Cytokine and Anti-Cytokine Agents as Future Therapeutics for Fibrostenosing IBD

  • Noam Jacob
  • Stephan R. Targan
  • David Q. ShihEmail author


The pathogenesis of stricture formation in inflammatory bowel disease is a complex process with a wide variety of clinical, genetic, epigenetic, and environmental risk factors. Originally thought to be a consequence of chronic inflammation, new evidence arises for non-inflammatory contributors to stricture formation, suggesting an intricate interplay of cellular, molecular, and additional host/environmental factors. Although no specific medical treatments for fibrostenotic intestinal strictures currently exist, understanding the molecular pathways involved in stricture formation will undoubtedly guide therapeutic developments. As mediators of inflammation and immunoregulation, cytokines are key effectors in the fibrotic process. Accordingly, targeting inflammation, in part via cytokine blockade, has been the mainstay of therapy in IBD. In many cases, inflammatory disease is associated with significant fibrotic change, as increased inflammation perpetuates the cascade of mucosal repair. Thus, inflammatory cytokine-targeted therapy may serve as one potential avenue for treating fibrostenosis. As regulatory and repair mechanisms have been implicated in fibrosis as well, either as sequelae of inflammation or via de novo pathways, a parallel route for treating intestinal fibrosis may be the targeting of “regulatory” cytokines. This chapter will highlight the relevant contributions and potential therapeutic targeting of cytokines involved in inflammatory and regulatory pathways leading to fibrosis.


Inflammatory bowel disease Strictures Crohn’s disease Ulcerative colitis Fibrostenosis 



This work is supported NIH T32 DK07180-43 (NJ), Specialty Training and Advanced Research (STAR) Program at UCLA (NJ), NIH R01 DK056328-16 (NJ, SRT and DQS), NIH K08 Career Development Award DK093578 (DQS), and the F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute (NJ, SRT and DQS).

Conflict of Interest

The authors have declared that no conflict of interest exists.


  1. 1.
    Cosnes J, Gower-Rousseau C, Seksik P, et al. Epidemiology and natural history of inflammatory bowel diseases. Gastroenterology. 2011;140:1785–94.PubMedCrossRefGoogle Scholar
  2. 2.
    Latella G, Papi C. Crucial steps in the natural history of inflammatory bowel disease. World J Gastroenterol. 2012;18:3790–9.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Spinelli A, Correale C, Szabo H, et al. Intestinal fibrosis in Crohn’s disease: medical treatment or surgery? Curr Drug Targets. 2010;11:242–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Theiss AL, Simmons JG, Jobin C, et al. Tumor necrosis factor (TNF) alpha increases collagen accumulation and proliferation in intestinal myofibroblasts via TNF receptor 2. J Biol Chem. 2005;280:36099–109.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Bahcecioglu IH, Koca SS, Poyrazoglu OK, et al. Hepatoprotective effect of infliximab, an anti-TNF-alpha agent, on carbon tetrachloride-induced hepatic fibrosis. Inflammation. 2008;31:215–21.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Khan SB, Cook HT, Bhangal G, et al. Antibody blockade of TNF-alpha reduces inflammation and scarring in experimental crescentic glomerulonephritis. Kidney Int. 2005;67:1812–20.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Trachtman H, Vento S, Herreshoff E, et al. Efficacy of galactose and adalimumab in patients with resistant focal segmental glomerulosclerosis: report of the font clinical trial group. BMC Nephrol. 2015;16:111.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Antoniou KM, Mamoulaki M, Malagari K, et al. Infliximab therapy in pulmonary fibrosis associated with collagen vascular disease. Clin Exp Rheumatol. 2007;25:23–8.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Bargagli E, Galeazzi M, Bellisai F, et al. Infliximab treatment in a patient with systemic sclerosis associated with lung fibrosis and pulmonary hypertension. Respiration. 2008;75:346–9.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Denton CP, Engelhart M, Tvede N, et al. An open-label pilot study of infliximab therapy in diffuse cutaneous systemic sclerosis. Ann Rheum Dis. 2009;68(9):1433.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Abraham DJ, Shiwen X, Black CM, et al. Tumor necrosis factor alpha suppresses the induction of connective tissue growth factor by transforming growth factor-beta in normal and scleroderma fibroblasts. J Biol Chem. 2000;275:15220–5.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Bitzer M, von Gersdorff G, Liang D, et al. A mechanism of suppression of TGF-beta/SMAD signaling by NF-kappa B/RelA. Genes Dev. 2000;14:187–97.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Mori R, Kondo T, Ohshima T, et al. Accelerated wound healing in tumor necrosis factor receptor p55-deficient mice with reduced leukocyte infiltration. FASEB J. 2002;16:963–74.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Di Sabatino A, Pender SL, Jackson CL, et al. Functional modulation of Crohn’s disease myofibroblasts by anti-tumor necrosis factor antibodies. Gastroenterology. 2007;133:137–49.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Lichtenstein GR, Olson A, Travers S, et al. Factors associated with the development of intestinal strictures or obstructions in patients with Crohn’s disease. Am J Gastroenterol. 2006;101:1030–8.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Sorrentino D, Avellini C, Beltrami CA, et al. Selective effect of infliximab on the inflammatory component of a colonic stricture in Crohn’s disease. Int J Color Dis. 2006;21:276–81.CrossRefGoogle Scholar
  17. 17.
    Pelletier AL, Kalisazan B, Wienckiewicz J, et al. Infliximab treatment for symptomatic Crohn’s disease strictures. Aliment Pharmacol Ther. 2009;29:279–85.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Swaminath A, Lichtiger S. Dilation of colonic strictures by intralesional injection of infliximab in patients with Crohn’s colitis. Inflamm Bowel Dis. 2008;14:213–6.PubMedCrossRefGoogle Scholar
  19. 19.
    Jones DW, Finlayson SR. Trends in surgery for Crohn’s disease in the era of infliximab. Ann Surg. 2010;252:307–12.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Bouguen G, Peyrin-Biroulet L. Surgery for adult Crohn’s disease: what is the actual risk? Gut. 2011;60:1178–81.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Adelmann-Grill BC, Hein R, Wach F, et al. Inhibition of fibroblast chemotaxis by recombinant human interferon gamma and interferon alpha. J Cell Physiol. 1987;130:270–5.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Wynn TA, Cheever AW, Jankovic D, et al. An IL-12-based vaccination method for preventing fibrosis induced by schistosome infection. Nature. 1995;376:594–6.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Gurujeyalakshmi G, Giri SN. Molecular mechanisms of antifibrotic effect of interferon gamma in bleomycin-mouse model of lung fibrosis: downregulation of TGF-beta and procollagen I and III gene expression. Exp Lung Res. 1995;21:791–808.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Oldroyd SD, Thomas GL, Gabbiani G, et al. Interferon-gamma inhibits experimental renal fibrosis. Kidney Int. 1999;56:2116–27.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Higashi K, Inagaki Y, Fujimori K, et al. Interferon-gamma interferes with transforming growth factor-beta signaling through direct interaction of YB-1 with Smad3. J Biol Chem. 2003;278:43470–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Higashi K, Tomigahara Y, Shiraki H, et al. A novel small compound that promotes nuclear translocation of YB-1 ameliorates experimental hepatic fibrosis in mice. J Biol Chem. 2011;286:4485–92.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Imai J, Hozumi K, Sumiyoshi H, et al. Anti-fibrotic effects of a novel small compound on the regulation of cytokine production in a mouse model of colorectal fibrosis. Biochem Biophys Res Commun. 2015;468:554–60.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    King TE Jr, Albera C, Bradford WZ, et al. Effect of interferon gamma-1b on survival in patients with idiopathic pulmonary fibrosis (INSPIRE): a multicentre, randomised, placebo-controlled trial. Lancet. 2009;374:222–8.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Gasse P, Mary C, Guenon I, Noulin N, Charron S, Schnyder-Candrian S, Schnyder B, Akira S, Quesniaux VF, Lagente V, et al. IL-1R1/MyD88 signaling and the inflammasome are essential in pulmonary inflammation and fibrosis in mice. J Clin Invest. 2007;117:3786–99.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Dinarello CA. Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol. 2009;27:519–50.PubMedCrossRefGoogle Scholar
  31. 31.
    Gasse P, Riteau N, Charron S, Girre S, Fick L, Pétrilli V, Tschopp J, Lagente V, Quesniaux VF, Ryffel B, Couillin I. Uric acid is a danger signal activating NALP3 inflammasome in lung injury inflammation and fibrosis. Am J Respir Crit Care Med. 2009;179:903–13.PubMedCrossRefGoogle Scholar
  32. 32.
    Lee KY, Ito K, Hayashi R, Jazrawi EP, Barnes PJ, Adcock IM. NF-kappaB and activator protein 1 response elements and the role of histone modifications in IL-1beta-induced TGF-beta1 gene transcription. J Immunol. 2006;176:603–15.PubMedCrossRefGoogle Scholar
  33. 33.
    Szabo G, Csak T. Inflammasomes in liver diseases. J Hepatol. 2012;57:642–54.PubMedCrossRefGoogle Scholar
  34. 34.
    Mancini R, Benedetti A, Jezequel AM. An interleukin-1 receptor antagonist decreases fibrosis induced by dimethylnitrosamine in rat liver. Virchows Arch. 1994;424:25–31.PubMedCrossRefGoogle Scholar
  35. 35.
    Graham MF, Willey A, Adams J, Yager D, Diegelmann RF. Interleukin 1 beta downregulates collagen and augments collagenase expression in human intestinal smooth muscle cells. Gastroenterology. 1996;110(2):344–50.PubMedCrossRefGoogle Scholar
  36. 36.
    Graham MF, Willey A, Zhu YN, Yager DR, Sugerman HJ, Diegelmann RF. Corticosteroids repress the interleukin 1 beta-induced secretion of collagenase in human intestinal smooth muscle cells. Gastroenterology. 1997;113(6):1924–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Dhimolea E. Canakinumab. MAbs. 2010;2(1):3–13.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Ali S. The dual function cytokine IL-33 interacts with the transcription factor NF-kB to dampen NF-kB-stimulated gene transcription. J Immunol. 2011;187:1609–16.PubMedCrossRefGoogle Scholar
  39. 39.
    Hodzic Z, Schill EM, Bolock AM, Good M. IL-33 and the intestine: the good, the bad, and the inflammatory. Cytokine. 2017;S1043-4666(17):30189–8.Google Scholar
  40. 40.
    Mahapatro M, Foersch S, Hefele M, He G-W, Giner-Ventura E, et al. Programming of intestinal epithelial differentiation by IL-33 derived from pericryptal fibroblasts in response to systemic infection. Cell Rep. 2016;15(8):1743–56.PubMedCrossRefGoogle Scholar
  41. 41.
    Pastorelli L, De Salvo C, Vecchi M, Pizarro TT. The role of IL-33 in gut mucosal inflammation. Mediat Inflamm. 2013;2013:608187.CrossRefGoogle Scholar
  42. 42.
    Sponheim J, Pollheimer J, Olsen T, Balogh J, Hammarström C, Loos T, et al. Inflammatory bowel disease-associated interleukin-33 is preferentially expressed in ulceration-associated myofibroblasts. Am J Pathol. 2010;177(6):2804–15.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Groβ P, Doser K, Falk W, Obermeier F, Hofmann C. IL-33 attenuates development and perpetuation of chronic intestinal inflammation. Inflamm Bowel Dis. 2012;18(10):1900–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Sedhom MAK, Pichery M, Murdoch JR, Foligné B, Ortega N, Normand S, et al. Neutralisation of the interleukin-33/ST2 pathway ameliorates experimental colitis through enhancement of mucosal healing in mice. Gut. 2013;62(12):1714–23.PubMedCrossRefGoogle Scholar
  45. 45.
    Kobori A, Yagi Y, Imaeda H, Ban H, Bamba S, Tsujikawa T, et al. Interleukin-33 expression is specifically enhanced in inflamed mucosa of ulcerative colitis. J Gastroenterol. 2010;45(10):999–1007.PubMedCrossRefGoogle Scholar
  46. 46.
    Masterson JC, Capocelli KE, Hosford L, Biette K, McNamee EN, de Zoeten EF, et al. Eosinophils and IL-33 perpetuate chronic inflammation and fibrosis in a pediatric population with stricturing Crohn’s ileitis. Inflamm Bowel Dis. 2015;21(10):2429–40.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Liang H, Xu F, Wen XJ, Liu HZ, Wang HB, et al. Interleukin-33 signaling contributes to renal fibrosis following ischemia reperfusion. Eur J Pharmacol. 2017;812:18.PubMedCrossRefGoogle Scholar
  48. 48.
    Tan Z, Liu Q, Jiang R, Lv L, Shoto SS, et al. Interleukin-33 drives hepatic fibrosis through activation of hepatic stellate cells. Cell Mol Immunol. 2017.
  49. 49.
    Vasseur P, Dion S, Filliol A, Genet V, Lucas-Clerc C, et al. Endogenous IL-33 has no effect on the progression of fibrosis during experimental steatohepatitis. Oncotarget. 2017.
  50. 50.
    Doucet C, Brouty-Boye D, Pottin-Clemenceau C, et al. Interleukin (IL) 4 and IL-13 act on human lung fibroblasts. Implication in asthma. J Clin Invest. 1998;101:2129–39.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Wynn TA. Fibrotic disease and the T(H)1/T(H)2 paradigm. Nat Rev Immunol. 2004;4:583–94.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Jakubzick C, Kunkel SL, Puri RK, et al. Therapeutic targeting of IL-4- and IL-13-responsive cells in pulmonary fibrosis. Immunol Res. 2004;30:339–49.PubMedCrossRefGoogle Scholar
  53. 53.
    Aoudjehane L, Pissaia A Jr, Scatton O, et al. Interleukin-4 induces the activation and collagen production of cultured human intrahepatic fibroblasts via the STAT-6 pathway. Lab Investig. 2008;88:973–85.PubMedCrossRefGoogle Scholar
  54. 54.
    Hershey GK. IL-13 receptors and signaling pathways: an evolving web. J Allergy Clin Immunol. 2003;111:677–90; quiz 691.CrossRefPubMedGoogle Scholar
  55. 55.
    Bailey JR, Bland PW, Tarlton JF, et al. IL-13 promotes collagen accumulation in Crohn’s disease fibrosis by down-regulation of fibroblast MMP synthesis: a role for innate lymphoid cells? PLoS One. 2012;7:e52332.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Biancheri P, Di Sabatino A, Ammoscato F, et al. Absence of a role for interleukin-13 in inflammatory bowel disease. Eur J Immunol. 2014;44:370–85.PubMedCrossRefGoogle Scholar
  57. 57.
    Fichtner-Feigl S, Strober W, Kawakami K, et al. IL-13 signaling through the IL-13alpha2 receptor is involved in induction of TGF-beta1 production and fibrosis. Nat Med. 2006;12:99–106.PubMedCrossRefGoogle Scholar
  58. 58.
    Fichtner-Feigl S, Young CA, Kitani A, et al. IL-13 signaling via IL-13R alpha2 induces major downstream fibrogenic factors mediating fibrosis in chronic TNBS colitis. Gastroenterology. 2008;135:2003–13, 2013.e1-7.PubMedCrossRefGoogle Scholar
  59. 59.
    Chiaramonte MG, Donaldson DD, Cheever AW, et al. An IL-13 inhibitor blocks the development of hepatic fibrosis during a T-helper type 2-dominated inflammatory response. J Clin Invest. 1999;104:777–85.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Maloy KJ. The Interleukin-23/Interleukin-17 axis in intestinal inflammation. J Intern Med. 2008;263:584–90.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Hata K, Andoh A, Shimada M, et al. IL-17 stimulates inflammatory responses via NF-kappaB and MAP kinase pathways in human colonic myofibroblasts. Am J Physiol Gastrointest Liver Physiol. 2002;282:G1035–44.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Meng F, Wang K, Aoyama T, et al. Interleukin-17 signaling in inflammatory, Kupffer cells, and hepatic stellate cells exacerbates liver fibrosis in mice. Gastroenterology. 2012;143:765–76.e1-3.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Mi S, Li Z, Yang HZ, et al. Blocking IL-17A promotes the resolution of pulmonary inflammation and fibrosis via TGF-beta1-dependent and -independent mechanisms. J Immunol. 2011;187:3003–14.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Baldeviano GC, Barin JG, Talor MV, et al. Interleukin-17A is dispensable for myocarditis but essential for the progression to dilated cardiomyopathy. Circ Res. 2010;106:1646–55.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Khanna PV, Shih DQ, Haritunians T, et al. Use of animal models in elucidating disease pathogenesis in IBD. Semin Immunopathol. 2014;36:541–51.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Biancheri P, Pender SL, Ammoscato F, et al. The role of interleukin 17 in Crohn’s disease-associated intestinal fibrosis. Fibrogenesis Tissue Repair. 2013;6:13.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Hueber W, Sands BE, Lewitzky S, et al. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn’s disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut. 2012;61:1693–700.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Wallace KL, Zheng L, Kanazawa Y, et al. TL1A modulates the differential effect of IL-17 blockade on mucosal inflammation. Gastroenterology. 2014;146:S-133.CrossRefGoogle Scholar
  69. 69.
    Kitson J, Raven T, Jiang YP, et al. A death-domain-containing receptor that mediates apoptosis. Nature. 1996;384:372–5.PubMedCrossRefGoogle Scholar
  70. 70.
    Chinnaiyan AM, O'Rourke K, Yu GL, et al. Signal transduction by DR3, a death domain-containing receptor related to TNFR-1 and CD95. Science. 1996;274:990–2.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Tan KB, Harrop J, Reddy M, et al. Characterization of a novel TNF-like ligand and recently described TNF ligand and TNF receptor superfamily genes and their constitutive and inducible expression in hematopoietic and non-hematopoietic cells. Gene. 1997;204:35–46.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Bodmer JL, Burns K, Schneider P, et al. TRAMP, a novel apoptosis-mediating receptor with sequence homology to tumor necrosis factor receptor 1 and Fas(Apo-1/CD95). Immunity. 1997;6:79–88.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Al-Lamki RS, Wang J, Tolkovsky AM, et al. TL1A both promotes and protects from renal inflammation and injury. J Am Soc Nephrol. 2008;19:953–60.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Bamias G, Mishina M, Nyce M, et al. Role of TL1A and its receptor DR3 in two models of chronic murine ileitis. Proc Natl Acad Sci U S A. 2006;103:8441–6.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Prehn JL, Thomas LS, Landers CJ, et al. The T cell costimulator TL1A is induced by FcgammaR signaling in human monocytes and dendritic cells. J Immunol. 2007;178:4033–8.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Varfolomeev EE, Schuchmann M, Luria V, et al. Targeted disruption of the mouse Caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally. Immunity. 1998;9:267–76.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Wang EC, Thern A, Denzel A, et al. DR3 regulates negative selection during thymocyte development. Mol Cell Biol. 2001;21:3451–61.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Wen L, Zhuang L, Luo X, et al. TL1A-induced NF-kappaB activation and c-IAP2 production prevent DR3-mediated apoptosis in TF-1 cells. J Biol Chem. 2003;278:39251–8.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Pappu BP, Borodovsky A, Zheng TS, et al. TL1A-DR3 interaction regulates Th17 cell function and Th17-mediated autoimmune disease. J Exp Med. 2008;205:1049–62.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Migone TS, Zhang J, Luo X, et al. TL1A is a TNF-like ligand for DR3 and TR6/DcR3 and functions as a T cell costimulator. Immunity. 2002;16:479–92.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Meylan F, Davidson TS, Kahle E, et al. The TNF-family receptor DR3 is essential for diverse T cell-mediated inflammatory diseases. Immunity. 2008;29:79–89.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Shih DQ, Zheng L, Zhang X, et al. Inhibition of a novel fibrogenic factor Tl1a reverses established colonic fibrosis. Mucosal Immunol. 2014;7:1492–503.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Picornell Y, Mei L, Taylor K, et al. TNFSF15 is an ethnic-specific IBD gene. Inflamm Bowel Dis. 2007;13:1333–8.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Michelsen KS, Thomas LS, Taylor KD, et al. IBD-associated TL1A gene (TNFSF15) haplotypes determine increased expression of TL1A protein. PLoS One. 2009;4:e4719.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Hirano A, Yamazaki K, Umeno J, et al. Association study of 71 European Crohn’s disease susceptibility loci in a Japanese population. Inflamm Bowel Dis. 2013;19:526–33.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Shih DQ, Barrett R, Zhang X, et al. Constitutive TL1A (TNFSF15) expression on lymphoid or myeloid cells leads to mild intestinal inflammation and fibrosis. PLoS One. 2011;6:e16090.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Meylan F, Song YJ, Fuss I, et al. The TNF-family cytokine TL1A drives IL-13-dependent small intestinal inflammation. Mucosal Immunol. 2011;4:172–85.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Barrett R, Zhang X, Koon HW, et al. Constitutive TL1A expression under colitogenic conditions modulates the severity and location of gut mucosal inflammation and induces fibrostenosis. Am J Pathol. 2012;180:636–49.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Leask A, Abraham DJ. TGF-beta signaling and the fibrotic response. FASEB J. 2004;18:816–27.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Wells RG. V. TGF-beta signaling pathways. Am J Physiol Gastrointest Liver Physiol. 2000;279:G845–50.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    McKaig BC, McWilliams D, Watson SA, et al. Expression and regulation of tissue inhibitor of metalloproteinase-1 and matrix metalloproteinases by intestinal myofibroblasts in inflammatory bowel disease. Am J Pathol. 2003;162:1355–60.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Mulsow JJ, Watson RW, Fitzpatrick JM, et al. Transforming growth factor-beta promotes pro-fibrotic behavior by serosal fibroblasts via PKC and ERK1/2 mitogen activated protein kinase cell signaling. Ann Surg. 2005;242:880–7, discussion 887-9.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Flier SN, Tanjore H, Kokkotou EG, et al. Identification of epithelial to mesenchymal transition as a novel source of fibroblasts in intestinal fibrosis. J Biol Chem. 2010;285:20202–12.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Tsukada S, Westwick JK, Ikejima K, et al. SMAD and p38 MAPK signaling pathways independently regulate alpha1(I) collagen gene expression in unstimulated and transforming growth factor-beta-stimulated hepatic stellate cells. J Biol Chem. 2005;280:10055–64.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Denton CP, Merkel PA, Furst DE, et al. Recombinant human anti-transforming growth factor beta1 antibody therapy in systemic sclerosis: a multicenter, randomized, placebo-controlled phase I/II trial of CAT-192. Arthritis Rheum. 2007;56:323–33.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Rice LM, Padilla CM, McLaughlin SR, et al. Fresolimumab treatment decreases biomarkers and improves clinical symptoms in systemic sclerosis patients. J Clin Invest. 2015;125:2795–807.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Medina C, Santos-Martinez MJ, Santana A, et al. Transforming growth factor-beta type 1 receptor (ALK5) and Smad proteins mediate TIMP-1 and collagen synthesis in experimental intestinal fibrosis. J Pathol. 2011;224:461–72.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Park SA, Kim MJ, Park SY, et al. EW-7197 inhibits hepatic, renal, and pulmonary fibrosis by blocking TGF-beta/Smad and ROS signaling. Cell Mol Life Sci. 2015;72:2023–39.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Moon JA, Kim HT, Cho IS, et al. IN-1130, a novel transforming growth factor-beta type I receptor kinase (ALK5) inhibitor, suppresses renal fibrosis in obstructive nephropathy. Kidney Int. 2006;70:1234–43.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Engebretsen KV, Skardal K, Bjornstad S, et al. Attenuated development of cardiac fibrosis in left ventricular pressure overload by SM16, an orally active inhibitor of ALK5. J Mol Cell Cardiol. 2014;76:148–57.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Koh RY, Lim CL, Uhal BD, et al. Inhibition of transforming growth factor-beta via the activin receptor-like kinase-5 inhibitor attenuates pulmonary fibrosis. Mol Med Rep. 2015;11:3808–13.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Iyer SN, Wild JS, Schiedt MJ, et al. Dietary intake of pirfenidone ameliorates bleomycin-induced lung fibrosis in hamsters. J Lab Clin Med. 1995;125:779–85.PubMedPubMedCentralGoogle Scholar
  103. 103.
    Shimizu T, Kuroda T, Hata S, et al. Pirfenidone improves renal function and fibrosis in the post-obstructed kidney. Kidney Int. 1998;54:99–109.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Noble PW, Albera C, Bradford WZ, et al. Pirfenidone in patients with idiopathic pulmonary fibrosis (CAPACITY): two randomised trials. Lancet. 2011;377:1760–9.PubMedCrossRefGoogle Scholar
  105. 105.
    King TE Jr, Bradford WZ, Castro-Bernardini S, et al. A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med. 2014;370:2083–92.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Mesa RA, Tefferi A, Elliott MA, et al. A phase II trial of pirfenidone (5-methyl-1-phenyl-2-[1H]-pyridone), a novel anti-fibrosing agent, in myelofibrosis with myeloid metaplasia. Br J Haematol. 2001;114:111–3.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Angulo P, MacCarty RL, Sylvestre PB, et al. Pirfenidone in the treatment of primary sclerosing cholangitis. Dig Dis Sci. 2002;47:157–61.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Burke JP, Watson RW, Murphy M, et al. Simvastatin impairs smad-3 phosphorylation and modulates transforming growth factor beta1-mediated activation of intestinal fibroblasts. Br J Surg. 2009;96:541–51.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Abe Y, Murano M, Murano N, et al. Simvastatin attenuates intestinal fibrosis independent of the anti-inflammatory effect by promoting fibroblast/myofibroblast apoptosis in the regeneration/healing process from TNBS-induced colitis. Dig Dis Sci. 2012;57:335–44.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Bataller R, Gines P, Nicolas JM, et al. Angiotensin II induces contraction and proliferation of human hepatic stellate cells. Gastroenterology. 2000;118:1149–56.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Jaszewski R, Tolia V, Ehrinpreis MN, et al. Increased colonic mucosal angiotensin I and II concentrations in Crohn’s colitis. Gastroenterology. 1990;98:1543–8.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Wengrower D, Zanninelli G, Pappo O, et al. Prevention of fibrosis in experimental colitis by captopril: the role of tgf-beta1. Inflamm Bowel Dis. 2004;10:536–45.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Wengrower D, Zanninelli G, Latella G, et al. Losartan reduces trinitrobenzene sulphonic acid-induced colorectal fibrosis in rats. Can J Gastroenterol. 2012;26:33–9.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Sullivan BP, Weinreb PH, Violette SM, et al. The coagulation system contributes to alphaVbeta6 integrin expression and liver fibrosis induced by cholestasis. Am J Pathol. 2010;177:2837–49.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Flynn RS, Murthy KS, Grider JR, et al. Endogenous IGF-I and alphaVbeta3 integrin ligands regulate increased smooth muscle hyperplasia in stricturing Crohn’s disease. Gastroenterology. 2010;138:285–93.PubMedCrossRefGoogle Scholar
  116. 116.
    Li C, Flynn RS, Grider JR, et al. Increased activation of latent TGF-beta1 by alphaVbeta3 in human Crohn’s disease and fibrosis in TNBS colitis can be prevented by cilengitide. Inflamm Bowel Dis. 2013;19:2829–39.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Di Sabatino A, Jackson CL, Pickard KM, et al. Transforming growth factor beta signalling and matrix metalloproteinases in the mucosa overlying Crohn’s disease strictures. Gut. 2009;58:777–89.PubMedCrossRefGoogle Scholar
  118. 118.
    Latella G, Vetuschi A, Sferra R, et al. Smad3 loss confers resistance to the development of trinitrobenzene sulfonic acid-induced colorectal fibrosis. Eur J Clin Investig. 2009;39:145–56.CrossRefGoogle Scholar
  119. 119.
    Latella G, Vetuschi A, Sferra R, et al. Targeted disruption of Smad3 confers resistance to the development of dimethylnitrosamine-induced hepatic fibrosis in mice. Liver Int. 2009;29:997–1009.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Dooley S, Hamzavi J, Breitkopf K, et al. Smad7 prevents activation of hepatic stellate cells and liver fibrosis in rats. Gastroenterology. 2003;125:178–91.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Asseman C, Mauze S, Leach MW, et al. An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J Exp Med. 1999;190:995–1004.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Louis H, Van Laethem JL, Wu W, et al. Interleukin-10 controls neutrophilic infiltration, hepatocyte proliferation, and liver fibrosis induced by carbon tetrachloride in mice. Hepatology. 1998;28:1607–15.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Nakagome K, Dohi M, Okunishi K, et al. In vivo IL-10 gene delivery attenuates bleomycin induced pulmonary fibrosis by inhibiting the production and activation of TGF-beta in the lung. Thorax. 2006;61:886–94.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Jin Y, Liu R, Xie J, et al. Interleukin-10 deficiency aggravates kidney inflammation and fibrosis in the unilateral ureteral obstruction mouse model. Lab Investig. 2013;93:801–11.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Aithal GP, Craggs A, Day CP, et al. Role of polymorphisms in the interleukin-10 gene in determining disease susceptibility and phenotype in inflamatory bowel disease. Dig Dis Sci. 2001;46:1520–5.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Marlow GJ, van Gent D, Ferguson LR. Why interleukin-10 supplementation does not work in Crohn’s disease patients. World J Gastroenterol. 2013;19:3931–41.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Noam Jacob
    • 1
    • 2
  • Stephan R. Targan
    • 1
  • David Q. Shih
    • 1
    Email author
  1. 1.F. Widjaja Foundation, Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical CenterLos AngelesUSA
  2. 2.Vatche and Tamar Manoukian, Division of Digestive Diseases, Geffen School of MedicineUniversity of CaliforniaLos AngelesUSA

Personalised recommendations