Advertisement

Special Topics in Analytics of Pre-filled Syringes

  • Atanas Koulov
Chapter
Part of the AAPS Advances in the Pharmaceutical Sciences Series book series (AAPS, volume 38)

Abstract

Pre-filled syringes (PFSs) are extensively used as a container closure system offering convenience of administration. PFS features special and unique characteristics, enabling their proper functionality, but which, in some cases, may result in novel and unanticipated challenges. Such challenges are, for example, the potential interaction of the drug product with trace amounts of tungsten, originating from the pins used to form the syringe, or the presence of large concentrations of silicone oil droplets, potentially masking changes in proteinaceous particle load in a PFS product. This chapter discusses some of the analytical approaches used to tackle such challenges in the development of PFS drug products.

Keywords

Pre-filled syringe Silicone oil Particles Tungsten Leachables and extractables Container closure 

References

  1. 1.
    Funke S, Matilainen J, Nalenz H, Bechtold-Peters K, Mahler HC, Friess W. Silicone migration from baked-on silicone layers. particle characterization in placebo and protein solutions. J Pharm Sci. 2016;105(12):3520–31.CrossRefPubMedGoogle Scholar
  2. 2.
    Gerhardt A, Mcgraw NR, Schwartz DK, Bee JS, Carpenter JF, Randolph TW. Protein aggregation and particle formation in prefilled glass syringes. J Pharm Sci. 2014;103(6):1601–12.CrossRefPubMedGoogle Scholar
  3. 3.
    Basu P, Blake-Haskins AW, O’Berry KB, Randolph TW, Carpenter JF. Albinterferon α2b adsorption to silicone oil-water interfaces: effects on protein conformation, aggregation, and subvisible particle formation. J Pharm Sci. 2014;103(2):427–36.CrossRefPubMedGoogle Scholar
  4. 4.
    Gerhardt A, Mcumber AC, Nguyen BH, Lewus R, Schwartz DK, Carpenter JF, Randolph TW. Surfactant effects on particle generation in antibody formulations in pre-filled syringes. J Pharm Sci. 2015;104(12):4056–64.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Carpenter JF, Randolph TW, Jiskoot W, Crommelin DJ, Middaugh CR, Winter G, Fan YX, Kirshner S, Verthelyi D, Kozlowski S, Clouse KA, Swann PG, Rosenberg A, Cherney B. Overlooking subvisible particles in therapeutic protein products: gaps that may compromise product quality. J Pharm Sci. 2009;98(4):1201–5.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Singh SK, Afonina N, Awwad M, Bechtold-Peters K, Blue JT, Chou D, Cromwell M, Krause HJ, Mahler HC, Meyer BK, Narhi L, Nesta DP, Spitznagel T. An industry perspective on the monitoring of subvisible particles as a quality attribute for protein therapeutics. J Pharm Sci. 2010;99(8):3302–21.CrossRefPubMedGoogle Scholar
  7. 7.
    Sharma DK, Oma P, Pollo MJ, Sukumar M. Quantification and characterization of subvisible proteinaceous particles in opalescent mAb formulations using micro-flow imaging. J Pharm Sci. 2010;99(6):2628–42.CrossRefPubMedGoogle Scholar
  8. 8.
    Wuchner K, Büchler J, Spycher R, Dalmonte P, Volkin DB. Development of a microflow digital imaging assay to characterize protein particulates during storage of a high concentration IgG1 monoclonal antibody formulation. J Pharm Sci. 2010;99(8):3343–61.CrossRefPubMedGoogle Scholar
  9. 9.
    Strehl R, Rombach-Riegraf V, Diez M, Egodage K, Bluemel M, Jeschke M, Koulov AV. Discrimination between silicone oil droplets and protein aggregates in biopharmaceuticals: a novel multiparametric image filter for sub-visible particles in microflow imaging analysis. Pharm Res. 2012;29(2):594–602.CrossRefPubMedGoogle Scholar
  10. 10.
    Saggu M, Patel AR, Koulis T. A random forest approach for counting silicone oil droplets and protein particles in antibody formulations using flow microscopy. Pharm Res. 2017;34(2):479–91.CrossRefPubMedGoogle Scholar
  11. 11.
    Weinbuch D, Zölls S, Wiggenhorn M, Friess W, Winter G, Jiskoot W, Hawe A. Micro-flow imaging and resonant mass measurement (Archimedes)—complementary methods to quantitatively differentiate protein particles and silicone oil droplets. J Pharm Sci. 2013;102(7):2152–65.CrossRefPubMedGoogle Scholar
  12. 12.
    Ripple DC, Hu Z. Correcting the relative bias of light obscuration and flow imaging particle counters. Pharm Res. 2016;33(3):653–72.CrossRefPubMedGoogle Scholar
  13. 13.
    Zhao H, Diez M, Koulov A, Bozova M, Bluemel M, Forrer K. Characterization of aggregates and particles using emerging techniques. In: Mahler H-C, Jiskoot W, editors. Analysis of aggregates and particles in protein pharmaceuticals. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2012.CrossRefGoogle Scholar
  14. 14.
    Cavicchi RE, Collett C, Telikepalli S, Hu Z, Carrier M, Ripple DC. Variable threshold method for determining the boundaries of imaged subvisible particles. J Pharm Sci. 2017;106(6):1499–507.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Adler M. Challenges in development of pre-filled syringes for biologics—a formulation scientist’s point of view. Presented at the 2011 PDA Europe The Universe of Pre-filled Syringes and Injection Devices. Basel, Switzerland, 7–11 Nov 2011.Google Scholar
  16. 16.
    Markovic, I. Considerations for extractables and leachables in single use systems: a risk-based perspective. Presented at the PDA Single Use Systems Workshop, Bethesda, USA, 22–23 June 2011.Google Scholar
  17. 17.
    Jiang Y, Nashed-Samuel Y, Li C, Liu W, Pollastrini J, Mallard D, Wen ZQ, Fujimori K, Pallitto M, Donahue L, Chu G, Torraca G, Vance A, Mire-Sluis T, Freund E, Davis J, Narhi L. Tungsten-induced protein aggregation: solution behavior. J Pharm Sci. 2009;98(12):4695–710.CrossRefPubMedGoogle Scholar
  18. 18.
    Liu W, Swift R, Torraca G, Nashed-Samuel Y, Wen ZQ, Jiang Y, Vance A, Mire-Sluis A, Freund E, Davis J, Narhi L. Root cause analysis of tungsten-induced protein aggregation in pre-filled syringes. PDA J Pharm Sci Technol. 2010;64(1):11–9.Google Scholar
  19. 19.
    Seidl A, Hainzl O, Richter M, Fischer R, Böhm S, Deutel B, Hartinger M, Windisch J, Casadevall N, London GM, Macdougall I. Tungsten-induced denaturation and aggregation of epoetin alfa during primary packaging as a cause of immunogenicity. Pharm Res. 2012;29(6):1454–67.CrossRefPubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2018

Authors and Affiliations

  1. 1.Drug Product Services, Analytical Development and Quality ControlLonza AGBaselSwitzerland

Personalised recommendations