of normal and mutant phytoene synthase genes of tomato by sequencing, complementation and co-suppression. Plant Mol Biol 22:589–602PubMedCrossRefPubMedCentralGoogle Scholar
  68. Fuentes A, Ramos PL, Fiallo E, Callard D, Sa´nchez Y, Peral R, Rodrı´guez R, Pujol M (2006) Intron–hairpin RNA derived from replication associated protein C1 gene confers immunity to Tomato Yellow Leaf Curl Virus infection in transgenic tomato plants. Transgenic Res 15:291–304PubMedCrossRefPubMedCentralGoogle Scholar
  69. Galvez LC, Banerjee J, Pinar H, Mitra A (2014) Engineered plant virus resistance. Plant Sci 228:11–25PubMedCrossRefPubMedCentralGoogle Scholar
  70. Garchery C, Gest N, Do PT, Alhagdow M, Baldet P, Menard G, Rothan C, Massot C, Gautier H, Aarrouf J, Fernie AR, Stevens R (2013) A diminution in ascorbate oxidase activity affects carbon allocation and improves yield in tomato under water deficit. Plant Cell Environ 36:159–175PubMedCrossRefPubMedCentralGoogle Scholar
  71. Garcia V, Stevens R, Gil L, Gilbert L, Gest N, Petit J, Faurobert M, Maucourt M, Deborde C, Moing A, Poessel JL, Jacob D, Bouchet JP, Giraudel JL, Gouble B, Page D, Alhagdow M, Massot C, Gautier H, Lemaire-Chamley M, Rolin D, Usadel B, Lahaye M, Causse M, Baldet P, Rothan C (2009) An integrative genomics approach for deciphering the complex interactions between ascorbate metabolism and fruit growth and composition in tomato. C R Biol (11):1007–1021PubMedCrossRefPubMedCentralGoogle Scholar
  72. Gerszberg A, Hnatuszko-Konka K (2017) Tomato tolerance to abiotic stress: a review of most often engineered target sequences. Plant Growth Regul (online). https://doi.org/10.1007/s10725-017-0251-x
  73. Gerszberg A, Hnatuszko-Konka K, Kowalczyk T, Kononowicz AK (2015) Tomato (Solanum lycopersicum L.) in the service of biotechnology. Plant Cell Tiss Org Cult 120:881–902CrossRefGoogle Scholar
  74. Gilbert L, Alhagdow M, Nunes-Nesi A, Quemener B, Guillon F, Bouchet B, Faurobert M, Gouble B, Page D, Garcia V, Peti J, Stevens R, Causse M, Fernie AR, Lahaye M, Rothan C, Baldet P (2009) GDP-D-mannose 3,5-epimerase (GME) plays a key role at the intersection of ascorbate and non-cellulosic cell-wall biosynthesis in tomato. Plant J 60:499–508PubMedCrossRefPubMedCentralGoogle Scholar
  75. Giorio G, Stigliani AL, D’Ambrosio C (2008) Over-expression of carotene b-hydroxylase 1 (CrtR-b1) and lycopene bcyclase (Lcy-b) in transgenic tomato fruits. Acta Hort (789):277–284Google Scholar
  76. Giovannoni JJ, DellaPenna D, Bennett AB, Fischer RL (1989) Expression of a chimeric polygalacturonase gene in transgenic rin (ripening inhibitor) tomato fruit results in polyuronide degradation but not fruit softening. Plant Cell 1:53–63PubMedPubMedCentralCrossRefGoogle Scholar
  77. Giovinazzo G, D’Amico L, Paradiso A, Bollino R, Sparvoli F, DeGara L (2005) Antioxidant metabolite profiles in tomato fruit constitutively expressing the grapevine stilbene synthase gene. Plant Biotechnol J 3:57–69PubMedCrossRefGoogle Scholar
  78. Girhepuje PV, Shinde GB (2011) Transgenic tomato plants expressing a wheat endochitinase gene demonstrate enhanced resistance to Fusarium oxysporum f. sp. lycopersici. Plant Cell Tiss Org Cult 105(2):243–251CrossRefGoogle Scholar
  79. Gisbert C, Rus AM, Boları´n MC, Coronado JM, Arrillaga I, Montesinos C, Caro M, Serrano R, Moreno V (2000) The yeast HAL1 gene improves salt tolerance of transgenic tomato. Plant Physiol 123:393–402PubMedPubMedCentralCrossRefGoogle Scholar
  80. Gleason ML, Edmunds BA (2005) Tomato diseases and disorders. vinesgardens.org
  81. Gleason ML, Edmunds BA (2006) Tomato diseases and disorders. University Extension PM 1266, Iowa State University, AmesGoogle Scholar
  82. Goel D, Singh AK, Yadav V, Babbar SB, Bansal KC (2010) Overexpression of osmotin gene confers tolerance to salt and drought stresses in transgenic tomato (Solanum lycopersicum L.). Protoplasma 245:133–141PubMedCrossRefGoogle Scholar
  83. Goetz M, Hooper LC, Johnson SD, Rodrigues JC, Vivian-Smith A, Koltunov AM (2007) Expression of aberrant forms of auxin response factor 8 stimulates parthenocarpy in Arabidopsis and tomato. Plant Physiol 2:336–351Google Scholar
  84. Gonzalez-cendales Y, Catanzariti AM, Baker B, Mcgrath DJ, Jones DA (2016) Identification of I-7 expands the repertoire of genes for resistance to Fusarium wilt in tomato to three resistance gene classes. Mol Plant Pathol 17(3):448–463PubMedCrossRefGoogle Scholar
  85. Good X, Kellogg JA, Wagoner W, Langhoff D, Matsumura W, Bestwick RK (1994) Reduced ethylene synthesis by transgenic tomatoes expressing S-adenosylmethionine hydrolase. Plant Mol Biol 26:781–790PubMedCrossRefGoogle Scholar
  86. Gould WA (2013) Tomato production, processing and technology, 3rd edn. Woodhead Publishing, Sawston, Cambridge, UKGoogle Scholar
  87. Goulet C, Mageroy MH, Lam NB, Floystad A, Tieman DM, Klee HJ (2012) Role of an esterase in flavor volatile variation within the tomato clade. PNAS 109:19009–19014PubMedCrossRefPubMedCentralGoogle Scholar
  88. Grandillo S, Zamir D, Tanksley SD (1999) Genetic improvement of processing tomatoes: a 20 years perspective. Euphytica 110:85–97CrossRefGoogle Scholar
  89. Grierson D, Kader AA (1986) Fruit ripening and quality. In: Atherton JG, Rudich J (eds) The tomato crop: a scientific basis for improvement. Chapman and Hall, London, pp 241–280CrossRefGoogle Scholar
  90. Gul Z, Ahmed M, Khan ZU, Khan B, Iqbal M (2016) Evaluation of tomato lines against Septoria leaf spot under field conditions and its effect on fruit yield. Agric Sci 7(04):181–186CrossRefGoogle Scholar
  91. Hamilton AJ, Lycett GW, Grierson D (1990) Antisense gene that inhibits synthesis of the hormone ethylene in transgenic plants. Nature 346:284–287CrossRefGoogle Scholar
  92. He P, Warren RF, Zhao T et al (2001) Overexpression of Pti5 in tomato potentiates pathogen-induced defense gene expression and enhances disease resistance to Pseudomonas syringae pv. tomato. Mol Plant Microbe Interact 14(12):1453–1457PubMedCrossRefPubMedCentralGoogle Scholar
  93. Herbette S, Tourvieille de Labrouheb D, Drevet JR, Roeckel-Drevet P (2011) Transgenic tomatoes showing higher glutathione peroxidase antioxidant activity are more resistant to an abiotic stress but more susceptible to biotic stresses. Plant Sci 180:548–553PubMedCrossRefPubMedCentralGoogle Scholar
  94. Hiatt WR, Kramer M, Sheehy RE (1989) The application of antisense RNA technology to plants. Genetic engineering: principles and methods. J. K. Setlow. Boston, MA, Springer US, pp 49–63CrossRefGoogle Scholar
  95. Hightower R, Baden C, Penzes E, Lund P, Dunsmuir P (1991) Expression of antifreeze proteins in transgenic plants. Plant Mol Biol 17:1013–1021PubMedCrossRefGoogle Scholar
  96. Hirai T, Kim YW, Kato K, Hiwasa-Tanase K, Ezura H (2011) Uniform accumulation of recombinant miraculin protein in transgenic tomato fruit using a fruit-ripening-specific E8 promoter. Transgenic Res 20:1285–1292PubMedCrossRefGoogle Scholar
  97. Hiwasa-Tanase K, Nyarubona M, Hirai T, Kato K, Ichikawa T, Ezura H (2011) High-level accumulation of recombinant miraculin protein in transgenic tomatoes expressing a synthetic miraculin gene with optimized codon usage terminated by the native miraculin terminator. Plant Cell Rep 30:113–124PubMedCrossRefPubMedCentralGoogle Scholar
  98. Honma M, Shimomura T (1978) Metabolism of 1-aminocyclopropane-1- carboxylic acid. Agric Biol Chem 42:1825–1831Google Scholar
  99. Hontzeas N, Zoidakis J, Glick BR, Abu-Omar MM (2004) Expression and characterization of 1-aminocyclopropane-1-carboxylate deaminase from the rhizobacterium Pseudomonas putida UW4: a key enzyme in bacterial plant growth promotion. Biochim Biophys Acta 1703:11–19PubMedCrossRefPubMedCentralGoogle Scholar
  100. Horvath DM, Stall RE, Jones JB et al (2012) Transgenic resistance confers effective field level control of bacterial spot disease in tomato. PLoS One 7(8):e42036. https://doi.org/10.1371/journal.pone.0042036 CrossRefPubMedPubMedCentralGoogle Scholar
  101. Hsieh TH, Li CW, Su RC, Cheng CP, Sanjaya TYC, Chan MT (2010) A tomato bZIP transcription factor, SlAREB, is involved in water deficit and salt stress response. Planta 231:1459–1473PubMedCrossRefPubMedCentralGoogle Scholar
  102. Hu Y, Wu Q, Sprague SA, Park J, Oh M, Rajashekar CB, Koiwa H, Nakata PA, Cheng N, Hirschi KD, Frank F White FF, Park S (2015) Tomato expressing Arabidopsis glutaredoxin gene AtGRXS17 confers tolerance to chilling stress via modulating cold responsive components. Hort Res 2:15051CrossRefGoogle Scholar
  103. Ishibashi K, Masuda K, Naito S et al (2007) An inhibitor of viral RNA replication is encoded by a plant resistance gene. Proc Natl Acad Sci U S A 104(34):13833–13838PubMedPubMedCentralCrossRefGoogle Scholar
  104. Janska A, Marsik P, Zelenkova S, Ovesna J (2009) Cold stress and acclimation – what is important for metabolic adjustment? Plant Biol 12:395–405CrossRefGoogle Scholar
  105. Jones JB, Jones JP, Stall RE, Zitter TA (eds) (1991) Compendium of tomato diseases. The American Phytopathological Society, St. Paul, pp 31–42Google Scholar
  106. Jongedijk E. et al. (1995) Synergistic activity of chitinases and β-1,3-glucanases enhances fungal resistance in transgenic tomato plants. The Methodology of Plant Genetic Manipulation: Criteria for Decision Making: Proceedings of the Eucarpia Plant Genetic Manipulation Section Meeting held at Cork, Ireland from September 11 to September 14, 1994. AC Cassells and PW Jones. Dordrecht, Springer Netherlands, pp. 173–180Google Scholar
  107. Kadotani N, Nakayashiki H, Tosa Y, Mayama S (2003) RNA Silencing in the Phytopathogenic fungus Magnaporthe oryzae. Mol Plant Microbe Interact 16(9):769–776PubMedCrossRefPubMedCentralGoogle Scholar
  108. Kadyrzhanova DK, Vlachonasios KE, Ververidis P, Dilley DR (1998) Molecular cloning of a novel heat induced/chilling tolerance related cDNA1 in tomato fruit by use of mRNA differential display. Plant Mol Biol 36:885–895PubMedCrossRefPubMedCentralGoogle Scholar
  109. Kang BC, Yeam I, Li H et al (2007) Ectopic expression of a recessive resistance gene generates dominant potyvirus resistance in plants. Plant Biotechnol J 5(4):526–536PubMedCrossRefPubMedCentralGoogle Scholar
  110. Kim YW, Hirai T, Kato K, Hiwasa-Tanase K, Ezura H (2010) Gene dosage and genetic background affect miraculin accumulation in transgenic tomato fruits. Plant Biotechnol 27:333–338CrossRefGoogle Scholar
  111. Klee HJ (1993) Ripening physiology of fruit from transgenic tomato (Lycopersicon esculentum)plants with reduced ethylene synthesis. Plant Physiol 102:911–916PubMedPubMedCentralCrossRefGoogle Scholar
  112. Klee HJ, Hayford MB, Kretzmer KA, Barry GF, Kishore GM (1991) Control of ethylene synthesis by expression of a bacterial enzyme in transgenic tomato plants. Plant Cell 3:1187–1193PubMedPubMedCentralCrossRefGoogle Scholar
  113. Koc NK, Kayim M, Yetisir H et al (2007) The improvement of resistance to bacterial speck in transgenic tomato plants by Agrobacterium tumefaciens mediated transformation. Russian J Plant Physiol 54(1):89–96CrossRefGoogle Scholar
  114. Kong K, Ntui VO, Makabe S et al (2014) Transgenic tobacco and tomato plants expressing Wasabi defensin genes driven by root-specific LjNRT2 and AtNRT2.1 promoters confer resistance against Fusarium oxysporum. Plant Biotechnol 31:89–96CrossRefGoogle Scholar
  115. Kostov K, Christova P, Slavov S et al (2009) Constitutive expression of a radish defensin gene Rs-AFP2 in tomato increases the resistance to fungal pathogens. Biotechnol Biotechnol Equip 23(1):1121–1125CrossRefGoogle Scholar
  116. Kouki S, Saidi N, Rajeb AB et al (2012) Control of Fusarium wilt of tomato caused by Fusarium oxysporum f. sp. radicis-lycopersici using mixture of vegetable and Posidonia oceanica compost. Appl Environ Soil Sci 239639:1–11. https://doi.org/10.1155/2012/239639 CrossRefGoogle Scholar
  117. Kunik T, Salomon R, Zamir D, Navot N, Zeidan M, Michelson I, Gafni Y, Czosnek H (1994) Transgenic tomato plants expressing the tomato yellow leaf curl virus capsid protein are resistant to the virus. Nat Biotechnol 12:500–504CrossRefGoogle Scholar
  118. Lanfermeijer FC, Dijkhuis J, Sturre MJG et al (2003) Cloning and characterization of the durable tomato mosaic virus resistance gene Tm-22 from Lycopersicon esculentum. Plant Mol Biol 52(5):1039–1051CrossRefGoogle Scholar
  119. Le Gall G, DuPont MS, Mellon FA, Davis AL, Collins GJ, Verhoeyen ME, Colquhoun IJ (2003) Characterization and content of flavonoid glycosides in genetically modified tomato (Lycopersicon esculentum) fruits. J Agric Food Chem 51:2438–2446PubMedCrossRefPubMedCentralGoogle Scholar
  120. Li X, Gasic K, Cammue B et al (2003) Transgenic rose lines harboring an antimicrobial protein gene, Ace-AMP1, demonstrate enhanced resistance to powdery mildew (Sphaerotheca pannosa). Planta 218(2):226–232PubMedCrossRefPubMedCentralGoogle Scholar
  121. Li XQ, Wei JZ, Tan A et al (2007) Resistance to root-knot nematode in tomato roots expressing a nematicidal Bacillus thuringiensis crystal protein. Plant Biotechnol J 5(4):455–464PubMedPubMedCentralCrossRefGoogle Scholar
  122. Li F, Xinga S, Guoa Q, Zhaoa M, Zhanga J, Gaoa Q, Wangb G, Wanga W (2011) Drought tolerance through over-expression of the expansin gene TaEXPB23 intransgenic tobacco. J Plant Physiol 168:960–966PubMedCrossRefPubMedCentralGoogle Scholar
  123. Li S, Jin X, Chen J et al (2013) Inhibitory activities of venom alkaloids of Red Imported Fire Ant against Clavibacter michiganensis subsp. michiganensis in vitro and the application of piperidine alkaloids to manage symptom development of bacterial canker on tomato in the greenhouse. Int J Pest Manage 59(2):150–156CrossRefGoogle Scholar
  124. Lin WC, Lu CF, Wu JW et al (2004) Transgenic tomato plants expressing the Arabidopsis NPR1 gene display enhanced resistance to a spectrum of fungal and bacterial diseases. Transgenic Res 13(6):567–581PubMedCrossRefPubMedCentralGoogle Scholar
  125. Liu J, Cong B, Tanksley SD (2003) Generation and analysis of an artificial gene dosage series in tomato to study the mechanism by which the cloned quantitative trait locus fw2.2 controls fruit size. Plant Physiol (1):292–299PubMedPubMedCentralCrossRefGoogle Scholar
  126. Liu X, Yang JH, Li B, Yang XM, Meng QW (2010) Antisense expression of tomato chloroplast omega-3 fatty acid desaturase gene (LeFAD7) enhances the tomato high-temperature tolerance through reductions of trienoic fatty acids and alterations of physiological parameters. Photosyntheyhica (1):59–66Google Scholar
  127. Liu XY, Teng YB, Meng QW (2013) Enhancement of low-temperature tolerance in transgenic tomato plants overexpressing Lefad7 through regulation of trienoic fatty acids. Photosyntheyhica (2):238–244CrossRefGoogle Scholar
  128. Louws FJ, Wilson M, Cuppels DA et al (2001) Field control of bacterial spot of tomato and pepper and bacterial speck of tomato using a plant activator. Plant Dis 85:481–488CrossRefGoogle Scholar
  129. Ma N, Feng H, Meng X, Li D, Yang D, Wu C, Meng Q (2014) Overexpression of tomato SlNAC1 transcription factor alters fruit pigmentation and softening. BMC Plant Biol 14:351–364PubMedPubMedCentralCrossRefGoogle Scholar
  130. Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158PubMedCrossRefPubMedCentralGoogle Scholar
  131. Mahesh U, Mamidala P, Rapolu S, Aragao FJL, Souza MT, Rao PJM, Kirti PB, Nanna RS (2013) Constitutive overexpression of small HSP24.4 gene in transgenic tomato conferring tolerance to high-temperature stress. Mol Breed 32:687–697CrossRefGoogle Scholar
  132. Maligeppagol M, Chandra GS, Prakash M, Navale PM, Deepa H, Rajeev PR, Asokan R, Babu KP, Babu CCB, Rao VK, Kumar KNK (2013) Anthocyanin enrichment of tomato (Solanum lycopersicum L.) fruit by metabolic engineering. Curr Sci 1:72–80Google Scholar
  133. Marco F, Bitrián M, Carrasco P, Rajam MV, Alcázar R, Tiburcio AF (2015) In: Bahadur B et al. (eds) Plant biology and biotechnology: Volume II: Plant genomics and biotechnology, Springer India, New Delhi, pp 579–609CrossRefGoogle Scholar
  134. Martin G, Brommonschenkel S, Chunwongse J, Frary A, Ganal M, Spivey R, Wu T, Earle E, Tanksley S (1993) Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262 (5138):1432–1436PubMedCrossRefPubMedCentralGoogle Scholar
  135. Meli VS, Ghosh S, Prabha TN, Chakraborty N, Chakraborty S, Datta A (2010) Enhancement of fruit shelf life by suppressing N-glycan processing enzymes. PNAS 107:2413–2418PubMedCrossRefPubMedCentralGoogle Scholar
  136. Meng X, Wang JR, Wang GD, Liang XQ, Li XD, Meng QW (2015) An R2R3-MYB gene, LeAN2, positively regulated the thermotolerance in transgenic tomato. J Plant Physiol 175:1–8CrossRefPubMedGoogle Scholar
  137. Mes PJ, Boches P, Myers JR, Durst R (2008) Characterization of tomatoes expressing anthocyanin in the fruit. J Amer Soc Hort Sci 133:262–269Google Scholar
  138. Milligan SB, Bodeau J, Yaghoobi J et al (1998) The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell 10(8):1307–1319PubMedPubMedCentralCrossRefGoogle Scholar
  139. Mintz-Oron S, Mandel T, Rogachev I, Feldberg L, Lotan O, Yativ M, Wang Z, Jetter R, Venger I, Adato A, Aharoni A (2008) Gene expression and metabolism in tomato fruit surface tissues. Plant Physiol 147:823–851PubMedPubMedCentralCrossRefGoogle Scholar
  140. Mishra SK, Tripp J, Winkelhaus S, Tschiersch B, Theres K, Nover L, Scharf KD (2002) In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato. Genes Dev 16:1555–1567PubMedPubMedCentralCrossRefGoogle Scholar
  141. Moens M, Perry RN, Starr JL (2009) Meloidogyne spp.-a diverse group of novel and important plant parasite. In: Perry RN, Moens M, Starr JL (eds) Root-knot nematodes. CAB International, Wallingford, Oxfordshire, pp 1–17Google Scholar
  142. Moghaieb REA, Tanaka N, Saneoka H, Hussein HA, Yousef SS, Ewada MAF, Aly MAM, Fujita K (2000) Expression of betaine aldehyde dehydrogenase gene in transgenic tomato hairy roots leads to the accumulation of glycine betaine and contributes to the maintenance of the osmotic potencial under salt stress. Soil Sci Plant Nutr 46:873–883CrossRefGoogle Scholar
  143. Morgan MJ, Osorio S, Gehl B, Baxter CJ, Kruger NJ, Ratcliffe RG, Fernie AR, Sweetlove LJ (2013) Metabolic engineering of tomato fruit organic acid content guided by biochemical analysis of an introgression line. Plant Physiol (1):397–407PubMedPubMedCentralCrossRefGoogle Scholar
  144. Muir SR, Collins GJ, Robinson S, Hughes SG, Bovy AG, de Vos CH, van Tunen AJ, Verhoyen ME (2001) Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols. Nat Biotechnol (5):470–474PubMedCrossRefPubMedCentralGoogle Scholar
  145. Murray AJ, Hobson GE, Schuch W, Bird CR (1993) Reduced ethylene synthesis in EFE antisense tomatoes has differential effects on fruit ripening processes. Post harvest Biol Technol 2:301–313CrossRefGoogle Scholar
  146. Mustafiz A, Sahoo KK, Singla-Pareek SL, Sopory SK (2010) Metabolic engineering of glyoxalase pathway for enhancing stress tolerance in plants. In: Ramanjulu S (ed) Plant stress tolerance, volume 639 of the series methods mol biol, pp 95–118Google Scholar
  147. Nascimento FX, Rossi MJ, Soares CRFS, McConkey BJ, Glick BR (2014) New Insights into 1-aminocyclopropane-1-carboxylate (ACC) deaminase phylogeny, evolution and ecological significance. PLoS One 9:e99168PubMedPubMedCentralCrossRefGoogle Scholar
  148. Nautiyal PC, Shono M, Egawa Y (2005) Enhanced thermotolerance of the vegetative part of MT-sHSP transgenic tomato line. Sci Hortic 105:393–409CrossRefGoogle Scholar
  149. Neily MH, Matsukura C, Maucourt M, Bernillon S, Deborde C, Moing A, Yin YG, Saito T, Mori K, Asamizua E, Rolin D, Moriguchi T, Ezura H (2011) Enhanced polyamine accumulation alters carotenoid metabolism at the transcriptional level in tomato fruit over-expressing spermidine synthase. J Plant Physiol 168:242–252PubMedCrossRefPubMedCentralGoogle Scholar
  150. Nelson RS, McCormick SM, Delannay X, Dubé P, Layton J, Anderson EJ, Kaniewska M, Proksch RK, Horsch RB, Rogers SG, Fraley RT, Beachy RN (1988) Virus tolerance, plant performance of transgenic tomato plants expressing coat protein from tobacco mosaic virus. Nat Biotechnol 6:403–409CrossRefGoogle Scholar
  151. Nowicki M, Kozik EU, Foolad MR (2013) Late blight of tomato. In: Varshney RK, Tuberosa R (eds) Translational genomics for crop breeding. John Wiley & Sons Ltd., USA, pp 241–265CrossRefGoogle Scholar
  152. Orellana S, Yanez M, Espinoza A, Verdugo I, Gonzales E, Ruiz-Lara S, Cacaretto JA (2010) The transcription factor SlAREB1 confers drought, salt stress tolerance and regulates biotic and abiotic stress-related genes in tomato. Plant Cell Environ 33:2191–2208PubMedCrossRefPubMedCentralGoogle Scholar
  153. Orzaez D, Medina A, Torre S, Fernandez-Moreno JP, Rambla JL, Fernandez-del-Carmen A, Butelli E, Martin C, Granell A (2009) A visual reporter system for virus-induced gene silencing in tomato fruit based on anthocyanin accumulation. Plant Physiol (3):1122–1134PubMedPubMedCentralCrossRefGoogle Scholar
  154. Ouyang B, Chen YH, Li HX et al (2005) Transformation of tomatoes with osmotin and chitinase genes and their resistance to Fusarium wilt. J Hortic Sci Biotech 80(5):517–522CrossRefGoogle Scholar
  155. Panthee DR, Chen F (2010) Genomics of fungal disease resistance in tomato. Curr Genomics 11(1):30–39PubMedPubMedCentralCrossRefGoogle Scholar
  156. Patade VY, Khatri D, Kumari M, Grover A, Gupta SM, Ahmed Z (2013) Cold tolerance in osmotin transgenic tomato (Solanum lycopersicum L.) is associated with modulation in transcript abundance of stress responsive genes. SpringerPlus 2:117PubMedPubMedCentralCrossRefGoogle Scholar
  157. Patel TK, Krasnyanski SF, Allen GC et al (2015) Progeny of selfed plants from tomato breeding line ‘NC1 grape’ overexpressing mannitol dehydrogenase (MTD) have increased resistance to the early blight fungus, Alternaria solani. Plant Health Progress. https://doi.org/10.1094/PHP-RS-15-0022
  158. Peñarrubia L, Aguilar M, Margossian L, Fischer RL (1992a) An antisense gene stimulates ethylene hormone production during tomato fruit ripening. Plant Cell 4:681–687PubMedPubMedCentralCrossRefGoogle Scholar
  159. Peñarrubia L, Kim R, Giovannoni J, Kim SH Fischer RL (1992b) Production of the sweet protein monellin in transgenic plants. Nat Biotechnol 10:561–564CrossRefGoogle Scholar
  160. Peng J-C, Chen T-C, Raja JAJ et al. (2014) Broad-spectrum transgenic resistance against distinct tospovirus species at the genus level. PLoS One 9(5):e96073PubMedPubMedCentralCrossRefGoogle Scholar
  161. Phan TD, Bo W, West G, Lycett GW, Tucker GA (2007) Silencing of the major salt-dependent isoform of pectinesterase in tomato alters fruit softening. Plant Physiol 144:1960–1967PubMedPubMedCentralCrossRefGoogle Scholar
  162. Picton S, Barton SL, Bouzayen M, Hamilton AJ, Grierson D (1993) Altered fruit ripening and leaf senescence in tomatoes expressing an antisense ethylene-forming enzyme transgene. Plant J 3:469–481CrossRefGoogle Scholar
  163. Pineda B (2005) Ana´lisis functional de diversos genes relacionados con la tolerancia a la salinidad y el estre´s hı´drico en plantas transge´nicas de tomate (Lycopersicon esculentum Mill). PhD thesis, Universidad Polite´cnica de ValenciaGoogle Scholar
  164. Pineda B, Garcia-Abellan JO, Perez F, Moyano E, Garcia Sogo B, Campos JF, Angosto T, Morales B, Capel J, Moreno V, Lozano R, Bolarin MC, Atares A (2012) Tomato: genomic approaches for salt and drought stress tolerance. In: Tuteja N, Gill SS, Tiburcio A, Tuteja R (eds) Improving crop resistance to abiotic stress, Vol 1 & Vol 2. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, GermanyCrossRefGoogle Scholar
  165. Powell ALT, Kalamaki MS, Kurien PA, Gurrieri S, Bennett AB (2003) Simultaneous transgenic suppression of LePG and LeExp1influences fruit texture and juice viscosity in a fresh market tomato variety. J Agric Food Chem 51:7450–7455PubMedCrossRefPubMedCentralGoogle Scholar
  166. Poysa V, Tu JC (1993) Response of cultivars and breeding lines of Lycopersicon spp. to Septoria lycopersici. Canadian Plant Dis Survey 73:9–13Google Scholar
  167. Prins M, de Haan P, Luyten R et al (1995) Broad resistance to tospoviruses in transgenic tobacco plants expressing three tospoviral nucleoprotein gene sequences. Mol Plant Microbe Interact 8:85–91PubMedCrossRefPubMedCentralGoogle Scholar
  168. Radhajeyalakshmi R, Velazhahan R, Balasubramanian P et al. (2005) Overexpression of thaumatin-like protein in transgenic tomato plants confers enhanced resistance to Alternaria solani. Arch Phytopathol Plant Protect 38(4):257–265CrossRefGoogle Scholar
  169. Reddy CS, Vjayalakshmi M, Kaul T, Islam T, Reddy MK (2015) Improving flavour and quality of tomatoes by expression of synthetic gene encoding sweet protein monellin. Mol Biotechnol 57:448–453PubMedCrossRefPubMedCentralGoogle Scholar
  170. Reyes MI, Nash TE, Dallas MM et al (2013) Peptide aptamers that bind to geminivirus replication proteins confer a resistance phenotype to tomato yellow leaf curl virus and tomato mottle virus infection in tomato. J Virol 87(17):9691–9706PubMedPubMedCentralCrossRefGoogle Scholar
  171. Ribeiro SG, Lohuis H, Goldbach R et al (2007) Tomato chlorotic mottle virus is a target of RNA silencing but the presence of specific short interfering RNAs does not guarantee resistance in transgenic plants. J Virol 81(4):1563–1573PubMedCrossRefPubMedCentralGoogle Scholar
  172. Robison MM, Shah S, Tamot B et al (2001) Reduced symptoms of Verticillium wilt in transgenic tomato expressing a bacterial ACC deaminase. Mol Plant Pathol 2(3):135–145PubMedCrossRefPubMedCentralGoogle Scholar
  173. Rotino G, Acciarri N, Sabatini E, Mennella G, Scalzo RL, Maestrelli A, Molesini B, Pandolfini T, Scalzo J, Mezzetti B, Spena A (2005) Open field trial of genetically modified parthenocarpic tomato: seedlessness and fruit quality. BMC Biotechnol 5(1):32Google Scholar
  174. Roy-Barman S, Sautter C, Chattoo BB (2006) Expression of the lipid transfer protein Ace-AMP1 in transgenic wheat enhances antifungal activity and defense responses. Transgenic Res 15(4):435–446PubMedCrossRefPubMedCentralGoogle Scholar
  175. Rus AM, Estan˜ MT, Gisbert C, Garcia-Sogo B, Serrano R, Caro M, Moreno V, MC B´n (2001) Expressing the yeast HAL1 gene in tomato increases fruit yield and enhances K+/Na+ selectivity under salt stress. Plant Cell Environ 24:875–880CrossRefGoogle Scholar
  176. Sabehat A, Weiss D, Lurie S (1996) The correlation between heat shock protein accumulation and persistence and chilling in tomato fruit. Plant Physiol 110:531–537PubMedPubMedCentralCrossRefGoogle Scholar
  177. Sade N, Gebretsadik M, Seligmann R, Schwartz A, Wallach R, Moshelion M (2010) The role of tobacco aquaporin1 in improving water use efficiency, hydraulic conductivity, and yield production under salt stress. Plant Physiol 152:245–254PubMedPubMedCentralCrossRefGoogle Scholar
  178. Sarrion-Perdigones A, Falconi EE, Zandalinas SI, Juárez P, Fernández-del-Carmen A, Granell A, Orzaez D (2011) GoldenBraid: an iterative cloning system for standardized assembly of reusable genetic modules. PLoS One 6:e21622PubMedPubMedCentralCrossRefGoogle Scholar
  179. Schaefer SC, Gasic K, Cammue B (2005) Enhanced resistance to early blight in transgenic tomato lines expressing heterologous plant defense genes. Planta 222:858–866PubMedCrossRefPubMedCentralGoogle Scholar
  180. Schijlen E, de Vos CHR, Jonker H, van den Broeck H, Molthoff J, van Tunen A, Martens S, Bovy A (2006) Pathway engineering for healthy phytochemicals leading to the production of novel flavonoids in tomato fruit. Plant Biotechnol J 4:433–444PubMedCrossRefPubMedCentralGoogle Scholar
  181. Schijlen EGWM, de Vos CHR, Martens S, Jonker HH, Rosin FM, Molthoff JF, Tikunov YM, Angenent GC, van Tunen AJ, Bovy AG (2007) RNA interference silencing of chalcone synthase, the first step in the flavonoid biosynthesis pathway, leads to parthenocarpic tomato fruits. Plant Physiol 144:1520–1530PubMedPubMedCentralCrossRefGoogle Scholar
  182. Schreiber G, Reuveni M, Evenor D, Oren-Shamir M, Ovadia R, Sapir-Mir M, Bootbool-Man A, Nahon S, Shlomo H, Chen L, Levin I (2012) ANTHOCYANIN1 from Solanum chilense is more efficient in accumulating anthocyanin metabolites than its Solanum lycopersicum counterpart in association with the ANTHOCYANIN FRUIT phenotype of tomato. Theor Appl Genet 124:295–307PubMedCrossRefPubMedCentralGoogle Scholar
  183. Schuch W, Kanczler J, Robertson D, Hobson G, Tucker G, Grierson D, Bright S, Bird C (1991) Fruit quality characteristics of transgenic tomato fruit with altered polygalacturonase activity. Hort Sci 26:1517–1520Google Scholar
  184. Schumann GL, D’Arcy CJ (2000) Late blight of potato and tomato. The Plant Health Instructor. https://doi.org/10.1094/PHI-I-2000-0724-01
  185. Seebold K (2008) Bacterial canker of tomato. Plant pathology fact sheet. Cooperative Extension Service. University of Kentucky, Agricultural and Natural ResourcesGoogle Scholar
  186. Sen Y, van der Wolf J, Visser RG et al (2015) Bacterial canker of tomato: current knowledge of detection, management, resistance, and interactions. Plant Dis 99:4–13CrossRefGoogle Scholar
  187. Seong ES, Cho HS, Choi D, Joung YH, Lim CK, Hur JH, Wang MH (2007) Tomato plants overexpressing CaKR1 enhanced tolerance to salt and oxidative stress. Biochem Biophys Res Commun 363:983–988PubMedCrossRefPubMedCentralGoogle Scholar
  188. Sheehy RE, Kramer M, Hiatt WR (1988) Reduction of polygalacturonase activity in tomato fruit by antisense RNA. PNAS 85:8805–8809PubMedCrossRefPubMedCentralGoogle Scholar
  189. Shin S, Mackintosh CA, Lewis J et al (2008) Transgenic wheat expressing a barley class II chitinase gene has enhanced resistance against Fusarium graminearum. J Exp Bot 59(9):2371–2378PubMedPubMedCentralCrossRefGoogle Scholar
  190. Sieso V, Nicolas M, Seck S, Crouzet J (1976) Constituants volatils de la tomate: mise en evidence et formation par voie enzymatique du trans-hexene-2-ol. Agric Biol Chem 40:2349–2353CrossRefGoogle Scholar
  191. Simkin AJ, Schwartz SH, Auldridge M, Taylor MG, Klee HJ (2004) The tomato carotenoid cleavage dioxygenase 1 genes contribute to the formation of the flavor volatiles b-ionone, pseudoionone, and geranylacetone. Plant J 40:882–892PubMedCrossRefPubMedCentralGoogle Scholar
  192. Small DM, Voss J, Mak YE, Simmons KB, Parrish T, Gitelman D (2004) Experience-dependent neural integration of taste and smell in the human brain. J Neurophysiol 92:1892–1903PubMedCrossRefPubMedCentralGoogle Scholar
  193. Smart R, Blum M, Wesseler J (2016) Trends in approval times for genetically engineered crops in the United States and the European Union. J Agric Econ. https://doi.org/10.1111/1477-9552.12171
  194. Smith CJ, Watson CF, Morris PC, Bird CR, Seymour GB, Gray JE, Arnold C, Tucker GA, Schuch W, Harding S, Griersonr D (1990) Inheritance and effect on ripening of antisense polygalacturonase genes in transgenic tomatoes. Plant Mol Biol 14:369–379PubMedCrossRefPubMedCentralGoogle Scholar
  195. Smith DL, Abbott JA, Gross KC (2002) Down-regulation of tomato β-galactosidase 4 results in decreased fruit softening. Plant Physiol 129:1755–1762PubMedPubMedCentralCrossRefGoogle Scholar
  196. Speirs J, Lee E, Holt K, Yong-Duk K, Scott NS, Loveys B, Schuch W (1998) Genetic manipulation of alcohol dehydrogenase levels in ripening tomato fruit affects the balance of some flavor aldehydes and alcohols. Plant Physiol 117:1047–1058PubMedPubMedCentralCrossRefGoogle Scholar
  197. Sun HJ, Kataoka H, Yano M, Ezura H (2007) Genetically stable expression of functional miraculin, a new type of alternative sweetener, in transgenic tomato plants. Plant Biotechnol J 5:768–777PubMedCrossRefPubMedCentralGoogle Scholar
  198. Sun L, Yuan B, Zhang M, Wang L, Cui M, Wang Q, Leng P (2012a) Fruit-specific RNAi-mediated suppression of SlNCED1 increases both lycopene and β-carotene contents in tomato fruit. J Exp Bot 63:3097–3108PubMedPubMedCentralCrossRefGoogle Scholar
  199. Sun L, Sun Y, Zhang M, Wang L, Ren J, Cui M, Wang Y, Ji K, Li P, Li Q, Chen P, Dai S, Duan C, Wu Y, Ping Leng P (2012b) Suppression of 9-cis-epoxycarotenoid dioxygenase, which encodes a key enzyme in abscisic acid biosynthesis, alters fruit texture in transgenic tomato. Plant Physiol 158:283–298PubMedPubMedCentralCrossRefGoogle Scholar
  200. Sun K, Wolters AM, Loonen AE et al (2016) Down-regulation of Arabidopsis DND1 orthologs in potato and tomato leads to broad-spectrum resistance to late blight and powdery mildew. Transgenic Res 25:123–138PubMedCrossRefPubMedCentralGoogle Scholar
  201. Swarup V (2012) Vegetable Science and Technology. Kalyani Publishers, B/I/1292, Rajendra Nagar, Ludhiana-141008, IndiaGoogle Scholar
  202. Tabaeizadeh Z, Agharbaoui Z, Harrak H et al (1999) Transgenic tomato plants expressing a Lycopersicon chilense chitinase gene demonstrate improved resistance to Verticillium dahliae race 2. Plant Cell Rep 19(2):197–202CrossRefGoogle Scholar
  203. Tai TH, Dahlbeck D, Clark ET et al (1999) Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato. Proc Natl Acad Sci U S A 96(24):14153–14158PubMedPubMedCentralCrossRefGoogle Scholar
  204. Tang X, Xie M, Kim YJ et al (1999) Overexpression of Pto activates defense responses and confers broad resistance. Plant Cell 11(1):15–29PubMedPubMedCentralGoogle Scholar
  205. The Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641CrossRefGoogle Scholar
  206. Theocharis A, Clément C, Barka E (2012) Physiological and molecular changes in plants grown at low temperatures. Planta 235:1091–1105PubMedCrossRefGoogle Scholar
  207. Thomzik JE, Stenzel K, Stöcker R, Schreier PH, Hain R, Stahl DJ (1997) Synthesis of a grapevine phytoalexin in transgenic tomatoes (Lycopersicon esculentum Mill.) conditions resistance against Phytophthora infestans. Physiol Mol Plant Pathol 51(4):265–278CrossRefGoogle Scholar
  208. Tieman D, Bliss P, McIntyre LM, Blandon-Ubeda A, Bies D, Odabasi AZ, GR R´g, van der Knaap E, Taylor MG, Goulet C, Mageroy MH, Snyder DJ, Colquhoun T, Moskowitz H, Clark DG, Sims C, Bartoshuk L, Klee HJ (2012) The chemical interactions underlying tomato flavor preferences. Curr Biol 22:1035–1039PubMedCrossRefGoogle Scholar
  209. Tiwari M, Sharma D, Trivedi PK (2014) Artificial microRNA mediated gene silencing in plants: progress and perspectives. Plant Mol Biol 86(1-2):1–18PubMedCrossRefGoogle Scholar
  210. Tsuda T, Horio F, Uchida K, Aoki H, Osawa T (2003) Dietary cyanidin 3-O-β-D-glucoside-rich purple corn color prevents obesity and ameliorates hyperglycemia in mice. J Nutr 133:2125–2130PubMedCrossRefGoogle Scholar
  211. Tyler BM et al (2006) Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science 313:1261–1266PubMedCrossRefGoogle Scholar
  212. Ultzen T, Gielen J, Venema F, Westerbroek A, de Haan P, Tan M-L, Schram A, van Grinsven M, Goldbach R (1995) Resistance to tomato spotted wilt virus in transgenic tomato hybrids. Euphytica 85 (1-3):159–168CrossRefGoogle Scholar
  213. van der Vossen E, Sikkema A, Bt H et al (2003) An ancient R gene from the wild potato species Solanum bulbocastanum confers broad-spectrum resistance to Phytophthora infestans in cultivated potato and tomato. Plant J 36:867–882PubMedCrossRefGoogle Scholar
  214. Verhoeyen ME, Bovy A, Collins G, Muir S, Robinson S, de Vos CHR, Colliver S (2002) Increasing antioxidant levels in tomatoes through modification of the flavonoid biosynthetic pathway. J Exp Bot 53:2099–2106PubMedCrossRefGoogle Scholar
  215. Waller JC, Akhtar TA, Lara-Nunez A, Gregory JF, McQuinn RP, Giovannoni JJ, Hanson AD (2010) Developmental and feedforward control of the expression of folate biosynthesis genes in tomato fruit. Mol Plant (1):66–77PubMedCrossRefGoogle Scholar
  216. Wang LS, Stoner GD (2008) Anthocyanins and their role in cancer prevention. Cancer Lett 269:281–290PubMedPubMedCentralCrossRefGoogle Scholar
  217. Wang C, Chin CK, Gianfagna T (2000) Relationship between cutin monomers and tomato resistance to powdery mildew infection. Physiol Mol Plant Pathol 57(2):55–61CrossRefGoogle Scholar
  218. Wang H, Jones B, Li Z, Frasse P, Delalande C, Regad F, Chaabouni S, Latche A, Pech JC, Bouzayen M (2005) The tomato Aux/IAA transcription factor IAA9 is involved in fruit development and leaf morphogenesis. Plant Cell (10):2676–2692CrossRefGoogle Scholar
  219. Wang Y, Wisniewski M, Meilan R, Cui M, Fuchigami L (2006) Transgenic tomato (Lycopersicon esculentum) overexpressing cAPX exhibits enhanced tolerance to UV-B and heat stress. J App Hort 8:87–90Google Scholar
  220. Wang Y, Wisniewski M, Meilan R, Uratsu SL, Cui M, Dandekar A, Fuchigami L (2007) Ectopic expression of Mn-SOD in Lycopersicon esculentum leads to enhanced tolerance to salt and oxidative tress. J App Hort 9:3–8Google Scholar
  221. Wang BQ, Zhang QF, Liu JH, Li GH (2011) Overexpression of PtADC confers enhanced dehydratation and drought tolerance in transgenic tobacco and tomato: effect on ROS elimination. Biochem Biophys Res Commn 413:10–16CrossRefGoogle Scholar
  222. Wang HS, Yu C, Tang XF, Zhu ZJ, Ma NN, Meng QW (2014) A tomato endoplasmic reticulum (ER)-type omega-3 fatty acid desaturase (LeFAD3) functions in early seedling tolerance to salinity stress. Plant Cell Rep 33:131–142PubMedCrossRefPubMedCentralGoogle Scholar
  223. Wang D, Seymour GB, Fray R, Foster T (Unpublished) Modulation of Tomato Fruit Texture by Silencing Cell Wall Structure-Related Genes Divisions of Plant and Crop and Food Science, University of Nottingham, Loughborough LE12 5RDGoogle Scholar
  224. Whitham S, Mccormick S, Baker B (1996) The N gene of tobacco confers resistance to tobacco mosaic virus in transgenic tomato. Proc Natl Acad Sci U S A 93:8776–8781PubMedPubMedCentralCrossRefGoogle Scholar
  225. Wittmann J, Brancato C, Berendzen KW et al (2016) Development of a tomato plant resistant to Clavibacter michiganensis using the endolysin gene of bacteriophage CMP1 as a transgene. Plant Pathol 65:496–502CrossRefGoogle Scholar
  226. Xu Q, Xu X, Shi Y, Xu J, Huang B (2014) Transgenic tobacco plants overexpressing a grass PpEXP1 gene exhibit enhanced tolerance to heat stress. PLoS One. https://doi.org/10.1371/journal.pone.0100792
  227. Yanez M, Caseres S, Orellana S, Bastias A, Verdugo I, Luiz-Lara S, Casaretto JA (2009) An abiotic stress-responsive bZIP transcription factor from wild and cultivated tomatoes regulates stress-related genes. Plant Cell Rep (10):1497–1507PubMedCrossRefPubMedCentralGoogle Scholar
  228. Yang Y, Sherwood TA, Patte CP, Hiebert E, Polston JE (2004) Use of tomato yellow leaf curl virus Rep gene sequences to engineer TYLCV resistance in tomato. Phytopathol 94:490–496Google Scholar
  229. Yang L, Shen H, Pan A, Chen J, Huang C, Zhang D (2005) Screening and construct-specific detection methods of transgenic Huafan No 1 tomato by conventional and real-time PCR. J Sci Food Agric 85:2159–2166CrossRefGoogle Scholar
  230. Yang MQ, Taylor J, Elnitski L (2008) Comparative analyses of bidirectional promoters in vertebrates. BMC Bioinformatics 28:1471–2105Google Scholar
  231. Yu C, Wang H-S, Yang S, Tang X-F, Duan M, Meng Q-W (2009) Overexpression of endoplasmic reticulum omega-3 fatty acid desaturase gene improves chilling tolerance in tomato. Plant Physiol Biochem 47(11-12):1102–1112PubMedCrossRefPubMedCentralGoogle Scholar
  232. Zanor MI, Osorio S, Nunes-Nesi A, Carrari F, Lohse M, Usadel B, Kuhn C, Bleiss W, Giavalisco P, Willmitzer L, Sulpice R, Zhou YH, Fernie AR (2009) RNA interference of LIN5 in tomato confirms its role in controlling Brix content, uncovers the influence of sugars on the levels of fruit hormones, and demonstrates the importance of sucrose cleavage for normal fruit development and fertility. Plant Physiol (3):1204–1218PubMedPubMedCentralCrossRefGoogle Scholar
  233. Zhang HX, Blumwald E (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol 19:765–768PubMedCrossRefPubMedCentralGoogle Scholar
  234. Zhang T, Shi J, Wang Y, Xue SJ (2008) Cultivar and agricultural management on lycopene and vitamin C contents in tomato fruits. In: Preedy VR, Watson RR (eds) Tomatoes and tomato products. Science Publishers, Enfield, pp 27–45CrossRefGoogle Scholar
  235. Zhang C, Liu J, Zhang Y, Cai X, Gong P, Zhang J, Wang T, Li H, Ye Z (2011) Overexpression of SlGMEs leads to ascorbate accumulation with enhanced oxidative stress, cold, and salt tolerance in tomato. Plant Cell Rep 30:389–398PubMedCrossRefPubMedCentralGoogle Scholar
  236. Zhang Y, Butelli E, Stefano RD, Schoonbeek H, Magusin A, Pagliarani C, Wellner N, Hill L, Orzaez D, Granell A, Jones JDG, Martin C (2013) Anthocyanins double the shelf life of tomatoes by delaying overripening and reducing susceptibility to gray mold. Curr Biol 23:1094–1100PubMedPubMedCentralCrossRefGoogle Scholar
  237. Zheng Z, Nonomura T, Appiano M et al. (2013) Loss of function in Mlo orthologs reduces susceptibility of pepper and tomato to powdery mildew disease caused by Leveillula taurica. PLoS One 8(7):e70723PubMedPubMedCentralCrossRefGoogle Scholar
  238. Zheng Z, Appiano M, Pavan S et al. (2016) Genome-wide study of the tomato SlMLO gene family and its functional characterization in response to the powdery mildew fungus Oidium neolycopersici. Front Plant Sci 7:380Google Scholar
  239. Zhu M, Chen G, Zhou S, Tu Y, Wang Y, Dong T, Hu Z (2014) A new tomato NAC (NAM/ATAF1/2/CUC2) transcription factor, SlNAC4, functions as a positive regulator of fruit ripening and carotenoid accumulation. Plant Cell Physiol 55:119–135PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Joydeep Banerjee
    • 1
  • Saikat Gantait
    • 1
  • Sutanu Sarkar
    • 1
  • Prabir Kumar Bhattacharyya
    • 1
  1. 1.Department of Genetics and Plant Breeding, Faculty of AgricultureBidhan Chandra Krishi Viswavidyalaya, MohanpurNadiaIndia

Personalised recommendations