Clinical, Cellular and Serologic Biomarkers of Intestinal Fibrosis

  • Antonio Di SabatinoEmail author
  • Paolo Giuffrida


Intestinal fibrosis, which is due to an exaggerated accumulation of extracellular matrix, is a frequent complication of inflammatory bowel disease (IBD) leading to intestinal obstruction and need for surgery. Currently, there are no biomarkers able to predict the development of intestinal fibrosis in patients with inflammatory bowel disease. Most of the candidate biomarkers, including clinical factors (i.e. smoking, ileal location, early use of steroids), circulating cells (i.e. fibrocytes), serum extracellular matrix components (i.e. collagen, fibronectin) or enzymes (i.e. tissue inhibitor of matrix metalloproteinase-1), serum growth factors (i.e. basic fibroblast growth factor, YKL-40) and serum antimicrobial antibodies (i.e. anti-Saccharomyces cerevisiae antibodies ASCA), have been shown to predict a disabling disease course rather than a fibrostenosing phenotype. In this chapter we critically review clinical, cellular and serological biomarkers of intestinal fibrosis in inflammatory bowel disease.


Anti-microbial antibody Extracellular matrix Fibrocyte Growth factor Ileal location 



Anti-chitobioside carbohydrate antibody


Anti-laminaribioside IgG antibody


Anti-mannobioside carbohydrate antibody


Anti-chitin carbohydrate antibody


Anti-bacterial flagellin CBir1 antibody


Anti-Pseudomonas-associated sequence I2 antibody


Anti-laminarin carbohydrate antibody


Anti-Escherichia coli outer membrane protein C antibody


Anti-Saccharomyces cerevisiae antibody


Basic fibroblast growth factor


Crohn’s disease


Extracellular matrix


Enhanced liver fibrosis


Fibroblast activation protein


Inflammatory bowel disease


Matrix metalloproteinase


Platelet-derived growth factor


N-terminal propeptide of type III collagen


Transforming growth factor


Tissue inhibitor of matrix metalloproteinases


Tumor necrosis factor


Ulcerative colitis


Vascular endothelial growth factor


  1. 1.
    Giuffrida P, Pinzani M, Corazza GR, et al. Biomarkers of intestinal fibrosis - one step towards clinical trials for stricturing inflammatory bowel disease. United European Gastroenterol J. 2016;4:523–30.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Rieder F, de Bruyn JR, Pham BT, et al. Results of the 4th scientific workshop of the ECCO (Group II): markers of intestinal fibrosis in inflammatory bowel disease. J Crohns Colitis. 2014;8:1166–78.CrossRefPubMedGoogle Scholar
  3. 3.
    Rieder F, Lawrance IC, Leite A, et al. Predictors of fibrostenotic Crohn’s disease. Inflamm Bowel Dis. 2011;17:2000–7.CrossRefPubMedGoogle Scholar
  4. 4.
    Beaugerie L, Seksik P, Nion-Larmurier I, et al. Predictors of Crohn’s disease. Gastroenterology. 2006;130:650–6.CrossRefPubMedGoogle Scholar
  5. 5.
    Lichtenstein GR, Olson A, Travers S, et al. Factors associated with the development of intestinal strictures or obstructions in patients with Crohn’s disease. Am J Gastroenterol. 2006;101:1030–8.CrossRefPubMedGoogle Scholar
  6. 6.
    Moeller A, Gilpin SE, Ask K, et al. Circulating fibrocytes are an indicator of poor prognosis in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2009;179:588–94.CrossRefPubMedGoogle Scholar
  7. 7.
    Sazuka S, Katsuno T, Nakagawa T, et al. Fibrocytes are involved in inflammation as well as fibrosis in the pathogenesis of Crohn’s disease. Dig Dis Sci. 2014;59:760–8.CrossRefPubMedGoogle Scholar
  8. 8.
    De Simone M, Ciulla MM, Cioffi U, et al. Effects of surgery on peripheral N-terminal propeptide of type III procollagen in patients with Crohn’s disease. J Gastrointest Surg. 2007;11:1361–4.CrossRefPubMedGoogle Scholar
  9. 9.
    Kjeldsen J, Schaffalitzky de Muckadell OB, et al. Seromarkers of collagen I and III metabolism in active Crohn’s disease. Relation to disease activity and response to therapy. Gut. 1995;37:805–10.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Di Sabatino A, Jackson CL, Pickard KM, et al. Transforming growth factor beta signalling and matrix metalloproteinases in the mucosa overlying Crohn’s disease strictures. Gut. 2009;58:777–89.CrossRefPubMedGoogle Scholar
  11. 11.
    Kapsoritakis AN, Kapsoritaki AI, Davidi IP, et al. Imbalance of tissue inhibitors of metalloproteinases (TIMP) - 1 and - 4 serum levels, in patients with inflammatory bowel disease. BMC Gastroenterol. 2008;8:55.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Rosenberg WM, Voelker M, Thiel R, et al. Serum markers detect the presence of liver fibrosis: a cohort study. Gastroenterology. 2004;127:1704–13.CrossRefPubMedGoogle Scholar
  13. 13.
    Vesterhus M, Hov JR, Holm A, et al. Enhanced liver fibrosis score predicts transplant-free survival in primary sclerosing cholangitis. Hepatology. 2015;62:188–97.CrossRefPubMedGoogle Scholar
  14. 14.
    Koutroubakis IE, Petinaki E, Dimoulios P, et al. Serum laminin and collagen IV in inflammatory bowel disease. J Clin Pathol. 2003;56:817–20.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Verspaget HW, Biemond I, Allaart CF, et al. Assessment of plasma fibronectin in Crohn’s disease. Hepatogastroenterology. 1991;38:231–4.PubMedGoogle Scholar
  16. 16.
    Allan A, Wyke J, Allan RN, et al. Plasma fibronectin in Crohn’s disease. Gut. 1989;30:627–33.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Giuffrida P, Biancheri P, MacDonald TT. Proteases and small intestinal barrier function in health and disease. Curr Opin Gastroenterol. 2014;30:147–53.CrossRefPubMedGoogle Scholar
  18. 18.
    Vassiliadis E, Oliveira CP, Alvares-da-Silva MR, et al. Circulating levels of citrullinated and MMP-degraded vimentin [VICM] in liver fibrosis related pathology. Am J Transl Res. 2012;4:403–14.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Vassiliadis E, Veidal SS, Barascuk N, et al. Measurement of matrix metalloproteinase 9-mediated collagen type III degradation fragment as a marker of skin fibrosis. BMC Dermatol. 2011;11:6.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Veidal SS, Karsdal MA, Nawrocki A, et al. Assessment of proteolytic degradation of the basement membrane: a fragment of type IV collagen as a biochemical marker for liver fibrosis. Fibrogenesis Tissue Repair. 2011;4:22.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Mortensen JH, Godskesen LE, Jensen MD, et al. Fragments of citrullinated and MMP-degraded vimentin and MMP-degraded type III collagen are novel serological biomarkers to differentiate Crohn’s disease from ulcerative colitis. J Crohns Colitis. 2015;9:863–72.CrossRefPubMedGoogle Scholar
  22. 22.
    Mortensen JH, Manon-Jensen T, Jensen MD, et al. Ulcerative colitis, Crohn’s disease, and irritable bowel syndrome have different profiles of extracellular matrix turnover, which also reflects disease activity in Crohn’s disease. PLoS One. 2017;12:e0185855.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Bousvaros A, Zurakowski D, Fishman SJ, et al. Serum basic fibroblast growth factor in pediatric Crohn’s disease. Implications for wound healing. Dig Dis Sci. 1997;42:378–86.CrossRefPubMedGoogle Scholar
  24. 24.
    Di Sabatino A, Ciccocioppo R, Benazzato L, et al. Infliximab downregulates basic fibroblast growth factor and vascular endothelial growth factor in Crohn’s disease patients. Aliment Pharmacol Ther. 2004;19:1019–24.CrossRefPubMedGoogle Scholar
  25. 25.
    Di Sabatino A, Ciccocioppo R, Armellini E, et al. Serum bFGF and VEGF correlate respectively with bowel wall thickness and intramural blood flow in Crohn’s disease. Inflamm Bowel Dis. 2004;10:573–7.CrossRefPubMedGoogle Scholar
  26. 26.
    Koutroubakis IE, Petinaki E, Dimoulios P, et al. Increased serum levels of YKL-40 in patients with inflammatory bowel disease. Int J Colorectal Dis. 2003;18:254–9.PubMedGoogle Scholar
  27. 27.
    Erzin Y, Uzun H, Karatas A, et al. Serum YKL-40 as a marker of disease activity and stricture formation in patients with Crohn’s disease. J Gastroenterol Hepatol. 2008;23:e357–62.CrossRefPubMedGoogle Scholar
  28. 28.
    Pinzani M. Fibrosis in the GI tract: pathophysiology, diagnosis and treatment options. In: Mayerle J, Tilg H, editors. Clinical update on inflammatory disorders of the gastrointestinal tract, Frontiers of gastrointestinal research. Basel: Karger; 2010. p. 15–31.Google Scholar
  29. 29.
    Matusiewicz M, Neubauer K, Mierzchala-Pasierb M, et al. Matrix metalloproteinase-9: its interplay with angiogenic factors in inflammatory bowel diseases. Dis Markers. 2014;2014:643645.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Dotan I, Fishman S, Dgani Y, et al. Antibodies against laminaribioside and chitobioside are novel serologic markers in Crohn’s disease. Gastroenterology. 2006;131:366–78.CrossRefPubMedGoogle Scholar
  31. 31.
    Arnott ID, Landers CJ, Nimmo EJ, et al. Sero-reactivity to microbial components in Crohn’s disease is associated with disease severity and progression, but not NOD2/CARD15 genotype. Am J Gastroenterol. 2004;99:2376–84.CrossRefPubMedGoogle Scholar
  32. 32.
    Reumaux D, Sendid B, Poulain D, et al. Serological markers in inflammatory bowel diseases. Best Pract Res Clin Gastroenterol. 2003;17:19–35.CrossRefPubMedGoogle Scholar
  33. 33.
    Rieder F, Schleder S, Wolf A, et al. Serum anti-glycan antibodies predict complicated Crohn’s disease behavior: a cohort study. Inflamm Bowel Dis. 2010;16:1367–75.CrossRefPubMedGoogle Scholar
  34. 34.
    van Schaik FD, Oldenburg B, Hart AR, et al. Serological markers predict inflammatory bowel disease years before the diagnosis. Gut. 2013;62:683–8.CrossRefPubMedGoogle Scholar
  35. 35.
    Paul S, Boschetti G, Rinaudo-Gaujous M, et al. Association of anti-glycan antibodies and inflammatory bowel disease course. J Crohns Colitis. 2015;9:445–51.CrossRefPubMedGoogle Scholar
  36. 36.
    Kaul A, Hutfless S, Liu L, et al. Serum anti-glycan antibody biomarkers for inflammatory bowel disease diagnosis and progression: a systematic review and meta-analysis. Inflamm Bowel Dis. 2012;18:1872–84.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Zhang Z, Li C, Zhao X, et al. Anti-Saccharomyces cerevisiae antibodies associate with phenotypes and higher risk for surgery in Crohn’s disease: a meta-analysis. Dig Dis Sci. 2012;57:2944–54.CrossRefPubMedGoogle Scholar
  38. 38.
    Rieder F, Dirmeier A, Strauch U, et al. Association of the novel serologic anti-glycan antibodies anti-laminarin and anti-chitin with complicated Crohn’s disease behavior. Inflamm Bowel Dis. 2010;16:263–74.CrossRefPubMedGoogle Scholar
  39. 39.
    Dubinsky MC, Lin YC, Dutridge D, et al. Serum immune responses predict rapid disease progression among children with Crohn’s disease: immune responses predict disease progression. Am J Gastroenterol. 2006;101:360–7.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Dubinsky MC, Kugathasan S, Mei L, et al. Increased immune reactivity predicts aggressive complicating Crohn’s disease in children. Clin Gastroenterol Hepatol. 2008;6:1105–11.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    O’Donnell S, O’Sullivan M, O’Morain CA, et al. The clinical significance of antimicrobial serologic responses within an Irish Crohn’s disease population. Eur J Gastroenterol Hepatol. 2013;25:1464–9.CrossRefPubMedGoogle Scholar
  42. 42.
    Ryan JD, Silverberg MS, Xu W, et al. Predicting complicated Crohn’s disease and surgery: phenotypes, genetics, serology and psychological characteristics of a population-based cohort. Aliment Pharmacol Ther. 2013;38:274–83.CrossRefPubMedGoogle Scholar
  43. 43.
    Xiong Y, Wang GZ, Zhou JQ, et al. Serum antibodies to microbial antigens for Crohn’s disease progression: a meta-analysis. Eur J Gastroenterol Hepatol. 2014;26:733–42.CrossRefPubMedGoogle Scholar
  44. 44.
    Acharya PS, Zukas A, Chandan V, et al. Fibroblast activation protein: a serine protease expressed at the remodeling interface in idiopathic pulmonary fibrosis. Hum Pathol. 2006;37:352–60.CrossRefPubMedGoogle Scholar
  45. 45.
    Levy MT, McCaughan GW, Abbott CA, et al. Fibroblast activation protein: a cell surface dipeptidyl peptidase and gelatinase expressed by stellate cells at the tissue remodelling interface in human cirrhosis. Hepatology. 1999;29:1768–78.CrossRefPubMedGoogle Scholar
  46. 46.
    Williams KH, Viera de Ribeiro AJ, Prakoso E, et al. Lower serum fibroblast activation protein shows promise in the exclusion of clinically significant liver fibrosis due to non-alcoholic fatty liver disease in diabetes and obesity. Diabetes Res Clin Pract. 2015;108:466–72.CrossRefPubMedGoogle Scholar
  47. 47.
    Rovedatti L, Di Sabatino A, Knowles CH, et al. Fibroblast activation protein expression in Crohn’s disease strictures. Inflamm Bowel Dis. 2011;17:1251–3.CrossRefPubMedGoogle Scholar
  48. 48.
    Truffi M, Sorrentino L, Monieri M, et al. Inhibition of fibroblast activation protein restores a balanced extracellular matrix and reduces fibrosis in Crohn’s disease strictures ex vivo. Inflamm Bowel Dis. 2018;24(2):332–45.CrossRefPubMedGoogle Scholar
  49. 49.
    Cosnes J, Cattan S, Blain A, et al. Long-term evolution of disease behavior of Crohn’s disease. Inflamm Bowel Dis. 2002;8:244–50.CrossRefPubMedGoogle Scholar
  50. 50.
    Zorzi F, Calabrese E, Monteleone I, et al. A phase 1 open-label trial shows that smad7 antisense oligonucleotide (GED0301) does not increase the risk of small bowel strictures in Crohn’s disease. Aliment Pharmacol Ther. 2012;36:850–7.CrossRefPubMedGoogle Scholar
  51. 51.
    Biancheri P, Giuffrida P, Docena GH, et al. The role of transforming growth factor (TGF)-β in modulating the immune response and fibrogenesis in the gut. Cytokine Growth Factor Rev. 2014;25:45–55.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Internal Medicine, San Matteo Hospital FoundationUniversity of PaviaPaviaItaly

Personalised recommendations