Advertisement

Challenges of Translation of Anti-Fibrotic Therapies into Clinical Practice in IBD

  • Gerhard Rogler
Chapter

Abstract

Fibrosis is an important clinical problem and affects a high number of patients with inflammatory bowel diseases (IBD). Anti-inflammatory therapies may not be sufficient to prevent intestinal fibrosis in IBD patients. Several anti-fibrotic treatment approaches have been developed. However, there are significant challenges in translating these anti-fibrotic therapies into clinical practice in IBD.

Anti-fibrotic therapy approaches in IBD are complicated by the fact that an effective and intact wound healing response and effective repair mechanisms are essential in Crohn’s disease and ulcerative colitis patients. This implies that the anti-fibrotic therapies must not interfere with repair and tissue regeneration. Strategies interfering with transforming growth factor (TGF)β expression and activation are promising in other fibrotic diseases but may lead to more inflammation in IBD. The specific pathophysiology of IBD makes it difficult to extrapolate clinical data obtained with anti-fibrotic agents in other diseases than the gut. Another challenge is the lack of clear-cut clinical endpoints and readout for clinical trials for intestinal fibrosis. At present, the development of anti-fibrotic therapies takes place in other diseases such as lung and liver fibrosis. It will be important to develop new clinical endpoints for intestinal fibrosis trials to test new anti-fibrotic treatment strategies in IBD to benefit from progress in other fibrotic diseases.

Keywords

Inflammatory bowel disease Imaging Clinical end points Fibrosis markers Translational medicine 

Abbreviations

CD

Crohn’s disease

IBD

Inflammatory bowel disease

IL

Interleukin

UC

Ulcerative colitis

References

  1. 1.
    Louis E, Collard A, Oger AF, Degroote E, Aboul Nasr El Yafi FA, Belaiche J. Behaviour of Crohn’s disease according to the Vienna classification: changing pattern over the course of the disease. Gut. 2001;49:777–82.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Whelan G, Farmer RG, Fazio VW, Goormastic M. Recurrence after surgery in Crohn’s disease. Relationship to location of disease (clinical pattern) and surgical indication. Gastroenterology. 1985;88:1826–33.CrossRefPubMedGoogle Scholar
  3. 3.
    Farmer RG, Whelan G, Fazio VW. Long-term follow-up of patients with Crohn’s disease. Relationship between the clinical pattern and prognosis. Gastroenterology. 1985;88:1818–25.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Andres PG, Friedman LS. Epidemiology and the natural course of inflammatory bowel disease. Gastroenterol Clin N Am. 1999;28:255–81, vii.CrossRefGoogle Scholar
  5. 5.
    Pittet V, Rogler G, Michetti P, Fournier N, Vader JP, Schoepfer A, Mottet C, Burnand B, Froehlich F, Swiss Inflammatory Bowel Disease Cohort Study Group. Penetrating or stricturing diseases are the major determinants of time to first and repeat resection surgery in Crohn’s disease. Digestion. 2013;87:212–21.CrossRefPubMedGoogle Scholar
  6. 6.
    Pariente B, Cosnes J, Danese S, Sandborn WJ, Lewin M, Fletcher JG, Chowers Y, D’Haens G, Feagan BG, Hibi T, Hommes DW, Irvine EJ, Kamm MA, Loftus EV Jr, Louis E, Michetti P, Munkholm P, Oresland T, Panes J, Peyrin-Biroulet L, Reinisch W, Sands BE, Schoelmerich J, Schreiber S, Tilg H, Travis S, van Assche G, Vecchi M, Mary JY, Colombel JF, Lemann M. Development of the Crohn’s disease digestive damage score, the Lemann score. Inflamm Bowel Dis. 2011;17:1415–22.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kugathasan S, Denson LA, Walters TD, Kim MO, Marigorta UM, Schirmer M, Mondal K, Liu C, Griffiths A, Noe JD, Crandall WV, Snapper S, Rabizadeh S, Rosh JR, Shapiro JM, Guthery S, Mack DR, Kellermayer R, Kappelman MD, Steiner S, Moulton DE, Keljo D, Cohen S, Oliva-Hemker M, Heyman MB, Otley AR, Baker SS, Evans JS, Kirschner BS, Patel AS, Ziring D, Trapnell BC, Sylvester FA, Stephens MC, Baldassano RN, Markowitz JF, Cho J, Xavier RJ, Huttenhower C, Aronow BJ, Gibson G, Hyams JS, Dubinsky MC. Prediction of complicated disease course for children newly diagnosed with Crohn’s disease: a multicentre inception cohort study. Lancet. 2017;389:1710–8.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Latella G, Rogler G, Bamias G, Breynaert C, Florholmen J, Pellino G, Reif S, Speca S, Lawrance IC. Results of the 4th scientific workshop of the ECCO (I): pathophysiology of intestinal fibrosis in IBD. J Crohns Colitis. 2014;8:1147.CrossRefPubMedGoogle Scholar
  9. 9.
    Rieder F, de Bruyn JR, Pham BT, Katsanos K, Annese V, Higgins PD, Magro F, Dotan I. Results of the 4th scientific workshop of the ECCO (group II): markers of intestinal fibrosis in inflammatory bowel disease. J Crohns Colitis. 2014;8:1166.CrossRefPubMedGoogle Scholar
  10. 10.
    Rieder F, Fiocchi C, Rogler G. Mechanisms, management, and treatment of fibrosis in patients with inflammatory bowel diseases. Gastroenterology. 2017;152:340–50. e346CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Pellicoro A, Ramachandran P, Iredale JP, Fallowfield JA. Liver fibrosis and repair: immune regulation of wound healing in a solid organ. Nat Rev Immunol. 2014;14:181–94.CrossRefPubMedGoogle Scholar
  12. 12.
    Karsdal MA, Krarup H, Sand JM, Christensen PB, Gerstoft J, Leeming DJ, Weis N, Schaffalitzky de Muckadell OB, Krag A. Review article: the efficacy of biomarkers in chronic fibroproliferative diseases - early diagnosis and prognosis, with liver fibrosis as an exemplar. Aliment Pharmacol Ther. 2014;40:233.CrossRefPubMedGoogle Scholar
  13. 13.
    Elpek GO. Cellular and molecular mechanisms in the pathogenesis of liver fibrosis: an update. World J Gastroenterol. 2014;20:7260–76.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Schuppan D, Kim YO. Evolving therapies for liver fibrosis. J Clin Invest. 2013;123:1887–901.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Altamirano-Barrera A, Barranco-Fragoso B, Mendez-Sanchez N. Management strategies for liver fibrosis. Ann Hepatol. 2017;16:48–56.CrossRefPubMedGoogle Scholar
  16. 16.
    Koyama Y, Brenner DA. Liver inflammation and fibrosis. J Clin Invest. 2017;127:55–64.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Elhenawy AA, Ashour RH, Nabih N, Shalaby NM, Megahed N. Possible antifibrotic effect of GDC-0449 (Vismodegib), a hedgehog-pathway inhibitor, in mice model of Schistosoma-induced liver fibrosis. Parasitol Int. 2017;66:545.CrossRefPubMedGoogle Scholar
  18. 18.
    Zhang F, Hao M, Jin H, Yao Z, Lian N, Wu L, Shao J, Chen A, Zheng S. Canonical hedgehog signalling regulates hepatic stellate cell-mediated angiogenesis in liver fibrosis. Br J Pharmacol. 2017;174:409–23.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Bolanos AL, Milla CM, Lira JC, Ramirez R, Checa M, Barrera L, Garcia-Alvarez J, Carbajal V, Becerril C, Gaxiola M, Pardo A, Selman M. Role of sonic hedgehog in idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol. 2012;303:L978–90.CrossRefPubMedGoogle Scholar
  20. 20.
    Yang JJ, Tao H, Li J. Hedgehog signaling pathway as key player in liver fibrosis: new insights and perspectives. Expert Opin Ther Targets. 2014;18:1011–21.CrossRefPubMedGoogle Scholar
  21. 21.
    Gressner AM, Weiskirchen R, Breitkopf K, Dooley S. Roles of TGF-beta in hepatic fibrosis. Front Biosci. 2002;7:d793–807.CrossRefPubMedGoogle Scholar
  22. 22.
    Arribillaga L, Dotor J, Basagoiti M, Riezu-Boj JI, Borras-Cuesta F, Lasarte JJ, Sarobe P, Cornet ME, Feijoo E. Therapeutic effect of a peptide inhibitor of TGF-beta on pulmonary fibrosis. Cytokine. 2011;53:327–33.CrossRefPubMedGoogle Scholar
  23. 23.
    de Gouville AC, Boullay V, Krysa G, Pilot J, Brusq JM, Loriolle F, Gauthier JM, Papworth SA, Laroze A, Gellibert F, Huet S. Inhibition of TGF-beta signaling by an ALK5 inhibitor protects rats from dimethylnitrosamine-induced liver fibrosis. Br J Pharmacol. 2005;145:166–77.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Fu K, Corbley MJ, Sun L, Friedman JE, Shan F, Papadatos JL, Costa D, Lutterodt F, Sweigard H, Bowes S, Choi M, Boriack-Sjodin PA, Arduini RM, Sun D, Newman MN, Zhang X, Mead JN, Chuaqui CE, Cheung HK, Zhang X, Cornebise M, Carter MB, Josiah S, Singh J, Lee WC, Gill A, Ling LE. SM16, an orally active TGF-beta type I receptor inhibitor prevents myofibroblast induction and vascular fibrosis in the rat carotid injury model. Arterioscler Thromb Vasc Biol. 2008;28:665–71.CrossRefPubMedGoogle Scholar
  25. 25.
    Liu Y, Wang Z, Kwong SQ, Lui EL, Friedman SL, Li FR, Lam RW, Zhang GC, Zhang H, Ye T. Inhibition of PDGF, TGF-beta, and Abl signaling and reduction of liver fibrosis by the small molecule Bcr-Abl tyrosine kinase antagonist Nilotinib. J Hepatol. 2011;55:612–25.CrossRefPubMedGoogle Scholar
  26. 26.
    Iekushi K, Taniyama Y, Azuma J, Sanada F, Kusunoki H, Yokoi T, Koibuchi N, Okayama K, Rakugi H, Morishita R. Hepatocyte growth factor attenuates renal fibrosis through TGF-beta1 suppression by apoptosis of myofibroblasts. J Hypertens. 2010;28:2454–61.PubMedGoogle Scholar
  27. 27.
    Moreno M, Gonzalo T, Kok RJ, Sancho-Bru P, van Beuge M, Swart J, Prakash J, Temming K, Fondevila C, Beljaars L, Lacombe M, van der Hoeven P, Arroyo V, Poelstra K, Brenner DA, Gines P, Bataller R. Reduction of advanced liver fibrosis by short-term targeted delivery of an angiotensin receptor blocker to hepatic stellate cells in rats. Hepatology. 2010;51:942–52.CrossRefPubMedGoogle Scholar
  28. 28.
    Kim MY, Baik SK, Park DH, Jang YO, Suk KT, Yea CJ, Lee IY, Kim JW, Kim HS, Kwon SO, Cho MY, Ko SB, Chang SJ, Um SH, Han KH. Angiotensin receptor blockers are superior to angiotensin-converting enzyme inhibitors in the suppression of hepatic fibrosis in a bile duct-ligated rat model. J Gastroenterol. 2008;43:889–96.CrossRefPubMedGoogle Scholar
  29. 29.
    Yoshiji H, Noguchi R, Fukui H. Combined effect of an ACE inhibitor, perindopril, and interferon on liver fibrosis markers in patients with chronic hepatitis C. J Gastroenterol. 2005;40:215–6.CrossRefPubMedGoogle Scholar
  30. 30.
    Li G, Xie Q, Shi Y, Li D, Zhang M, Jiang S, Zhou H, Lu H, Jin Y. Inhibition of connective tissue growth factor by siRNA prevents liver fibrosis in rats. J Gene Med. 2006;8:889–900.CrossRefPubMedGoogle Scholar
  31. 31.
    Yokoi H, Mukoyama M, Sugawara A, Mori K, Nagae T, Makino H, Suganami T, Yahata K, Fujinaga Y, Tanaka I, Nakao K. Role of connective tissue growth factor in fibronectin expression and tubulointerstitial fibrosis. Am J Physiol Renal Physiol. 2002;282:F933–42.CrossRefPubMedGoogle Scholar
  32. 32.
    Wei Y, Kang XL, Wang X. The peripheral cannabinoid receptor 1 antagonist VD60 efficiently inhibits carbon tetrachloride-intoxicated hepatic fibrosis progression. Exp Biol Med. 2014;239:183–92.CrossRefGoogle Scholar
  33. 33.
    Patsenker E, Stoll M, Millonig G, Agaimy A, Wissniowski T, Schneider V, Mueller S, Brenneisen R, Seitz HK, Ocker M, Stickel F. Cannabinoid receptor type I modulates alcohol-induced liver fibrosis. Mol Med. 2011;17:1285–94.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Wasmuth HE, Trautwein C. CB1 cannabinoid receptor antagonism: a new strategy for the treatment of liver fibrosis. Hepatology. 2007;45:543–4.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Rancoule C, Pradere JP, Gonzalez J, Klein J, Valet P, Bascands JL, Schanstra JP, Saulnier-Blache JS. Lysophosphatidic acid-1-receptor targeting agents for fibrosis. Expert Opin Investig Drugs. 2011;20:657–67.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Tager AM, LaCamera P, Shea BS, Campanella GS, Selman M, Zhao Z, Polosukhin V, Wain J, Karimi-Shah BA, Kim ND, Hart WK, Pardo A, Blackwell TS, Xu Y, Chun J, Luster AD. The lysophosphatidic acid receptor LPA1 links pulmonary fibrosis to lung injury by mediating fibroblast recruitment and vascular leak. Nat Med. 2008;14:45–54.CrossRefPubMedGoogle Scholar
  37. 37.
    Iredale JP, Thompson A, Henderson NC. Extracellular matrix degradation in liver fibrosis: biochemistry and regulation. Biochim Biophys Acta. 2013;1832:876–83.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Unemori EN, Pickford LB, Salles AL, Piercy CE, Grove BH, Erikson ME, Amento EP. Relaxin induces an extracellular matrix-degrading phenotype in human lung fibroblasts in vitro and inhibits lung fibrosis in a murine model in vivo. J Clin Invest. 1996;98:2739–45.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Hemmann S, Graf J, Roderfeld M, Roeb E. Expression of MMPs and TIMPs in liver fibrosis - a systematic review with special emphasis on anti-fibrotic strategies. J Hepatol. 2007;46:955–75.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Wakasaki H, Ooshima A. Synthesis of lysyl oxidase in experimental hepatic fibrosis. Biochem Biophys Res Commun. 1990;166:1201–4.CrossRefPubMedGoogle Scholar
  41. 41.
    Altinbas A. A quick overview to the early phase clinical trials of Simtuzumab(R): are we loosing the most promising anti-fibrotic product? Med Hypotheses. 2017;108:159–60.CrossRefPubMedGoogle Scholar
  42. 42.
    Meyer KC. Great expectations for simtuzumab in IPF fall short. Lancet Respir Med. 2017;5:2–3.CrossRefPubMedGoogle Scholar
  43. 43.
    Raghu G, Brown KK, Collard HR, Cottin V, Gibson KF, Kaner RJ, Lederer DJ, Martinez FJ, Noble PW, Song JW, Wells AU, Whelan TP, Wuyts W, Moreau E, Patterson SD, Smith V, Bayly S, Chien JW, Gong Q, Zhang JJ, O’Riordan TG. Efficacy of simtuzumab versus placebo in patients with idiopathic pulmonary fibrosis: a randomised, double-blind, controlled, phase 2 trial. Lancet Respir Med. 2017;5:22–32.CrossRefPubMedGoogle Scholar
  44. 44.
    Lopetuso LR, Scaldaferri F, Pizarro TT. Emerging role of the interleukin (IL)-33/ST2 axis in gut mucosal wound healing and fibrosis. Fibrogenesis Tissue Repair. 2012;5:18.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Pizarro TT, Pastorelli L, Bamias G, Garg RR, Reuter BK, Mercado JR, Chieppa M, Arseneau KO, Ley K, Cominelli F. SAMP1/YitFc mouse strain: a spontaneous model of Crohn’s disease-like ileitis. Inflamm Bowel Dis. 2011;17:2566–84.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Yamaguchi H, Suzuki K, Nagata M, Kawase T, Sukumaran V, Thandavarayan RA, Kawauchi Y, Yokoyama J, Tomita M, Kawachi H, Watanabe K, Yoneyama H, Asakura H, Takagi R. Irsogladine maleate ameliorates inflammation and fibrosis in mice with chronic colitis induced by dextran sulfate sodium. Med Mol Morphol. 2012;45:140–51.CrossRefPubMedGoogle Scholar
  47. 47.
    Ding S, Walton KL, Blue RE, McNaughton K, Magness ST, Lund PK. Mucosal healing and fibrosis after acute or chronic inflammation in wild type FVB-N mice and C57BL6 procollagen alpha1(I)-promoter-GFP reporter mice. PLoS One. 2012;7:e42568.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Suzuki K, Sun X, Nagata M, Kawase T, Yamaguchi H, Sukumaran V, Kawauchi Y, Kawachi H, Nishino T, Watanabe K, Yoneyama H, Asakura H. Analysis of intestinal fibrosis in chronic colitis in mice induced by dextran sulfate sodium. Pathol Int. 2011;61:228–38.CrossRefPubMedGoogle Scholar
  49. 49.
    Zhu MY, Lu YM, Ou YX, Zhang HZ, Chen WX. Dynamic progress of 2,4,6-trinitrobenzene sulfonic acid induced chronic colitis and fibrosis in rat model. J Dig Dis. 2012;13:421–9.CrossRefPubMedGoogle Scholar
  50. 50.
    Wengrower D, Zanninelli G, Latella G, Necozione S, Metanes I, Israeli E, Lysy J, Pines M, Papo O, Goldin E. Losartan reduces trinitrobenzene sulphonic acid-induced colorectal fibrosis in rats. Can J Gastroenterol. 2012;26:33–9.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Stidham RW, Xu J, Johnson LA, Kim K, Moons DS, McKenna BJ, Rubin JM, Higgins PD. Ultrasound elasticity imaging for detecting intestinal fibrosis and inflammation in rats and humans with Crohn’s disease. Gastroenterology. 2011;141:819–26. e811CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Peterson TC, Peterson MR, Raoul JM. The effect of pentoxifylline and its metabolite-1 on inflammation and fibrosis in the TNBS model of colitis. Eur J Pharmacol. 2011;662:47–54.CrossRefPubMedGoogle Scholar
  53. 53.
    Koon HW, Shih D, Karagiannides I, Zhao D, Fazelbhoy Z, Hing T, Xu H, Lu B, Gerard N, Pothoulakis C. Substance P modulates colitis-associated fibrosis. Am J Pathol. 2010;177:2300–9.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Mahavadi S, Flynn RS, Grider JR, Qiao LY, Murthy KS, Hazelgrove KB, Kuemmerle JF. Amelioration of excess collagen IalphaI, fibrosis, and smooth muscle growth in TNBS-induced colitis in IGF-I(+/−) mice. Inflamm Bowel Dis. 2011;17:711–9.CrossRefPubMedGoogle Scholar
  55. 55.
    Flier SN, Tanjore H, Kokkotou EG, Sugimoto H, Zeisberg M, Kalluri R. Identification of epithelial to mesenchymal transition as a novel source of fibroblasts in intestinal fibrosis. J Biol Chem. 2010;285:20202–12.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Ma Y, Guan Q, Bai A, Weiss CR, Hillman CL, Ma A, Zhou G, Qing G, Peng Z. Targeting TGF-beta1 by employing a vaccine ameliorates fibrosis in a mouse model of chronic colitis. Inflamm Bowel Dis. 2010;16:1040–50.CrossRefPubMedGoogle Scholar
  57. 57.
    Adler J, Rahal K, Swanson SD, Schmiedlin-Ren P, Rittershaus AC, Reingold LJ, Brudi JS, Shealy D, Cai A, McKenna BJ, Zimmermann EM. Anti-tumor necrosis factor alpha prevents bowel fibrosis assessed by messenger RNA, histology, and magnetization transfer MRI in rats with Crohn’s disease. Inflamm Bowel Dis. 2013;19:683–90.CrossRefPubMedGoogle Scholar
  58. 58.
    Adler J, Swanson SD, Schmiedlin-Ren P, Higgins PD, Golembeski CP, Polydorides AD, McKenna BJ, Hussain HK, Verrot TM, Zimmermann EM. Magnetization transfer helps detect intestinal fibrosis in an animal model of Crohn disease. Radiology. 2011;259:127–35.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Rivera-Nieves J, Bamias G, Vidrich A, Marini M, Pizarro TT, McDuffie MJ, Moskaluk CA, Cohn SM, Cominelli F. Emergence of perianal fistulizing disease in the SAMP1/YitFc mouse, a spontaneous model of chronic ileitis. Gastroenterology. 2003;124:972–82.CrossRefPubMedGoogle Scholar
  60. 60.
    Bamias G, Okazawa A, Rivera-Nieves J, Arseneau KO, De La Rue SA, Pizarro TT, Cominelli F. Commensal bacteria exacerbate intestinal inflammation but are not essential for the development of murine ileitis. J Immunol. 2007;178:1809–18.CrossRefPubMedGoogle Scholar
  61. 61.
    Gomez-de-Antonio D, Campo-Canaveral de la Cruz JL, Gonzalez-Lois C, Santos M, Millan I, Varela de Ugarte A. Heterotopic tracheal transplantation animal model of bronchiolitis obliterans: a reproducible model. Ann Transplant. 2013;18:661–70.CrossRefPubMedGoogle Scholar
  62. 62.
    Atanasova S, Hirschburger M, Jonigk D, Obert M, Petri K, Evers A, Hecker A, Schmitz J, Kaufmann A, Wilhelm J, Chakraborty T, Warnecke G, Gottlieb J, Padberg W, Grau V. A relevant experimental model for human bronchiolitis obliterans syndrome. J Heart Lung Transplant. 2013;32:1131–9.CrossRefPubMedGoogle Scholar
  63. 63.
    Hausmann M, Rechsteiner T, Caj M, Benden C, Fried M, Boehler A, Rogler G. A new heterotopic transplant animal model of intestinal fibrosis. Inflamm Bowel Dis. 2013;19:2302–14.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Meier R, Lutz C, Cosin-Roger J, Fagagnini S, Bollmann G, Hunerwadel A, Mamie C, Lang S, Tchouboukov A, Weber FE, Weber A, Rogler G, Hausmann M. Decreased fibrogenesis after treatment with pirfenidone in a newly developed mouse model of intestinal fibrosis. Inflamm Bowel Dis. 2016;22:569–82.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Goffin L, Fagagnini S, Vicari A, Mamie C, Melhem H, Weder B, Lutz C, Lang S, Scharl M, Rogler G, Chvatchko Y, Hausmann M. Anti-MMP-9 antibody: a promising therapeutic strategy for treatment of inflammatory bowel disease complications with fibrosis. Inflamm Bowel Dis. 2016;22:2041–57.CrossRefPubMedGoogle Scholar
  66. 66.
    Tao H, Yang JJ, Shi KH, Huang C, Zhang L, Lv XW, Li J. The significance of YKL-40 protein in liver fibrosis. Inflamm Res. 2014;63:249–54.CrossRefPubMedGoogle Scholar
  67. 67.
    Erzin Y, Uzun H, Karatas A, Celik AF. Serum YKL-40 as a marker of disease activity and stricture formation in patients with Crohn’s disease. J Gastroenterol Hepatol. 2008;23:e357–62.CrossRefPubMedGoogle Scholar
  68. 68.
    Tang N, Zhang Y, Liu Z, Ai X, Liang Q. Correlation of four potential biomarkers of liver fibrosis with liver function and grade of hepatic fibrosis in a neonatal cholestatic rat model. Mol Med Rep. 2017;16:415–21.CrossRefPubMedGoogle Scholar
  69. 69.
    Yamazaki T, Joshita S, Umemura T, Usami Y, Sugiura A, Fujimori N, Shibata S, Ichikawa Y, Komatsu M, Matsumoto A, Igarashi K, Tanaka E. Association of serum autotaxin levels with liver fibrosis in patients with chronic hepatitis C. Sci Rep. 2017;7:46705.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Yamada N, Sanada Y, Tashiro M, Hirata Y, Okada N, Ihara Y, Urahashi T, Mizuta K. Serum Mac-2 binding protein glycosylation isomer predicts grade F4 liver fibrosis in patients with biliary atresia. J Gastroenterol. 2017;52:245–52.CrossRefPubMedGoogle Scholar
  71. 71.
    Bondue B, Sherer F, Van Simaeys G, Doumont G, Egrise D, Yakoub Y, Huaux F, Parmentier M, Rorive S, Sauvage S, Lacroix S, Vosters O, De Vuyst P, Goldman S. PET/CT with 18F-FDG- and 18F-FBEM-labeled leukocytes for metabolic activity and leukocyte recruitment monitoring in a mouse model of pulmonary fibrosis. J Nucl Med. 2015;56:127–32.CrossRefPubMedGoogle Scholar
  72. 72.
    Pazahr S, Blume I, Frei P, Chuck N, Nanz D, Rogler G, Patak M, Boss A. Magnetization transfer for the assessment of bowel fibrosis in patients with Crohn’s disease: initial experience. MAGMA. 2013;26:291–301.CrossRefPubMedGoogle Scholar
  73. 73.
    Wong GL. Update of liver fibrosis and steatosis with transient elastography (Fibroscan). Gastroenterol Rep. 2013;1:19–26.CrossRefGoogle Scholar
  74. 74.
    Kim D, Kim WR, Talwalkar JA, Kim HJ, Ehman RL. Advanced fibrosis in nonalcoholic fatty liver disease: noninvasive assessment with MR elastography. Radiology. 2013;268:411–9.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Rockey DC. Noninvasive assessment of liver fibrosis and portal hypertension with transient elastography. Gastroenterology. 2008;134:8–14.CrossRefPubMedGoogle Scholar
  76. 76.
    Pinzani M, Vizzutti F, Arena U, Marra F. Technology insight: noninvasive assessment of liver fibrosis by biochemical scores and elastography. Nat Clin Pract Gastroenterol Hepatol. 2008;5:95–106.CrossRefPubMedGoogle Scholar
  77. 77.
    Friedrich-Rust M, Ong MF, Martens S, Sarrazin C, Bojunga J, Zeuzem S, Herrmann E. Performance of transient elastography for the staging of liver fibrosis: a meta-analysis. Gastroenterology. 2008;134:960–74.CrossRefPubMedGoogle Scholar
  78. 78.
    Verveer C, de Knegt RJ. Non-invasive measurement of liver fibrosis: application of the FibroScan in hepatology. Scand J Gastroenterol Suppl. 2006;41:85–8.CrossRefGoogle Scholar
  79. 79.
    Wells AU. Forced vital capacity as a primary end point in idiopathic pulmonary fibrosis treatment trials: making a silk purse from a sow’s ear. Thorax. 2013;68:309–10.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Wolters PJ, Collard HR, Jones KD. Pathogenesis of idiopathic pulmonary fibrosis. Annu Rev Pathol. 2014;9:157–79.CrossRefPubMedGoogle Scholar
  81. 81.
    Spagnolo P, Rossi G, Cavazza A. Pathogenesis of idiopathic pulmonary fibrosis and its clinical implications. Expert Rev Clin Immunol. 2014;10:1005–17.CrossRefPubMedGoogle Scholar
  82. 82.
    Camelo A, Dunmore R, Sleeman MA, Clarke DL. The epithelium in idiopathic pulmonary fibrosis: breaking the barrier. Front Pharmacol. 2014;4:173.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Steele MP, Schwartz DA. Molecular mechanisms in progressive idiopathic pulmonary fibrosis. Annu Rev Med. 2013;64:265–76.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Gastroenterology and HepatologyUniversity Hospital ZürichZürichSwitzerland

Personalised recommendations