Advertisement

Plant Genetic Transformation and Transgenic Crops: Methods and Applications

  • Satbir Singh Gosal
  • Shabir Hussain Wani
Chapter

Abstract

The combined use of recombinant DNA technology, gene transfer methods, and tissue culture techniques has led to the efficient transformation and production of transgenics in a wide variety of crop plants. In fact, transgenesis has emerged as an additional tool to carry out single-gene breeding or transgenic breeding of crops. Unlike conventional breeding, only the cloned gene(s) of agronomic importance is/are being introduced without cotransfer of undesirable genes from the donor. The recipient genotype is least disturbed, which eliminates the need for repeated backcrosses. Above all, the transformation methods provide access to a large gene pool, as the gene(s) may come from viruses, bacteria, fungi, insects, animals, human beings, unrelated plants, and even from chemical synthesis in the laboratory. Various gene transfer methods such as Agrobacterium, physicochemical uptake of DNA, liposome encapsulation, electroporation of protoplasts, microinjection, DNA injection into intact plants, incubation of seeds with DNA, pollen tube pathway, use of laser microbeam, electroporation into tissues/embryos, silicon carbide fiber method, particle bombardment, and “in planta” transformation have been developed. Among these, Agrobacterium and “particle gun” methods are being widely used. Recently RNAi and CRISPR/Cas9 systems have further expanded the scope for genome engineering. Using different gene transfer methods and strategies, transgenics carrying useful agronomic traits have been developed and released. Attempts are being made to develop transgenic varieties resistant to abiotic stresses, such as drought, low and high temperature, salts, and heavy metals, and also to develop transgenic varieties possessing better nutrient-use efficiency and better keeping and nutritional and processing qualities. Genetically modified foods, such as tomato containing high lycopene, tomato with high flavonols as antioxidants, edible vaccines, are leading examples of genetically engineered crops. Several genes of agronomic importance have been isolated from various organisms; cloned and suitable constructs have been developed for plant transformation. Agrobacterium and “particle gun” methods have been refined and now being used for genetic transformation of a wide variety of field, fruit, vegetable, forest crops, and ornamental plant species. Transgenic crops such as cotton, maize, papaya, potato, rice, soybean, and tomato, carrying mainly insect resistance, herbicide resistance, or both, are now being grown over an area of 185 million hectares spread over 28 countries of the world.

Keywords

Genetic transformation GM crops GMOs Recombinant DNA technology Transgenesis Transgenic breeding Transgenic crops 

References

  1. Abbas Z, Zafar Y, Khan SA, Mukhtar Z (2016) Transgenic expression of translational fusion of synthetic Cry1Ac and Hvt genes in tobacco confers resistance to Helicoverpa armigera and Spodoptera littoralis larvae. Pak J Agric Sci 53(4):809–816Google Scholar
  2. Ahmad A, Maqbool SB, Riazudin S, Sticklen B (2002) Expression of synthetic Cry1AB and Cry1AC genes in basmati rice (Oryza sativa L.) variety 370 via Agrobacterium mediated transformation for the control of the European corn borer (Ostrinia nubilalis). In Vitro Cell Dev Biol Plant 38:213–220CrossRefGoogle Scholar
  3. Altman A (2003) From plant tissue culture to biotechnology: scientific revolutions, abiotic stress tolerance and forestry. In Vitro Cell Dev Biol Plant 39:75–84CrossRefGoogle Scholar
  4. Amian AA, Papenbrock J, Jacobsen HJ, Hassan F (2011) Enhancing transgenic pea (Pisum sativum L.) resistance against fungal diseases through stacking of two antifungal genes (Chitinase and Glucanase). GM Crops 2(2):104–109PubMedCrossRefPubMedCentralGoogle Scholar
  5. Araújo WL, Nunes Nesi A, Sonia Osorio BU, Fuentes D, Nagy R, Balbo I, Lehmann M, Studart Witkowski C, Tohge T, Martinoia E, Jordana X, DaMatta FM, Fernie AR (2011) Antisense inhibition of the ironsulphur subunit of succinate dehydrogenase enhances photosynthesis and growth in tomato via an organic acid-mediated effect on stomatal aperture. Plant Cell 23(2):600–627PubMedPubMedCentralCrossRefGoogle Scholar
  6. Arora L, Narula A (2017) Gene editing and crop improvement using CRISPR-Cas9 system. Front Plant Sci 2017(8). https://doi.org/10.3389/fpls.2017.01932
  7. Assem SK, Hussein EHA, Hussein HA, Awaly SB (2010) Transformation of the salt tolerance gene BIGST into Egyptian maize inbred lines. Arab J Biotechnol 13(1):99–114Google Scholar
  8. Bakhsh A, Khabbaz SD, Baloch FS, Demirel U, Caliskan ME, Hatipoglu R, Özcan S, Özkan H, Kandemir N (2015) Insect resistant transgenic crops: retrospect and challenges. Turk J Agric For 39(4):531–548CrossRefGoogle Scholar
  9. Bakshi S, Dewan D (2013) Status of transgenic cereal crops: a review. Clon Transgen 3:119. https://doi.org/10.4172/2168-9849.1000119 CrossRefGoogle Scholar
  10. Bashir A, Khan A, Ali H, Khan I (2015) Agrobacterium mediated transformation of Brassica juncea (L.) Czern. with chitinase gene conferring resistance against fungal infections. Pak J Bot 47(1):211–216Google Scholar
  11. BCIL-DBT (2004) National consultation on biosafety aspects related to genetically modified organisms. Biotech Consortium India Limited, New DelhiGoogle Scholar
  12. Bechtold N, Ellis J, Pelletier G (1993) In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C R Acad Sci Paris Life Sciences 316:1194–1199.Google Scholar
  13. Burnette WN (1981) “Western blotting”: electrophoretic transfer of proteins from sodium dodecyl sulfate polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein. Anal Biochem 112:195–203PubMedCrossRefPubMedCentralGoogle Scholar
  14. Cao G, Liu Y, Zhang S, Yang X, Chen R, Zhang Y et al (2012) A novel 5-enolpyruvylshikimate-3-phosphate synthase shows high glyphosate tolerance in Escherichia coli and tobacco plants. PLoS One 7(6):e38718. doi.org/10.1371/journal.pone.0038718PubMedPubMedCentralCrossRefGoogle Scholar
  15. Cardi T, D’Agostino N, Tripodi P (2017) Genetic transformation and genomic resources for next-generation precise genome engineering in vegetable crops. Front Plant Sci 8:241PubMedPubMedCentralCrossRefGoogle Scholar
  16. Chahal GS, Gosal SS (2002) Principles and procedures of plant breeding: biotechnological and conventional approaches. Narosa, Publ.House, New DelhiGoogle Scholar
  17. Chandrasekaran J, Brumin M, Wolf D, Leibman D, Klab C, Pearlsman M, Sherman A, Arazi T, Galon A (2016) Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol Plant Pathol 17(7):1140–1153PubMedCrossRefPubMedCentralGoogle Scholar
  18. Christou P (1994) Applications to plants. In: Yang NS, Christou P (eds) Particle bombardment technology for gene transfer. Oxford Univ. Press, New York, pp 71–99Google Scholar
  19. Christou P (1996) Transformation technology. Trends Plant Sci 1:423–431CrossRefGoogle Scholar
  20. Dale P, Irwin J, Scheffler JA (1993) The experimental and commercial release of transgenic crop plants. Plant Breed 111:1–22CrossRefGoogle Scholar
  21. Daniell H, Dhingra A (2002) Multigene engineering: dawn of an exciting new era in biotechnology. Curr Opin Biotechnol 13:136–141PubMedPubMedCentralCrossRefGoogle Scholar
  22. De Block M, Herrera-Estrella L, Van Montagu M, Schell J, Zambryski P (1984) Expression of foreign genes in regenerated plants and in their progeny. EMBO J 3(8):1681–1689PubMedPubMedCentralCrossRefGoogle Scholar
  23. Deom CM, Schubert KR, Wolfs S, Holt CA, Lucas WJ, Beachy RN (1990) Molecular characterization and biological function of the movement protein of tobacco mosaic virus in transgenic plants. Proc Nation Acad Sci USA 87:3284–3288CrossRefGoogle Scholar
  24. Doshi V, Rawal H, Mukherjee S (2013) Edible vaccines from GM crops: current status and future scope. J Pharm Sci Innov 2(3):1–6CrossRefGoogle Scholar
  25. Duman JG, Wisniewski MJ, Wisniewski M, Gusta LV (2014) The use of antifreeze proteins for frost protection in sensitive crop plants. Special issue: the biology of plant cold hardiness: adaptive strategies. Environ Exp Bot 106:60–69CrossRefGoogle Scholar
  26. El-Siddig MA, El-Hussein AA, Saker MM (2011) Agrobacterium-mediated transformation of tomato plants expressing defensin gene. Int J Agric Res 6(4):323–334CrossRefGoogle Scholar
  27. Feldmann KA, Marks MD (1987) Agrobacterium mediated transformation of germinating seeds of Arabidopsis thaliana: a non-tissue culture approach. Mol Gen Genet 208:1–9CrossRefGoogle Scholar
  28. Fischer R, Emans N (2000) Molecular pharming of pharmaceutical proteins. Transgenic Res 9:279–299PubMedCrossRefPubMedCentralGoogle Scholar
  29. Fraley R, Wilschut J, Düzgüneş N, Smith C, Papahadjopoulos D (1980) Studies on the mechanism of membrane fusion: role of phosphate in promoting calcium ion induced fusion of phospholipid vesicles. Biochemistry 19(26):6021–6029PubMedCrossRefPubMedCentralGoogle Scholar
  30. Frame BR, Drayton PR, Bagnall V, Lewnau CJ, Bullock WP, Wilson HM, Dunwell JM, Thompson JA, Wang K (1994) Production of fertile transgenic maize plants by silicon carbide whisker-mediated transformation. Plant J 6(6):941–948CrossRefGoogle Scholar
  31. Fromm M, Taylor LP, Walbot V (1985) Expression of genes transferred to monocot and dicot plant cells by electroporation. Proc Natl Acad Sci U S A 82:5824–5828PubMedPubMedCentralCrossRefGoogle Scholar
  32. Fromm M, Callis J, Taylor LP, Walbot V (1987) Electroporation of DNA and RNA into plant protoplasts. Methods in Enzymology 153:351–366Google Scholar
  33. Gaj T, Gersbach CA, Barbas CF III (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405. https://doi.org/10.1016/j.tibtech.2013.04.004 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Gao ZF, Qing CX, Ping YF, Qi LR, Quan ZL, Dong ZX (2006) Expression of synthesized snowdrop lectin (gna) gene in transgenic wheat and its resistance analysis against aphid. J Agric Biotechnol 14(4):559–564Google Scholar
  35. Gao J, Wang G, Ma S, Xie X, Wu X, Zhang X et al (2015) CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum. Plant Mol Biol 87:99–110PubMedCrossRefPubMedCentralGoogle Scholar
  36. GarcíaAbellan JO, Egea I, Pineda B, SanchezBel P, Belver A, GarciaSogo B, Flores FB, Atares A, Moreno V, Bolarin MC (2014) Heterologous expression of the yeast HAL5 gene in tomato enhances salt tolerance by reducing shoot Na+ accumulation in the long term. Physiol Plant 152(4):700–713CrossRefGoogle Scholar
  37. Gargouri-Bouzid R, Jaoua L, Mansour RB, Hathat Y, Ayadi M, Ellouz R (2005) PVY resistant transgenic potato plants (cv Claustar) expressing the viral coat protein. J Plant Biotechnol 7(3):1–6Google Scholar
  38. Gasser CS, Fraley RT (1989) Genetically engineering plants for crop improvement. Science New Series 244(4910):1293–1299Google Scholar
  39. Gentile A, Deng Z, Malfa SL, Distefano G, Domina F, Vitale A, Polizzi G, Lorito M, Tribulato E (2007) Enhanced resistance to Phoma tracheiphila and Botrytis cinerea in transgenic lemon plants expressing a Trichoderma harzianum chitinase gene. Plant Breed 126(2):146–151CrossRefGoogle Scholar
  40. Gomaa AM, Raldugina GN, Burmistrova NA, Radionov NV, Kuznetso VV (2012) Response of transgenic rape plants bearing the Osmyb4gene from rice encoding a trans-factor to low above-zero temperature. Russ J Plant Physiol 59(1):105–114CrossRefGoogle Scholar
  41. Gómez I, Arenas I, Pacheco S, Bravo A, Soberón M (2010) New insights into the mode of action of Cry1Ab toxin used in transgenic insect resistant crops. Southwest Entomol 35(3):387–390CrossRefGoogle Scholar
  42. Gosal SS, Gosal SK (2000) Genetic transformation and production of transgenic plants. In: Trivedi PC (ed) Plant biotechnology–recent advances. Panima Publishers, New Delhi, pp 29–40Google Scholar
  43. Gosal SS, Gill R, Sindhu AS, Deepinder K, Navraj K, Dhaliwal HS (2001) Transgenic basmati rice carrying genes for stem borer and bacterial leaf blight resistance. In: Peng S, Hardy B (eds) Rice research for food security and poverty alleviation. IRRI, Philippines, pp 353–360Google Scholar
  44. Grewal DK, Gill R, Gosal SS (2006) Genetic engineering of Oryza sativa by particle bombardment. Biol Plant 50(2):311–314CrossRefGoogle Scholar
  45. Grimsley N, Hohn T, Daview JW, Hohn B (1987) Agrobacterium mediated delivery of infectious maize streak virus into maize plants. Nature 325:177–179CrossRefGoogle Scholar
  46. Gunther N, Spangenberg G (1990) Plant transformation by microinjection techniques. Physiol Plant 79:213–217CrossRefGoogle Scholar
  47. Gupta B, Saha J, Sengupta A, Gupta K (2013) Recent advances on virus induced gene silencing (VIGS): plant functional genomics. J Plant Biochem Physiol 1:e116. https://doi.org/10.4172/2329-9029.1000e116 CrossRefGoogle Scholar
  48. Guttikonda SK, Marri P, Mammadov J, Ye L, Soe K, Richey K et al (2016) Molecular characterization of transgenic events using next generation sequencing approach. PLoS One 11(2):e0149515PubMedPubMedCentralCrossRefGoogle Scholar
  49. Helliwell EE, Wang Q, Yang YN (2013) Transgenic rice with inducible ethylene production exhibits broad-spectrum disease resistance to the fungal pathogens Magnaporthe oryzae and Rhizoctonia solani. Plant Biotechnol J 11(1):33–42PubMedCrossRefGoogle Scholar
  50. Herbers K (2003) Vitamin production in transgenic plants. Plant Physiol 160:821–829CrossRefGoogle Scholar
  51. Hérouet C, Esdaile DJ, Mallyon BA, Debruyne E, Schulz A, Currier T, Hendrickx K, van der Klis RJ, Rouan D (2005) Safety evaluation of the phosphinothricin acetyltransferase proteins encoded by the pat and bar sequences that confer tolerance to glufosinate ammonium herbicide in transgenic plants. Regul Toxicol Pharmacol 41(2):134–149PubMedCrossRefPubMedCentralGoogle Scholar
  52. Herrera-Estrella L (1983) Transfer and expression of foreign genes in plants. PhD thesis. Laboratory of Genetics. Gent University, BelgiumGoogle Scholar
  53. Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oriza sativa) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282PubMedCrossRefPubMedCentralGoogle Scholar
  54. Hilder VA, Boulter D (1999) Genetic engineering of crop plants for insect resistance – a critical review. Crop Prot 18:177–191CrossRefGoogle Scholar
  55. Hooykaas PJJ, Schilperoort RA (1992) Agrobacterium and plant genetic engineering. Plant Mol Biol 19:1538CrossRefGoogle Scholar
  56. Horsch RB, Fraley RT, Rogers SG, Sanders PR, Lloyd A, Hoffmann N (1984) Inheritance of functional foreign genes in plants. Science 223(4635):496–498PubMedCrossRefPubMedCentralGoogle Scholar
  57. ISAAA (2016) Global status of commercialized biotech/GM crops: 2016. ISAAA Brief No. 52. ISAAA, Ithaca, NYGoogle Scholar
  58. Ismail I, Lee FS, Abdullah R, Fee CK, Zainal Z, Sidik NM, Zain CRCM (2010) Molecular and expression analysis of cowpea trypsin inhibitor (CpTI) gene in transgenic Elaeis guineensis Jacq leaves. Aust J Crop Sci 4(1):37–48Google Scholar
  59. Iwasaki M, Ito K, Kawabe K, Sugito T, Nitta T, Takigawa S, Ito K, Nakata T, Ogawa Y, Hayano Y, Fukumoto F (2005) Evaluation of agronomic traits and environmental biosafety of a transgenic tomato plant expressing satellite RNA of Cucumber Mosaic Virus. Research Bulletin of the National Agricultural Research Center for Hokkaido Region (182) Sapporo:51–63Google Scholar
  60. Jia XX, Qi EF, Ma S, Hu XY, Wang YH, Wen GH, Gong CW, Li JW (2015) Analysis of drought tolerance and herbicide resistance in transgenic potato plants overexpressing DREB1A/Bar. Acta Prataculturae Sinica 24(11):58–64Google Scholar
  61. Jing GX, Zeng FH, Li FQ, Chen YS, He YM (2009) Transformation of a trivalent antifungal recombinant into pepper (Capsicum annuum L.). Jiangsu J Agric Sci 25(1):165–168Google Scholar
  62. Junjie Z, Fan L, Hong Z, Chen L (2006) Vacuum infiltration transformation of pakchoi (B. rapa subsp. chinensis) with gene pin II and the bioassay for Plutella xylostella resistance. Acta Phytophyacica Sin 33(1):17–21Google Scholar
  63. Kaeppler HF, Gu W, Somers DA, Rines HW, Cockburn AF (1990) Silicon carbide fiber-mediated DNA delivery into plant cells. Plant Cell Rep 9(8):415–418PubMedCrossRefPubMedCentralGoogle Scholar
  64. Kamthan A, Chaudhuri A, Kamthan M, Datta A (2016) Genetically modified (GM) crops: milestones and new advances in crop improvement. Theor Appl Genet 129(9):1639–1655PubMedCrossRefPubMedCentralGoogle Scholar
  65. Kerr A (2011) GM crops – a minireview. Australas Plant Pathol 40(5):449–452CrossRefGoogle Scholar
  66. Keshamma E, Rohini S, Rao KS, Madhusudhan B, Kumar MU (2008) Tissue culture independent in planta transformation strategy: an Agrobacterium tumefaciens mediated gene transfer method to overcome recalcitrance in cotton (Gossypium hirsutum L.). J Cotton Sci 12(3):264–272Google Scholar
  67. Kim DH, Rossi JJ (2008) RNAi mechanisms and applications. Biotechniques 44:613–616PubMedPubMedCentralCrossRefGoogle Scholar
  68. Klein TM, Wolf ED, Wu R, Sanford JC (1987) High velocity microprojectiles for delivering nucleic acids into living cells. Nature 327:70–73CrossRefGoogle Scholar
  69. Kloti A, lglesias VA, Wunn J, Burkdardt PK, Datta SK, Potrykus I (1993) Gene transfer by electroporation into intact scutellum cells of wheat embryos. Plant Cell Rep 12:671–675PubMedCrossRefPubMedCentralGoogle Scholar
  70. Kumar SK, Sivanesan I, Murugesan K et al (2014) Enhancing salt tolerance in eggplant by introduction of foreign halotolerance gene, HAL1 isolated from yeast. Horticulture, Environment and Biotechnology 55:222CrossRefGoogle Scholar
  71. Nayak L, Pandey H, Ammayappan L, Ray DP (2011) Genetically modified crops – a review. Agricultural Reviews 32(2):112–119Google Scholar
  72. Ledoux L (1965) Uptake of DNA by living cells. Progr Nucl Acid Res Mol Biol 4:231–267CrossRefGoogle Scholar
  73. Leelavathi S, Sunnichan VG, Kumria R, Vijaykanth GP, Bhatnagar RK, Reddy VS (2004) A simple and rapid Agrobacterium mediated transformation protocol for cotton (Gossypium hirsutum L.): embryogenic calli as a source to generate large numbers of transgenic plants. Plant Cell Rep 22:465–470PubMedCrossRefPubMedCentralGoogle Scholar
  74. Lörz H, Baker B, Schell J (1985) Gene transfer to cereal cells mediated by protoplast transformation. Mol Gen Genet 199:178–182CrossRefGoogle Scholar
  75. Lu R, Martin-Hernandez AM, Peart JR, Malcuit I, Baulcombe DC (2003) Virus-induced gene silencing in plants. Methods 30(4):296–303PubMedCrossRefPubMedCentralGoogle Scholar
  76. Mathews H, Wagoner W, Cohen C, Kellogg J, Bestwick R (1995) Efficient genetic transformation of red raspberry Rubus idaeus L. Plant Cell Rep 14:471–476PubMedCrossRefPubMedCentralGoogle Scholar
  77. McCafferty HRK, Moore PH, Zhu YJ (2008) Papaya transformed with the Galanthus nivalis GNA gene produces a biologically active lectin with spider mite control activity. Plant Sci 175(3):385–393CrossRefGoogle Scholar
  78. Mehta R, Thankappan R, Kumar A, Yadav R, Dobaria JR, Thirumalaisamy PP, Jain RK, Chigurupati P (2013) Coat protein mediated transgenic resistance of peanut (Arachis hypogaea L.) to peanut stem necrosis disease through Agrobacterium mediated genetic transformation. Indian J Virol 24(2):205–213PubMedPubMedCentralCrossRefGoogle Scholar
  79. Mi XX, Liu X, Yan HL, Liang L, Zhou XY, Yang JW, Si HJ, Zhang N (2017) Expression of the Galanthus nivalis agglutinin (GNA) gene in transgenic potato plants confers resistance to aphids. C R Biol 340(1):7–12PubMedCrossRefPubMedCentralGoogle Scholar
  80. Moore GA, Gutierrez EA, Jacono A, Jacono C, Caffery MC, Cline K (1993) Production of transgenic citrus plants expressing the citrus tristeza virus coat protein gene. HortScience 28:512Google Scholar
  81. Mulwa RMS, Norton MA, Farrand SK, Skirvin RM (2007) Agrobacterium mediated transformation and regeneration of transgenic ‘Chancellor’ wine grape plants expressing the tfdA gene. Vitis 46(3):110–115Google Scholar
  82. Neuhas G, Spangenberg G, Mittelsten Scheid O, Schweiger HG (1987) Transgenic rapeseed plants obtained by the microinjection of DNA into microspore-derived embryoids. Theor Appl Genet 75(1):30–36Google Scholar
  83. Nirala NK, Das DK, Srivastava PS, Sopory SK, Upadhyaya KC (2010) Expression of a rice chitinase gene enhances antifungal potential in transgenic grapevine (Vitis vinifera L.). Vitis 49(4):181–187Google Scholar
  84. Park YH, Choi CH, Park EM, Kim HS, Park HJ, Bae SC, Ahn I, Kim MG, ParkSR HDJ (2012) Overexpression of rice leucine-rich repeat protein results in activation of defense response, thereby enhancing resistance to bacterial soft rot in Chinese cabbage. Plant Cell Rep 31(10):1845–1850PubMedCrossRefPubMedCentralGoogle Scholar
  85. Paszkowski J, Shillito RD, Saul M, Mandák V, Hohn T, Hohn B, Potrykus I (1984) Direct gene transfer to plants. EMBO J 3(12):2717–2722PubMedPubMedCentralCrossRefGoogle Scholar
  86. Perl A, Galili S, Shaul O, Ben-Tzvi I, Galili G (1993) Bacterial dihydrodipicolinate synthase and desensitized aspartate kinase: two novel selectable markers for plant transformation. Biotechnology 11:715–718Google Scholar
  87. Pescitelli SM, Sukhapinda K (1995) Stable transformation via electroporation into maize type II callus and regeneration of fertile transgenic plants. Plant Cell Rep 14:712–716PubMedCrossRefPubMedCentralGoogle Scholar
  88. Pratap D, Raj SK, Kumar S, Snehi SK, Gautam KK, Sharma AK (2012) Coat protein mediated resistance. Acta Phytophylacica Sin 33(1):17–21Google Scholar
  89. Punja ZK, Wally O, Jayaraj J, Onus AN (2016) Transgenic approaches to enhance disease resistance in carrot plants to fungal pathogens. Acta Hortic (1145):143–152Google Scholar
  90. Rakosy-Tican E, Aurori CM, Dijkstra C, Thieme R, Aurori A, Davey MR (2007) The usefulness of the gfp reporter gene for monitoring Agrobacterium mediated transformation of potato dihaploid and tetraploid genotypes. Plant Cell Rep 26(5):661–671PubMedCrossRefPubMedCentralGoogle Scholar
  91. Rasul F, Sohail MN, Mansoor S, Asad S (2014) Enhanced transformation efficiency of Saccharum officinarum by vacuum infiltration assisted Agrobacterium-mediated transformation. Int J Agric Biol 16(6):1147–1152Google Scholar
  92. Ray K, Bisht NC, Pental D, Burma PK (2007) Development of barnase/barstar transgenics for hybrid seed production in Indian oilseed mustard (Brassica juncea L. Czern & Coss) using a mutant acetolactate synthase gene conferring resistance to imidazolinone-based herbicide ‘Pursuit’. Curr Sci 93(10):1390–1396Google Scholar
  93. Rhodes CA, Marrs KA, Murry LE (1995) Transformation of maize by electroporation of embryos. Methods in molecular biology 55. In: Plant cell electroporation and electrofusion protocols, vol 55. Springer, Totowa, pp 121–131CrossRefGoogle Scholar
  94. Sanford JC (1988) The biolistic process. Trends Biotechnol 6:299–302CrossRefGoogle Scholar
  95. Sanford JC (1990) Biolistic plant transformation. Physiol Plant 79:206–209CrossRefGoogle Scholar
  96. Sanford JC, Skubik KA, Reisch BI (1985) Attempted pollen-mediated plant transformation employing genomic donor DNA. Theor Appl Genet 69:571–574PubMedCrossRefPubMedCentralGoogle Scholar
  97. Sato H, Takamizo T (2009) Conferred resistance to an acetolactate synthase-inhibiting herbicide in transgenic tall fescue (Festuca arundinacea Schreb.). Hortscience 44(5):1254–1257Google Scholar
  98. Saul MW, Potrykus I (1990) Direct gene transfer to protoplasts: fate of the transferred genes. Dev Genet 11:176–181CrossRefGoogle Scholar
  99. Sawardekar SV, Mhatre NK, Sawant SS, Bhave SG, Gokhale NB, Narangalkar AL, Katageri IS, Kumar PA (2012) Agrobacterium mediated genetic transformation of pigeonpea [Cajanus cajan (L.) Millisp] for pod borer resistance: optimization of protocol. Indian J Genet Plant Breed 72(3):380–383Google Scholar
  100. Schoonbeek HJ, Wang HH, Stefanato FL, Craze M, Bowden S, Wallington E, Zipfel C, Ridout C (2015) Arabidopsis EFTu receptor enhances bacterial disease resistance in transgenic wheat. New Phytol 206(2):606–613PubMedCrossRefPubMedCentralGoogle Scholar
  101. Shah DM, Rommens CMT, Beachy R (1995) Resistance to disease and insects in transgenic plants: progress and applications to agriculture. Trends Biotechnol 13:362–368CrossRefGoogle Scholar
  102. Sharfudeen S, Begum MC, Deepthi CDN, Gullapalli L, Sulthana MR, Akula R, Tejaswini SSN (2014) Transgenic technology: an overview, current status & future perspectives. J Pharm Res 8(4):474–485Google Scholar
  103. Shimada TL, Shimada T, Hara-Nishimura I (2010) A rapid and nondestructive screenable marker, FAST, for identifying transformed seeds of Arabidopsis thaliana. Plant J 61(3):519–528PubMedCrossRefPubMedCentralGoogle Scholar
  104. Shimada T, Ogawa Y, Shimada T, Hara-Nishimura I (2011) A non-destructive screenable marker, OsFAST, for identifying transgenic rice seeds. Plant Signal Behav 6(10):1454–1456PubMedPubMedCentralCrossRefGoogle Scholar
  105. Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98(3):503–517PubMedCrossRefGoogle Scholar
  106. Sun Y, Liu XX, Li L, Guan Y, Zhang J (2015) Breeding of transgenic maize with resistance to the Asian corn borer (Ostrinia furnacalis) and tolerance to glyphosate. J Agric Biotechnol 23(1):52–60Google Scholar
  107. Takahashi W, Tanaka O, Rao GP, Zhao Y, Radchuk VV, Bhatnagar SK (2008) Whisker mediated transformation: the simplest method for direct gene transfer in higher plants. Advances in plant biotechnology Houston: Studium Press LLC 2008:63–80Google Scholar
  108. Takakura Y, Fk C, Ishida Y, Tsutsumi F, Kurotani K, Usami S, Isogai A, Imaseki H (2008) Expression of a bacterial flagellin gene triggers plant immune responses and confers disease resistance in transgenic rice plants. Mol Plant Pathol 9(4):525–529PubMedCrossRefPubMedCentralGoogle Scholar
  109. Tang W, Kinken K, Newton RJ (2005) Inducible antisense mediated posttranscriptional gene silencing in transgenic pine cells using green fluorescent protein as a visual marker. Plant Cell Physiol 46(8):255–1263CrossRefGoogle Scholar
  110. Tanuja P, Kumar AL (2017) Transgenic fruit crops – a review. Int J Curr Microbiol App Sci 6(8):2030–2037CrossRefGoogle Scholar
  111. Tepfer D (1984) Transformation of several species of higher plants by Agrobacterium rhizogenes: sexual transmission of the transformed genotype and phenotype. Cell 37:959–967PubMedCrossRefPubMedCentralGoogle Scholar
  112. Trick HN, Finer JJ (1997) SAAT: sonication-assisted Agrobacterium-mediated transformation. Transgenic Res 6(5):329–336CrossRefGoogle Scholar
  113. Uchimiya H, Fushimi T, Hashimoto H, Harada H, Syono K, Sugawara Y (1986) Expression of a foreign gene in callus derived from DNA treated protoplasts of rice (Oryza sativa L.). Molecular & General Genetics 204:204–207CrossRefGoogle Scholar
  114. Wang XJ, Dong L, Miao MM, Tang QL, Wang ZX (2011) Construction of a standard reference plasmid for detecting CPTI gene in transgenic cotton. China Biotechnol 31(8):85–91Google Scholar
  115. Wang H, Russa ML, QiLS (2016) CRISPR/Cas9in genome editing and beyond. Annu Rev Biochem 85:227–264PubMedCrossRefPubMedCentralGoogle Scholar
  116. Waters DL, Shapter FM (2014) The polymerase chain reaction (PCR): general methods. Methods Mol Biol 1099:65–75PubMedCrossRefPubMedCentralGoogle Scholar
  117. Weber G, Monajembashi S, Wolfrum J, Greulich KO (1989) A laser microbeam as a tool to introduce genes into cells and organelles of higher plants. Ber Bunsen Phys Chem 93:252–254CrossRefGoogle Scholar
  118. Xiao SH, Zhao J, Liu JG, Wu QJ, Wang YQ, Chu CC, Yu JZ, Yu DY (2016) Transgenic upland cotton lines of Gastrodia antifungal protein gene and their performance of resistance to Verticillium wilt. Acta Agron Sin 42:212–221CrossRefGoogle Scholar
  119. Xu QF, Tian F, Chen X, Li LC, Lin ZS, Mo Y et al (2005) Molecular test and aphid resistance identification of a new transgenic wheat line with the GNA gene. J Triticeae Crops 25(3):7–10Google Scholar
  120. Yang NS, Christou P (eds) (1994) Particle bombardment technology for gene transfer. Oxford University Press, New York, pp 143–165Google Scholar
  121. YongFeng F, YongSheng L, YunLing P, Wang F, Wang W, YanZhao M, Wang HN (2012) Agrobacterium mediated transformation of maize shoot apical meristem by introducing fused gene ChilinkerGlu and bar. Acta Prataculturae Sinica 21(5):69–76Google Scholar
  122. Younis A, Siddique MI, Kim CK, Lim KB (2014) RNA interference (RNAi) induced gene silencing: a promising approach of hi-tech plant breeding. Int J Biol Sci 10(10):1150–1158PubMedPubMedCentralCrossRefGoogle Scholar
  123. Yu H, Zhao Z, Wang L, Liu QQ, Gong Z, Gu MH (2007) Breeding of transgenic rice lines with GNA and bar genes resistance to both brown planthopper and herbicide. Acta Phytophylacica Sin 34(5):555–556Google Scholar
  124. Yue Y, Kun L, Guixang W, Fan L (2011) Inheritance and expression of pin II gene in DH transgenic lines and F1 hybrids of Chinese cabbage. Mol Plant Breed 9(3):350–356Google Scholar
  125. YunHee K, MyoungDuck K, SungChul P, JaeCheol J, SangSoo K, HaengSoon L (2016) Transgenic potato plants expressing the cold inducible transcription factor SCOF1 display enhanced tolerance to freezing stress. Plant Breed 135(4):513–518CrossRefGoogle Scholar
  126. Zhang W, Pang Y (2009) Impact of IPM and Transgenics in the Chinese Agriculture. In: Peshin R, Dhawan AK (eds) Integrated Pest Management: Dissemination and Impact. Springer, DordrechtGoogle Scholar
  127. Zhu YJ, Agbayani R, Tang CS, Moore PH, Souza M, Drew R (2010) Developing transgenic papaya with improved fungal disease resistance. Acta Hortic (864):39–44Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Satbir Singh Gosal
    • 1
  • Shabir Hussain Wani
    • 2
  1. 1.Punjab Agricultural UniversityLudhianaIndia
  2. 2.MRCFC, Khudwani, Sher-e-Kashmir University of Agricultural Sciences & Technology of KashmirShalimarIndia

Personalised recommendations