Advertisement

Animal Models and Sources of Mesenchymal Cells in Intestinal Fibrosis

  • Dominik Bettenworth
Chapter

Abstract

Intestinal fibrosis is a common complication in patients with Crohn’s disease (CD) that often results in an impaired quality of life of affected patients. In the absence of specific anti-fibrotic medical therapy, patients with stricturing CD often have to undergo invasive endoscopic treatment approaches or surgical intervention. Beside the lack of medical treatment options for stricturing CD, the diagnostic work-up is hampered by the limited accuracy of methods for detection, characterization and grading of intestinal fibrosis. Therefore, functional studies as well as studies evaluating novel diagnostic and therapeutic approaches for stricturing CD are urgently needed and require appropriate animal models as a prerequisite. Over recent years, several animal models for intestinal fibrosis have been established that allow for evaluation of experimental fibrosis at different stages and in the context of different pro-fibrotic triggers. In the following chapter, a variety of animals models will be presented, specific advantages and disadvantages will be emphasized and the overall relevance and applicability of these models to study human fibrostenotic IBD will be discussed.

In the second part of the chapter, different sources of mesenchymal cells, one of the key executor of intestinal fibrogenesis, will be discussed. In addition to well known mechanism such as proliferation and migration of fibroblasts, novel aspects such as cellular transdifferentiation including epithelial- and endothelial to mesenchymal transition will be described. Finally, novel techniques to traffic cellular fate will be displayed.

Keywords

Animal model Intestinal inflammation Trinitrobenzene sulfonic acid Dextran sodium sulfate T cell transfer Senescence accelerated mice P1/Yit mouse Salmonella typhimurium Radiation Postoperative fibrosis Heterotopic intestinal transplant model Mesenchymal cells Fibroblast Myofibroblasts Epithelial to mesenchymal transition Endothelial to mesenchymal transition Bone-marrow stem cell Stellate cells Pericyte Fibrocyte 

References

  1. 1.
    Elson CO, Sartor RB, Tennyson GS, Riddell RH. Experimental models of inflammatory bowel disease. Gastroenterology. 1995;109:1344–67.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Wirtz S, Neurath MF. Mouse models of inflammatory bowel disease. Adv Drug Deliv Rev. 2007;59:1073–83.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Wirtz S, Neufert C, Weigmann B, Neurath MF. Chemically induced mouse models of intestinal inflammation. Nat Protoc. 2007;2:541–6.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Rieder F, Kessler S, Sans M, Fiocchi C. Animal models of intestinal fibrosis: new tools for the understanding of pathogenesis and therapy of human disease. Am J Physiol Gastrointest Liver Physiol. 2012;303:G786–801.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    De Salvo C, Ray S, Pizarro TT. Mechanisms and models for intestinal fibrosis in IBD. Dig Dis. 2014;32(Suppl 1):26–34.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Matsumoto S, Okabe Y, Setoyama H, Takayama K, Ohtsuka J, Funahashi H, Imaoka A, Okada Y, Umesaki Y. Inflammatory bowel disease-like enteritis and caecitis in a senescence accelerated mouse P1/Yit strain. Gut. 1998;43:71–8.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Rivera-Nieves J, Bamias G, Vidrich A, Marini M, Pizarro TT, McDuffie MJ, Moskaluk CA, Cohn SM, Cominelli F. Emergence of perianal fistulizing disease in the SAMP1/YitFc mouse, a spontaneous model of chronic ileitis. Gastroenterology. 2003;124:972–82.PubMedCrossRefGoogle Scholar
  8. 8.
    Kosiewicz MM, Nast CC, Krishnan A, Rivera-Nieves J, Moskaluk CA, Matsumoto S, Kozaiwa K, Cominelli F. Th1-type responses mediate spontaneous ileitis in a novel murine model of Crohn’s disease. J Clin Invest. 2001;107:695–702.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Bamias G, Martin C, Mishina M, Ross WG, Rivera-Nieves J, Marini M, Cominelli F. Proinflammatory effects of TH2 cytokines in a murine model of chronic small intestinal inflammation. Gastroenterology. 2005;128:654–66.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Kuhn R, Lohler J, Rennick D, Rajewsky K, Muller W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell. 1993;75:263–74.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Berg DJ, Zhang J, Weinstock JV, Ismail HF, Earle KA, Alila H, Pamukcu R, Moore S, Lynch RG. Rapid development of colitis in NSAID-treated IL-10-deficient mice. Gastroenterology. 2002;123:1527–42.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Berg DJ, Davidson N, Kuhn R, Muller W, Menon S, Holland G, Thompson-Snipes L, Leach MW, Rennick D. Enterocolitis and colon cancer in interleukin-10-deficient mice are associated with aberrant cytokine production and CD4(+) TH1-like responses. J Clin Invest. 1996;98:1010–20.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Spencer DM, Veldman GM, Banerjee S, Willis J, Levine AD. Distinct inflammatory mechanisms mediate early versus late colitis in mice. Gastroenterology. 2002;122:94–105.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Fichtner-Feigl S, Young CA, Kitani A, Geissler EK, Schlitt HJ, Strober W. IL-13 signaling via IL-13R alpha2 induces major downstream fibrogenic factors mediating fibrosis in chronic TNBS colitis. Gastroenterology. 2008;135:2003–13, 2013 e1-7.PubMedCrossRefGoogle Scholar
  15. 15.
    Fichtner-Feigl S, Strober W, Geissler EK, Schlitt HJ. Cytokines mediating the induction of chronic colitis and colitis-associated fibrosis. Mucosal Immunol. 2008;1(Suppl 1):S24–7.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Ma Y, Guan Q, Bai A, Weiss CR, Hillman CL, Ma A, Zhou G, Qing G, Peng Z. Targeting TGF-beta1 by employing a vaccine ameliorates fibrosis in a mouse model of chronic colitis. Inflamm Bowel Dis. 2010;16:1040–50.PubMedCrossRefGoogle Scholar
  17. 17.
    Hawinkels LJ, Ten Dijke P. Exploring anti-TGF-beta therapies in cancer and fibrosis. Growth Factors. 2011;29:140–52.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Babyatsky MW, Rossiter G, Podolsky DK. Expression of transforming growth factors alpha and beta in colonic mucosa in inflammatory bowel disease. Gastroenterology. 1996;110:975–84.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Vallance BA, Gunawan MI, Hewlett B, Bercik P, Van Kampen C, Galeazzi F, Sime PJ, Gauldie J, Collins SM. TGF-beta1 gene transfer to the mouse colon leads to intestinal fibrosis. Am J Physiol Gastrointest Liver Physiol. 2005;289:G116–28.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Lloyd CM, Minto AW, Dorf ME, Proudfoot A, Wells TN, Salant DJ, Gutierrez-Ramos JC. RANTES and monocyte chemoattractant protein-1 (MCP-1) play an important role in the inflammatory phase of crescentic nephritis, but only MCP-1 is involved in crescent formation and interstitial fibrosis. J Exp Med. 1997;185:1371–80.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Marra F, DeFranco R, Grappone C, Milani S, Pastacaldi S, Pinzani M, Romanelli RG, Laffi G, Gentilini P. Increased expression of monocyte chemotactic protein-1 during active hepatic fibrogenesis: correlation with monocyte infiltration. Am J Pathol. 1998;152:423–30.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Zhang K, Gharaee-Kermani M, Jones ML, Warren JS, Phan SH. Lung monocyte chemoattractant protein-1 gene expression in bleomycin-induced pulmonary fibrosis. J Immunol. 1994;153:4733–41.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Grimm MC, Elsbury SK, Pavli P, Doe WF. Enhanced expression and production of monocyte chemoattractant protein-1 in inflammatory bowel disease mucosa. J Leukoc Biol. 1996;59:804–12.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Motomura Y, Khan WI, El-Sharkawy RT, Verma-Gandhu M, Verdu EF, Gauldie J, Collins SM. Induction of a fibrogenic response in mouse colon by overexpression of monocyte chemoattractant protein 1. Gut. 2006;55:662–70.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Wirtz S, Popp V, Kindermann M, Gerlach K, Weigmann B, Fichtner-Feigl S, Neurath MF. Chemically induced mouse models of acute and chronic intestinal inflammation. Nat Protoc. 2017;12:1295–309.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Morris GP, Beck PL, Herridge MS, Depew WT, Szewczuk MR, Wallace JL. Hapten-induced model of chronic inflammation and ulceration in the rat colon. Gastroenterology. 1989;96:795–803.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Neurath MF, Fuss I, Kelsall BL, Presky DH, Waegell W, Strober W. Experimental granulomatous colitis in mice is abrogated by induction of TGF-beta-mediated oral tolerance. J Exp Med. 1996;183:2605–16.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Banet GA, Anstine-Bessenecker PL. Arteriovenous malformation of the hand: a case study. J Vasc Nurs. 1992;10:6–12.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Wu F, Chakravarti S. Differential expression of inflammatory and fibrogenic genes and their regulation by NF-kappaB inhibition in a mouse model of chronic colitis. J Immunol. 2007;179:6988–7000.PubMedCrossRefGoogle Scholar
  30. 30.
    Xu X, Weksler-Zangen S, Pikarsky A, Pappo O, Wengrower D, Bischoff SC, Pines M, Rivkind A, Goldin E, Levi-Schaffer F. Mast cells involvement in the inflammation and fibrosis development of the TNBS-induced rat model of colitis. Scand J Gastroenterol. 2002;37:330–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Alspach JG. Weekend admissions to critical care: why do more of these patients die? Crit Care Nurse. 2010;30:10–2.PubMedGoogle Scholar
  32. 32.
    Lund PK, Zuniga CC. Intestinal fibrosis in human and experimental inflammatory bowel disease. Curr Opin Gastroenterol. 2001;17:318–23.PubMedCrossRefGoogle Scholar
  33. 33.
    Suzuki K, Sun X, Nagata M, Kawase T, Yamaguchi H, Sukumaran V, Kawauchi Y, Kawachi H, Nishino T, Watanabe K, Yoneyama H, Asakura H. Analysis of intestinal fibrosis in chronic colitis in mice induced by dextran sulfate sodium. Pathol Int. 2011;61:228–38.PubMedCrossRefGoogle Scholar
  34. 34.
    Rachmilewitz D, Stamler JS, Karmeli F, Mullins ME, Singel DJ, Loscalzo J, Xavier RJ, Podolsky DK. Peroxynitrite-induced rat colitis—a new model of colonic inflammation. Gastroenterology. 1993;105:1681–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Morrissey PJ, Charrier K, Braddy S, Liggitt D, Watson JD. CD4+ T cells that express high levels of CD45RB induce wasting disease when transferred into congenic severe combined immunodeficient mice. Disease development is prevented by cotransfer of purified CD4+ T cells. J Exp Med. 1993;178:237–44.PubMedCrossRefGoogle Scholar
  36. 36.
    Powrie F, Leach MW, Mauze S, Caddle LB, Coffman RL. Phenotypically distinct subsets of CD4+ T cells induce or protect from chronic intestinal inflammation in C. B-17 scid mice. Int Immunol. 1993;5:1461–71.PubMedCrossRefGoogle Scholar
  37. 37.
    Leach MW, Bean AG, Mauze S, Coffman RL, Powrie F. Inflammatory bowel disease in C.B-17 scid mice reconstituted with the CD45RBhigh subset of CD4+ T cells. Am J Pathol. 1996;148:1503–15.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Rieder F. The gut microbiome in intestinal fibrosis: environmental protector or provocateur? Sci Transl Med. 2013;5:190ps10.PubMedCrossRefGoogle Scholar
  39. 39.
    Sartor RB, Bond TM, Schwab JH. Systemic uptake and intestinal inflammatory effects of luminal bacterial cell wall polymers in rats with acute colonic injury. Infect Immun. 1988;56:2101–8.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Simmons JG, Pucilowska JB, Keku TO, Lund PK. IGF-I and TGF-beta1 have distinct effects on phenotype and proliferation of intestinal fibroblasts. Am J Physiol Gastrointest Liver Physiol. 2002;283:G809–18.PubMedCrossRefGoogle Scholar
  41. 41.
    Reingold L, Rahal K, Schmiedlin-Ren P, Rittershaus AC, Bender D, Owens SR, Adler J, Zimmermann EM. Development of a peptidoglycan-polysaccharide murine model of Crohn’s disease: effect of genetic background. Inflamm Bowel Dis. 2013;19:1238–44.PubMedCrossRefGoogle Scholar
  42. 42.
    Mourelle M, Salas A, Guarner F, Crespo E, Garcia-Lafuente A, Malagelada JR. Stimulation of transforming growth factor beta1 by enteric bacteria in the pathogenesis of rat intestinal fibrosis. Gastroenterology. 1998;114:519–26.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Medina C, Santos-Martinez MJ, Santana A, Paz-Cabrera MC, Johnston MJ, Mourelle M, Salas A, Guarner F. Transforming growth factor-beta type 1 receptor (ALK5) and Smad proteins mediate TIMP-1 and collagen synthesis in experimental intestinal fibrosis. J Pathol. 2011;224:461–72.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Grassl GA, Valdez Y, Bergstrom KS, Vallance BA, Finlay BB. Chronic enteric salmonella infection in mice leads to severe and persistent intestinal fibrosis. Gastroenterology. 2008;134:768–80.PubMedCrossRefGoogle Scholar
  45. 45.
    Small CL, Reid-Yu SA, McPhee JB, Coombes BK. Persistent infection with Crohn’s disease-associated adherent-invasive Escherichia coli leads to chronic inflammation and intestinal fibrosis. Nat Commun. 2013;4:1957.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Langberg CW, Sauer T, Reitan JB, Hauer-Jensen M. Relationship between intestinal fibrosis and histopathologic and morphometric changes in consequential and late radiation enteropathy. Acta Oncol. 1996;35:81–7.PubMedCrossRefGoogle Scholar
  47. 47.
    Followill DS, Kester D, Travis EL. Histological changes in mouse colon after single- and split-dose irradiation. Radiat Res. 1993;136:280–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Langberg CW, Hauer-Jensen M, Sung CC, Kane CJ. Expression of fibrogenic cytokines in rat small intestine after fractionated irradiation. Radiother Oncol. 1994;32:29–36.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Haydont V, Bourgier C, Pocard M, Lusinchi A, Aigueperse J, Mathe D, Bourhis J, Vozenin-Brotons MC. Pravastatin inhibits the Rho/CCN2/extracellular matrix cascade in human fibrosis explants and improves radiation-induced intestinal fibrosis in rats. Clin Cancer Res. 2007;13:5331–40.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Haydont V, Gilliot O, Rivera S, Bourgier C, Francois A, Aigueperse J, Bourhis J, Vozenin-Brotons MC. Successful mitigation of delayed intestinal radiation injury using pravastatin is not associated with acute injury improvement or tumor protection. Int J Radiat Oncol Biol Phys. 2007;68:1471–82.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Langberg CW, Hauer-Jensen M. Influence of fraction size on the development of late radiation enteropathy. An experimental study in the rat. Acta Oncol. 1996;35:89–94.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Yarnold J, Brotons MC. Pathogenetic mechanisms in radiation fibrosis. Radiother Oncol. 2010;97:149–61.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Yano H, Hamanaka R, Nakamura M, Sumiyoshi H, Matsuo N, Yoshioka H. Smad, but not MAPK, pathway mediates the expression of type I collagen in radiation induced fibrosis. Biochem Biophys Res Commun. 2012;418:457–63.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Zhu Y, Zhou J, Tao G. Molecular aspects of chronic radiation enteritis. Clin Invest Med. 2011;34:E119–24.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Rutgeerts P, Geboes K, Vantrappen G, Beyls J, Kerremans R, Hiele M. Predictability of the postoperative course of Crohn’s disease. Gastroenterology. 1990;99:956–63.PubMedCrossRefGoogle Scholar
  56. 56.
    Rigby RJ, Hunt MR, Scull BP, Simmons JG, Speck KE, Helmrath MA, Lund PK. A new animal model of postsurgical bowel inflammation and fibrosis: the effect of commensal microflora. Gut. 2009;58:1104–12.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Kato K, O'Dowd DK, Fraser SE, Smith MA. Heterogeneous expression of multiple putative patterning genes by single cells from the chick hindbrain. Dev Biol. 1997;191:259–69.PubMedCrossRefGoogle Scholar
  58. 58.
    Kosmidis C, Efthimiadis C, Anthimidis G, Basdanis G, Apostolidis S, Hytiroglou P, Vasiliadou K, Prousalidis J, Fahantidis E. Myofibroblasts and colonic anastomosis healing in Wistar rats. BMC Surg. 2011;11:6.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Chung DR, Chitnis T, Panzo RJ, Kasper DL, Sayegh MH, Tzianabos AO. CD4+ T cells regulate surgical and postinfectious adhesion formation. J Exp Med. 2002;195:1471–8.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Holschneider CH, Cristoforoni PM, Ghosh K, Punyasavatsut M, Abed E, Montz FJ. Endogenous versus exogenous IL-10 in postoperative intraperitoneal adhesion formation in a murine model. J Surg Res. 1997;70:138–43.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Ruiz-Perez B, Chung DR, Sharpe AH, Yagita H, Kalka-Moll WM, Sayegh MH, Kasper DL, Tzianabos AO. Modulation of surgical fibrosis by microbial zwitterionic polysaccharides. Proc Natl Acad Sci U S A. 2005;102:16753–8.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Hausmann M, Rechsteiner T, Caj M, Benden C, Fried M, Boehler A, Rogler G. A new heterotopic transplant animal model of intestinal fibrosis. Inflamm Bowel Dis. 2013;19:2302–14.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Rieder F, Fiocchi C, Rogler G. Mechanisms, management, and treatment of fibrosis in patients with inflammatory bowel diseases. Gastroenterology. 2017;152:340–350.e6.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Meier R, Lutz C, Cosin-Roger J, Fagagnini S, Bollmann G, Hunerwadel A, Mamie C, Lang S, Tchouboukov A, Weber FE, Weber A, Rogler G, Hausmann M. Decreased fibrogenesis after treatment with pirfenidone in a newly developed mouse model of intestinal fibrosis. Inflamm Bowel Dis. 2016;22:569–82.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Bettenworth D, Rieder F. Medical therapy of stricturing Crohn’s disease: what the gut can learn from other organs - a systematic review. Fibrogenesis Tissue Repair. 2014;7:5.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Friedman SL, Sheppard D, Duffield JS, Violette S. Therapy for fibrotic diseases: nearing the starting line. Sci Transl Med. 2013;5:167sr1.PubMedCrossRefGoogle Scholar
  67. 67.
    Powell DW, Mifflin RC, Valentich JD, Crowe SE, Saada JI, West AB. Myofibroblasts. II. Intestinal subepithelial myofibroblasts. Am J Phys. 1999;277:C183–201.CrossRefGoogle Scholar
  68. 68.
    Bettenworth D, Rieder F. Pathogenesis of intestinal fibrosis in inflammatory bowel disease and perspectives for therapeutic implication. Dig Dis. 2017;35:25–31.PubMedCrossRefGoogle Scholar
  69. 69.
    Lawrance IC, Rogler G, Bamias G, Breynaert C, Florholmen J, Pellino G, Reif S, Speca S, Latella G. Cellular and molecular mediators of intestinal fibrosis. J Crohns Colitis. 2015;11(12):1491–503.PubMedCentralPubMedGoogle Scholar
  70. 70.
    Armaka M, Apostolaki M, Jacques P, Kontoyiannis DL, Elewaut D, Kollias G. Mesenchymal cell targeting by TNF as a common pathogenic principle in chronic inflammatory joint and intestinal diseases. J Exp Med. 2008;205:331–7.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Lawrance IC, Maxwell L, Doe W. Altered response of intestinal mucosal fibroblasts to profibrogenic cytokines in inflammatory bowel disease. Inflamm Bowel Dis. 2001;7:226–36.PubMedCrossRefGoogle Scholar
  72. 72.
    Rieder F, Brenmoehl J, Leeb S, Scholmerich J, Rogler G. Wound healing and fibrosis in intestinal disease. Gut. 2007;56:130–9.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Jobson TM, Billington CK, Hall IP. Regulation of proliferation of human colonic subepithelial myofibroblasts by mediators important in intestinal inflammation. J Clin Invest. 1998;101:2650–7.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Gelbmann CM, Mestermann S, Gross V, Kollinger M, Scholmerich J, Falk W. Strictures in Crohn’s disease are characterised by an accumulation of mast cells colocalised with laminin but not with fibronectin or vitronectin. Gut. 1999;45:210–7.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Brown RD, Jones GM, Laird RE, Hudson P, Long CS. Cytokines regulate matrix metalloproteinases and migration in cardiac fibroblasts. Biochem Biophys Res Commun. 2007;362:200–5.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Leeb SN, Vogl D, Falk W, Scholmerich J, Rogler G, Gelbmann CM. Regulation of migration of human colonic myofibroblasts. Growth Factors. 2002;20:81–91.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Leeb SN, Vogl D, Gunckel M, Kiessling S, Falk W, Goke M, Scholmerich J, Gelbmann CM, Rogler G. Reduced migration of fibroblasts in inflammatory bowel disease: role of inflammatory mediators and focal adhesion kinase. Gastroenterology. 2003;125:1341–54.PubMedCrossRefGoogle Scholar
  78. 78.
    Matsuura T, Hasumura S, Nagamori S, Murakami K. Retinol esterification activity contributes to retinol transport in stellate cells. Cell Struct Funct. 1999;24:111–6.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Rockey DC. Hepatic fibrosis, stellate cells, and portal hypertension. Clin Liver Dis. 2006;10:459–79, vii-viii.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Nagy NE, Holven KB, Roos N, Senoo H, Kojima N, Norum KR, Blomhoff R. Storage of vitamin A in extrahepatic stellate cells in normal rats. J Lipid Res. 1997;38:645–58.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Rieder F, Fiocchi C. Intestinal fibrosis in inflammatory bowel disease - current knowledge and future perspectives. J Crohns Colitis. 2008;2:279–90.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Poulsom R, Forbes SJ, Hodivala-Dilke K, Ryan E, Wyles S, Navaratnarasah S, Jeffery R, Hunt T, Alison M, Cook T, Pusey C, Wright NA. Bone marrow contributes to renal parenchymal turnover and regeneration. J Pathol. 2001;195:229–35.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Brittan M, Wright NA. Gastrointestinal stem cells. J Pathol. 2002;197:492–509.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Bamba S, Lee CY, Brittan M, Preston SL, Direkze NC, Poulsom R, Alison MR, Wright NA, Otto WR. Bone marrow transplantation ameliorates pathology in interleukin-10 knockout colitic mice. J Pathol. 2006;209:265–73.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Brittan M, Chance V, Elia G, Poulsom R, Alison MR, MacDonald TT, Wright NA. A regenerative role for bone marrow following experimental colitis: contribution to neovasculogenesis and myofibroblasts. Gastroenterology. 2005;128:1984–95.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Khalil PN, Weiler V, Nelson PJ, Khalil MN, Moosmann S, Mutschler WE, Siebeck M, Huss R. Nonmyeloablative stem cell therapy enhances microcirculation and tissue regeneration in murine inflammatory bowel disease. Gastroenterology. 2007;132:944–54.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest. 2003;112:1776–84.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Bates RC, Mercurio AM. Tumor necrosis factor-alpha stimulates the epithelial-to-mesenchymal transition of human colonic organoids. Mol Biol Cell. 2003;14:1790–800.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Lee JM, Dedhar S, Kalluri R, Thompson EW. The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol. 2006;172:973–81.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Zeisberg M, Hanai J, Sugimoto H, Mammoto T, Charytan D, Strutz F, Kalluri R. BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat Med. 2003;9:964–8.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Flier SN, Tanjore H, Kokkotou EG, Sugimoto H, Zeisberg M, Kalluri R. Identification of epithelial to mesenchymal transition as a novel source of fibroblasts in intestinal fibrosis. J Biol Chem. 2010;285:20202–12.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Kalluri R. EMT: when epithelial cells decide to become mesenchymal-like cells. J Clin Invest. 2009;119:1417–9.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Shimizu N, Yamamoto K, Obi S, Kumagaya S, Masumura T, Shimano Y, Naruse K, Yamashita JK, Igarashi T, Ando J. Cyclic strain induces mouse embryonic stem cell differentiation into vascular smooth muscle cells by activating PDGF receptor beta. J Appl Physiol. 2008;104:766–72.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Frid MG, Kale VA, Stenmark KR. Mature vascular endothelium can give rise to smooth muscle cells via endothelial-mesenchymal transdifferentiation: in vitro analysis. Circ Res. 2002;90:1189–96.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Zeisberg EM, Tarnavski O, Zeisberg M, Dorfman AL, McMullen JR, Gustafsson E, Chandraker A, Yuan X, Pu WT, Roberts AB, Neilson EG, Sayegh MH, Izumo S, Kalluri R. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med. 2007;13:952–61.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Chaudhuri V, Zhou L, Karasek M. Inflammatory cytokines induce the transformation of human dermal microvascular endothelial cells into myofibroblasts: a potential role in skin fibrogenesis. J Cutan Pathol. 2007;34:146–53.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Rieder F, Kessler SP, West GA, Bhilocha S, de la Motte C, Sadler TM, Gopalan B, Stylianou E, Fiocchi C. Inflammation-induced endothelial-to-mesenchymal transition: a novel mechanism of intestinal fibrosis. Am J Pathol. 2011;179:2660–73.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Allt G, Lawrenson JG. Pericytes: cell biology and pathology. Cells Tissues Organs. 2001;169:1–11.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Gerhardt H, Betsholtz C. Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res. 2003;314:15–23.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Sundberg C, Ivarsson M, Gerdin B, Rubin K. Pericytes as collagen-producing cells in excessive dermal scarring. Lab Investig. 1996;74:452–66.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Bellini A, Mattoli S. The role of the fibrocyte, a bone marrow-derived mesenchymal progenitor, in reactive and reparative fibroses. Lab Investig. 2007;87:858–70.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol. 2005;5:953–64.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Zhao Y, Glesne D, Huberman E. A human peripheral blood monocyte-derived subset acts as pluripotent stem cells. Proc Natl Acad Sci U S A. 2003;100:2426–31.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Haudek SB, Xia Y, Huebener P, Lee JM, Carlson S, Crawford JR, Pilling D, Gomer RH, Trial J, Frangogiannis NG, Entman ML. Bone marrow-derived fibroblast precursors mediate ischemic cardiomyopathy in mice. Proc Natl Acad Sci U S A. 2006;103:18284–9.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Varcoe RL, Mikhail M, Guiffre AK, Pennings G, Vicaretti M, Hawthorne WJ, Fletcher JP, Medbury HJ. The role of the fibrocyte in intimal hyperplasia. J Thromb Haemost. 2006;4:1125–33.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Sakai N, Wada T, Yokoyama H, Lipp M, Ueha S, Matsushima K, Kaneko S. Secondary lymphoid tissue chemokine (SLC/CCL21)/CCR7 signaling regulates fibrocytes in renal fibrosis. Proc Natl Acad Sci U S A. 2006;103:14098–103.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Cowper SE, Su LD, Bhawan J, Robin HS, LeBoit PE. Nephrogenic fibrosing dermopathy. Am J Dermatopathol. 2001;23:383–93.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Chauhan H, Abraham A, Phillips JR, Pringle JH, Walker RA, Jones JL. There is more than one kind of myofibroblast: analysis of CD34 expression in benign, in situ, and invasive breast lesions. J Clin Pathol. 2003;56:271–6.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Nimphius W, Moll R, Olbert P, Ramaswamy A, Barth PJ. CD34+ fibrocytes in chronic cystitis and noninvasive and invasive urothelial carcinomas of the urinary bladder. Virchows Arch. 2007;450:179–85.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    LeBleu VS, Taduri G, O'Connell J, Teng Y, Cooke VG, Woda C, Sugimoto H, Kalluri R. Origin and function of myofibroblasts in kidney fibrosis. Nat Med. 2013;19:1047–53.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Cooke VG, LeBleu VS, Keskin D, Khan Z, O’Connell JT, Teng Y, Duncan MB, Xie L, Maeda G, Vong S, Sugimoto H, Rocha RM, Damascena A, Brentani RR, Kalluri R. Pericyte depletion results in hypoxia-associated epithelial-to-mesenchymal transition and metastasis mediated by met signaling pathway. Cancer Cell. 2012;21:66–81.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Drey F, Choi YH, Neef K, Ewert B, Tenbrock A, Treskes P, Bovenschulte H, Liakopoulos OJ, Brenkmann M, Stamm C, Wittwer T, Wahlers T. Noninvasive in vivo tracking of mesenchymal stem cells and evaluation of cell therapeutic effects in a murine model using a clinical 3.0 T MRI. Cell Transplant. 2013;22:1971–80.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Kraitchman DL, Heldman AW, Atalar E, Amado LC, Martin BJ, Pittenger MF, Hare JM, Bulte JW. In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation. 2003;107:2290–3.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Chen X, Lu M, Ma N, Yin G, Cui C, Zhao S. Dynamic tracking of injected mesenchymal stem cells after myocardial infarction in rats: a serial 7T MRI study. Stem Cells Int. 2016;2016:4656539.PubMedPubMedCentralGoogle Scholar
  115. 115.
    Rahmi G, Pidial L, Silva AK, Blondiaux E, Meresse B, Gazeau F, Autret G, Balvay D, Cuenod CA, Perretta S, Tavitian B, Wilhelm C, Cellier C, Clement O. Designing 3D mesenchymal stem cell sheets merging magnetic and fluorescent features: when cell sheet technology meets image-guided cell therapy. Theranostics. 2016;6:739–51.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Medicine B, Gastroenterology and HepatologyUniversity of MuensterMuensterGermany

Personalised recommendations