Projects Portfolio Selection Framework Combining MCDA UTASTAR Method with 0–1 Multi-Objective Programming

  • Isaak Vryzidis
  • Athanasios Spyridakos
  • Nikos Tsotsolas
Part of the Multiple Criteria Decision Making book series (MCDM)


The evaluation of projects portfolio effectiveness is a complex and diverse topic linked to the strategic planning, the efficiency of project implementation teams, the social and economic environment, the availability of resources etc. The appropriate projects selection constitutes one of the key points to ensure the total portfolio success by including different selection criteria regards not only to projects efficiency but also to their effectiveness. Efficiency reflects whether the project management team used effectively the organization’s resources in order to accomplish the initial plan and project goals, while effectiveness determines whether the results of a project meet the objectives set by the organization’s top management team. In this chapter we are discussing an approach for the selection and evaluation of projects portfolio based on two multicriteria methodological frames: (a) The Multi Criteria UTA(*) method of Disaggregation—Aggregation approach (D-A) with which the alternative actions are evaluated according to the business strategic objectives and (b) the Multi-objective (0–1) Linear Programming techniques, which are utilised to select a subset of the alternative projects considering the estimated with the D-A approach multicriteria global values of the alternative projects, the additional objectives related to the external environment, the internal and external policy restrictions, the availability of resources and the specific market conditions. The incorporation of stochastic criteria into the analysis to evaluate the alternative projects under uncertainty is also presented in the following sections. The aforementioned approaches are illustrated through a case study concerning the projects portfolio selection of a contraction firm.


Multicriteria decision aid Project portfolio selection UTA Multi-objective linear programming 


  1. APM. (2012). Body of Knowledge (BoK) (6th ed.). Association of Project Management (APM), Ibis House, Regent Park, Summerleys Road, Princes Risborough, Buckinghamshire.Google Scholar
  2. Atkinson, R. (1999). Project management: Cost, time and quality, two best guesses and a phenomenon, its time to accept other success criteria. International Journal of Project Management, 17, 337–342.CrossRefGoogle Scholar
  3. Baccarini, D. (1999). The logical framework method for defining project success. Project Management Journal, 30, 25–32.Google Scholar
  4. Badri, M. A., Davis, D., & Davis, D. (2001). A comprehensive 0–1 goal programming model for project selection. International Journal of Project Management, 19, 243–252.CrossRefGoogle Scholar
  5. Bouyssou, D. (1990). Building criteria: A prerequisite for MCDA. In Readings in multiple criteria decision-aid (pp. 58–80).CrossRefGoogle Scholar
  6. Eden, C., & Ackermann, F. (1998). Making strategy the journey: The journey of strategic management. London: Sage.Google Scholar
  7. Ehrgott, M. (2012). Vilfredo Pareto and multi-objective optimization. Optimization Stories, Journal der Deutschen Mathematiker-Vereiningung, Extra, 21, 447–453.Google Scholar
  8. Ehrgott, M., & Wiecek, M. M. (2005). Multiobjective programming. In J. Figueira, S. Greco, & M. Ehrgott (Eds.), Multiple criteria decision analysis – State of the art surveys (pp. 667–722). New York: Springer.CrossRefGoogle Scholar
  9. Evans, J. P., & Steuer, R. E. (1973). A revised simplex method for linear multiple objective programs. Mathematical Programming, 5, 54–72.CrossRefGoogle Scholar
  10. Grigoroudis, E., & Siskos, Y. (2002). Preference disaggregation for measuring and analysing customer satisfaction: The MUSA method. European Journal of Operational Research, 143, 148–170.CrossRefGoogle Scholar
  11. Hill, G. M. (2009). The complete project management methodology and toolkit. Boca Raton: CRC Press.CrossRefGoogle Scholar
  12. Iamratanakul, S., Patanakul, P., & Milosevic, D. (2008). Project portfolio selection: From past to present. IEEE, 287–292.Google Scholar
  13. Ika, L. A. (2009). Project success as a topic in project management journals. Project Management Journal, 40, 6–19.CrossRefGoogle Scholar
  14. Institute, P.M. (2008). The Standard for Portfolio Management, 2 Original edition. ed. Project Management Inst, Newtown Square, PA.Google Scholar
  15. Iyigun, M. G. (1993). A decision support system for R&D project selection and resource allocation under uncertainty. Project Management Journal, 24, 5–13.Google Scholar
  16. Jacquet-Lagreze, E., & Siskos, J. (1982). Assessing a set of additive utility functions for multicriteria decision-making, the UTA method. European Journal of Operational Research, 10, 151–164.CrossRefGoogle Scholar
  17. Jugdev, K., & Muller, R. (2005). A retrospective look at our evolving understanding of project success. Project Management Journal, 36, 19–31.Google Scholar
  18. Keeney, R. L. (1996). Value-focused thinking: A path to creative decisionmaking (revised ed.). Cambridge, MA: Harvard University Press.Google Scholar
  19. Keeney, R. L., & Raiffa, H. (1976). Decisions with multiple objectives: Preferences and value tradeoffs. New York: Wiley.Google Scholar
  20. Korhonen, P. (2005). Interactive methods. In J. Figueira, S. Greco, & M. Ehrgott (Eds.), Multiple criteria decision analysis – state of the art surveys (pp. 641–666). New York: Springer.CrossRefGoogle Scholar
  21. Korhonen, P., & Wallenius, J. (1990). A multiple objective linear programming decision support system. Decision Support Systems, 6, 243–251.CrossRefGoogle Scholar
  22. Mavrotas, G., Diakoulaki, D., & Capros, P. (2003). Combined MCDA–IP approach for project selection in the electricity market. Annals of Operations Research, 120, 159–170.CrossRefGoogle Scholar
  23. Mavrotas, G., Diakoulaki, D., & Caloghirou, Y. (2006). Project prioritization under policy restrictions. A combination of MCDA with 0–1 programming. European Journal of Operational Research, 171, 296–308.CrossRefGoogle Scholar
  24. Mavrotas, G., Figueira, J. R., & Siskos, E. (2015). Robustness analysis methodology for multi-objective combinatorial optimization problems and application to project selection. Omega, 52, 142–155.CrossRefGoogle Scholar
  25. Montibeller, G., & Franco, A. (2010). Multi-criteria decision analysis for strategic decision making. In P. M. Pardalos & C. Zopounidis (Eds.), Handbook of multicriteria analysis (pp. 25–50). Heidelberg: Springer.CrossRefGoogle Scholar
  26. Patanakul, P., & Milosevic, D. (2009). The effectiveness in managing a group of multiple projects: Factors of influence and measurement criteria. International Journal of Project Management, 27, 216–233.CrossRefGoogle Scholar
  27. PMI (Ed.). (2004). A guide to the project management body of knowledge 3rd Edition (PMBOK guide). Project Management Institute, Inc., Newtown Square, Pennsylvania.Google Scholar
  28. Roy, B. (1985). Méthodologie multicritere d’Aide à la Decision. Paris: Economica.Google Scholar
  29. Roy, B., & Bouyssou, D. (1993). Aide multicritere a la decision: Methodes et cas. Paris: Economica.Google Scholar
  30. Shenhar, A. (2015). What is strategic project leadership? Open Economics and Management Journal, 2, 29–37.CrossRefGoogle Scholar
  31. Shenhar, A., & Dvir, D. (2007). Reinventing project management: The diamond approach to successful growth and innovation. Boston, MA: Harvard Business School Press.Google Scholar
  32. Shenhar, A. J., Levy, O., & Dvir, D. (1997). Mapping the dimensions of project success. The Professional Journal of the PMI, 28, 5–13.Google Scholar
  33. Shenhar, A. J., Dvir, D., Levy, O., & Maltz, A. C. (2001). Project success: A multidimensional strategic concept. Long Range Planning, 34, 699–725.CrossRefGoogle Scholar
  34. Siskos, Y. (1980). Comment modeliser les preferences au moyen de fonctions d’utilite additives. RAIRO Recherche Operationnelle, 14, 53–82.CrossRefGoogle Scholar
  35. Siskos, Y. (1983). Analyse de systèmes de décision multicritère en univers aléatoire. Foundations of Control Engineering, 10, 193–212.Google Scholar
  36. Siskos, Y., & Yannacopoulos, D. (1985). UTASTAR, an ordinal regression method for building additive value functions. Investigacao Operacional, 5, 39–53.Google Scholar
  37. Siskos, Y., Spyridakos, A., & Yannacopoulos, D. (1993). MINORA: A multicriteria decision aiding system for discrete alternatives. Journal of Information Science and Technology. In Y. Siskos & C. Zopounidis (Eds.), Special issue on multicriteria decision support systems, 2, 136–149.Google Scholar
  38. Tsotsolas, N., & Alexopoulos, S. (2017). Towards a holistic strategic framework for applying robust facilitated approaches in political decision making. Operational Research International Journal, 1–41.Google Scholar
  39. van Aken, T. (1996). De weg naar project succes: Eerder via werkstijl dan instrumenten De Tijdstroom.Google Scholar
  40. Westerveld, E. (2003). The Project Excellence Model®: Linking success criteria and critical success factors. International Journal of Project Management, 21, 411–418.CrossRefGoogle Scholar
  41. Westerveld, E., & Gaya Walters, D. (2001). Het verbetern van uw projectorganisatie; het Project Excellence Model in de praktijk. Deventer: Kluwer.Google Scholar
  42. Yu, A. G., Flett, P. D., & Bowers, J. A. (2005). Developing a value-centred proposal for assessing project success. International Journal of Project Management, 23, 428–436.CrossRefGoogle Scholar
  43. Zeleny, M. (1974). Linear multiobjective programming. New York: Springer.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Isaak Vryzidis
    • 1
  • Athanasios Spyridakos
    • 1
  • Nikos Tsotsolas
    • 1
  1. 1.Department of Business AdministrationUniversity of West AtticaAigaleoGreece

Personalised recommendations