• Holger RoehlEmail author
  • Philippe Lam
  • Dominique Ditter
Part of the AAPS Advances in the Pharmaceutical Sciences Series book series (AAPS, volume 38)


The surface properties of primary packaging containers are determining their interaction with the parenteral drug product solution. This is not only restricted to ion leaching or corrosion effects but also impacting adsorption phenomena. The formulation can creep up the walls forming a thin liquid layer on the inside of the containers. This layer is getting visible as product residues on the vial walls after a lyophilization process. This mechanism is known under the term of “fogging”. This chapter describes the underlying root causes and provides measures to avoid the issue.


Glass Primary packaging containers Vials Lyophilization Fogging Surface properties Marangoni effect 


  1. 1.
    Bauer-Dauphin I, Mahler HC. A method for avoiding glass fogging of pharmaceutical containers during freeze drying. In: PCT International Application. Switz: F. Hoffmann-La Roche AG; 2010. 26 pp.Google Scholar
  2. 2.
    Abdul-Fattah AM, et al. Investigating factors leading to fogging of glass vials in lyophilized drug products. Eur J Pharm Biopharm. 2013.Google Scholar
  3. 3.
    Ludviksson E, Lightfoot EN. The dynamics of thin liquid films in the presence of surface-tension gradients. AIChE J. 1971;17(5):1166–73.CrossRefGoogle Scholar
  4. 4.
    He S, Ketterson JB. Surfactant-driven spreading of a liquid on a vertical surface. Phys Fluid. 1995;7(11):2640–7.CrossRefGoogle Scholar
  5. 5.
    Vuilleumier R, Ego V, Netlner L, Cazabat AM. Tears of wine: the stationary state. Langmuir. 1995;11:4117–21.CrossRefGoogle Scholar
  6. 6.
    Cazabat AM, Heslot F, Carles P, Troian SM. Hydrodynamic fingering instability of driven wetting films. Adv Coll Interf Sc. 1992;39:61–75.CrossRefGoogle Scholar
  7. 7.
    Cazabat AM, Heslot F, Troian SM, Carles P. Fingering instability of thin spreading films driven by temperature gradients. Nature. 1990;346:824–6.CrossRefGoogle Scholar
  8. 8.
    Eres MH, Schwartz LW, Roy RV. Fingering phenomena for driven coating films. Phys Fluid. 2000;12(6):1278–95.CrossRefGoogle Scholar
  9. 9.
    Troian SM, Wu SL, Safran SA. Fingering instability in thin wetting films. Phys Rev Let. 1989;62(13):1496–500.CrossRefGoogle Scholar
  10. 10.
    Matar OK, Troian SM. The development of transient fingering patterns during the spreading of surfactant coated films. Phys Fluid. 1999;11(11):3232–46.CrossRefGoogle Scholar
  11. 11.
    Troian SM, Herbolzheimer E, Safran SA. Model for the fingering instability of spreading surfactant drops. Phys Rev Let. 1990;65(3):333–6.CrossRefGoogle Scholar
  12. 12.
    WO2010/115728A2: a method for avoiding glass fogging.Google Scholar
  13. 13.
    Roedel E, Blatter F, Buettiker JP, Weirich W, Mahler HC. Contact angle measurement on glass surfaces of injection solution containers. Pharm Ind. 2013;75(2):328–32.Google Scholar
  14. 14.
    Johnson DD, Kang B, Vigorita JL, Amram A, Spain EM. Marangoni flow of Ag nanoparticles from the fluid − fluid interface. J Phys Chem A. 2008;112(39):9318–23.CrossRefPubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2018

Authors and Affiliations

  1. 1.Late Stage Pharmaceutical and Processing Development, Pharmaceutical Development & Supplies, Pharma Technical Development Biologics EUF. Hoffmann-La Roche Ltd.BaselSwitzerland
  2. 2.Pharmaceutical Processing and Tech. Dev., Genentech Inc.South San FranciscoUSA
  3. 3.Site Manufacturing Science and Technology, Validation Engineering & FillingRoche Diagnostics GmbHMannheimGermany

Personalised recommendations