Could Machine Learning Improve the Prediction of Child Labor in Peru?

  • Christian Fernando Libaque-SaenzEmail author
  • Juan Lazo
  • Karla Gabriela Lopez-Yucra
  • Edgardo R. Bravo
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 795)


Child labor is a relevant problem in developing countries because it may have a negative impact on economic growth. Policy makers and government agencies need information to correctly allocate their scarce resources to deal with this problem. Although there is research attempting to predict the causes of child labor, previous studies have used only linear statistical models. Non-linear models may improve predictive capacity and thus optimize resource allocation. However, the use of these techniques in this field remains unexplored. Using data from Peru, our study compares the predictive capability of the traditional logit model with artificial neural networks. Our results show that neural networks could provide better predictions than the logit model. Findings suggest that geographical indicators, income levels, gender, family composition and educational levels significantly predict child labor. Moreover, the neural network suggests the relevance of each factor which could be useful to prioritize strategies. As a whole, the neural network could help government agencies to tailor their strategies and allocate resources more efficiently.


  1. 1.
    Hanushek, E.A.: Economic growth in developing countries: the role of human capital. Econ. Educ. Rev. 37, 204–212 (2013)CrossRefGoogle Scholar
  2. 2.
    Goldin, C.: Human capital. In: Diebolt, C., Haupert, M. (eds.) Handbook of Cliometrics, pp. 55–86. Springer, Heidelberg (2016). Scholar
  3. 3.
    Becker, G.: Investment in human capital: a theoretical analysis. J. Polit. Econ. 70, 9–49 (1962)CrossRefGoogle Scholar
  4. 4.
    Susanli, Z.B., Inanc-Tuncer, O., Kologlugil, S.: Child domestic labour and mothers’ employment in Turkey. Econ. Res. Ekonomska Istraživanja 29(1), 967–979 (2016)CrossRefGoogle Scholar
  5. 5.
    Dimova, R., Epstein, G.S., Gang, I.N.: Migration, transfers and child labor. Rev. Dev. Econ. 19(3), 735–747 (2015)CrossRefGoogle Scholar
  6. 6.
    López Yucra, K.G.: Determinantes del trabajo infantil y la deserción escolar en menores de 12 a 17 años en el perú para los años 2006 y 2014 (2016)Google Scholar
  7. 7.
    Sausa, M.: El trabajo infantil es más alto y más penoso en las zonas rurales. Perú 21 (2016)Google Scholar
  8. 8.
    Lima, L.R., Mesquita, S., Wanamaker, M.: Child labor and the wealth paradox: the role of altruistic parents. Econ. Lett. 130, 80–82 (2015)CrossRefGoogle Scholar
  9. 9.
    Emerson, P.M., Ponczek, V., Souza, A.P.: Child labor and learning. Econ. Dev. Cult. Change 65(2), 265–296 (2017)CrossRefGoogle Scholar
  10. 10.
    De Paoli, A., Mendola, M.: International migration and child labour in developing countries. World Econ. 40(4), 678–702 (2017)CrossRefGoogle Scholar
  11. 11.
    D’alessandro, S., Fioroni, T.: Child labour and inequality. J. Econ. Inequality 14(1), 63 (2016)CrossRefGoogle Scholar
  12. 12.
    Rodrigues, D.C., Prata, D.N., Silva, M.A.: Exploring social data to understand child labor. Int. J. Soc. Sci. Humanity 5(1), 29 (2015)CrossRefGoogle Scholar
  13. 13.
    Emerson, P.M., Souza, A.P., et al.: Bargaining over sons and daughters: child labor, school attendance and intra-household gender bias in Brazil. Technical report, Working Paper (2002)Google Scholar
  14. 14.
    Sapelli, C., Torche, A.: Deserción Escolar y Trabajo Juvenil: ¿Dos Caras de Una Misma Decisión? Cuadernos de economía 41, 173–198 (2004)CrossRefGoogle Scholar
  15. 15.
    Lavado, P., Gallegos, J.: La dinámica de la deserción escolar en el Perú: un enfoque usando modelos de duración. (05–08), September 2005Google Scholar
  16. 16.
    García, L.: The supply of child labor and household work, (31402) (2006)Google Scholar
  17. 17.
    Gunnarsson, V., Orazem, P.F., Sanchez, M.A.: Child labor and school achievement in Latin America. World Bank Econ. Rev. 20, 31–54 (2006)CrossRefGoogle Scholar
  18. 18.
    Alcázar, L.: Asistencia y deserción en escuelas secundarias rurales del Perú, pp. 41–82 (2008)Google Scholar
  19. 19.
    Rodríguez, J., Vargas, S.: Trabajo infantil en el perú. magnitud y perfiles vulnerables. informe nacional 2007–2008 (2009)Google Scholar
  20. 20.
    Le, H.T., Homel, R.: The impact of child labor on children’s educational performance: evidence from rural Vietnam. J. Asian Econ. 36, 1–13 (2015)CrossRefGoogle Scholar
  21. 21.
    He, H.: Child labour and academic achievement: evidence from Gansu province in china. China Econ. Rev. 38(C), 130–150 (2016)CrossRefGoogle Scholar
  22. 22.
    Abdou, H., Pointon, J., El-Masry, A.: Neural nets versus conventional techniques in credit scoring in Egyptian banking. Expert Syst. Appl. 35(3), 1275–1292 (2008)CrossRefGoogle Scholar
  23. 23.
    Altman, E.I., Marco, G., Varetto, F.: Corporate distress diagnosis: comparisons using linear discriminant analysis and neural networks (the Italian experience). J. Banking Finan. 18(3), 505–529 (1994)CrossRefGoogle Scholar
  24. 24.
    Lattin, J.M., Carroll, J.D., Green, P.E.: Analyzing Multivariate Data, vol. 1. Thomson Brooks/Cole, Florence (2003)Google Scholar
  25. 25.
    Hosmer, D.W., Lemeshow, S., Sturdivant, R.X.: Applied Logistic Regression. Wiley Series in Probability and Statistics. Wiley, Hoboken (2013)CrossRefGoogle Scholar
  26. 26.
    Press, S.J., Wilson, S.: Choosing between logistic regression and discriminant analysis. J. Am. Stat. Assoc. 73(364), 699–705 (1978)CrossRefGoogle Scholar
  27. 27.
    Haykin, S.: A comprehensive foundation. Neural Netw. 2, 41 (2004)Google Scholar
  28. 28.
    Zurada, J.M.: Introduction to Artificial Neural Systems. West, St. Paul (1992)Google Scholar
  29. 29.
    Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press Inc., New York (1995)zbMATHGoogle Scholar
  30. 30.
    Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation. In: Parallel Distributed Processing: Explorations in the Microstructure of Cognition, pp. 318–362. MIT Press (1986)Google Scholar
  31. 31.
    Hair, J.F., Ringle, C.M., Sarstedt, M.: PLS-SEM: indeed a silver bullet. J. Mark. Theory Pract. 19(2), 139–152 (2011)CrossRefGoogle Scholar
  32. 32.
    Box, G.E., Tidwell, P.W.: Transformation of the independent variables. Technometrics 4(4), 531–550 (1962)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Tabachnick, B., Fidell, L.: Multivariate analysis of variance and covariance. In: Using Multivariate Statistics. Allyn and Bacon, Boston (2007)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Universidad del PacíficoJesús MaríaPeru
  2. 2.Pontificia Universidad Católica del PerúSan MiguelPeru

Personalised recommendations