Fecal Transplantation

  • Franziska Schmidt
  • Britta SiegmundEmail author


Fecal transplantation or fecal microbiota transplantation (FMT) represents a therapeutic approach that has been applied in early Chinese medicine for diarrhea and has only recently found the way into medicine. However, while it is an intriguing concept that a disease such as Clostridium difficile-associated colitis can be “cured” by the FMT with a transferred intestinal microbiota, it became at the same time apparent that several factors have to be considered. While the data for C. difficile-associated colitis are based on a placebo-controlled trial, the data for many other indications including inflammatory bowel diseases are less clear. Thus, there is the risk of transferring potential infectious disease as well as phenotypic properties such as obesity. Consequently, the donor screening has to be clearly defined. The present book chapter will summarize the development of the field over the last decade and will provide an outlook about possible innovations in the foreseeable future.


  1. Aas, J., Gessert, C. E., & Bakken, J. S. (2003). Recurrent Clostridium difficile colitis: Case series involving 18 patients treated with donor stool administered via a nasogastric tube. Clinical Infectious Diseases, 36, 580–585.CrossRefPubMedGoogle Scholar
  2. Alang, N., & Kelly, C. R. (2015). Weight gain after fecal microbiota transplantation. Open Forum Infectious Diseases, 2, ofv004.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bercik, P., Denou, E., Collins, J., Jackson, W., Lu, J., Jury, J., et al. (2011). The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology, 141, 599–609 609 e591–593.CrossRefGoogle Scholar
  4. Blossom, D. B., & McDonald, L. C. (2007). The challenges posed by reemerging Clostridium difficile infection. Clinical Infectious Diseases, 45, 222–227.CrossRefPubMedGoogle Scholar
  5. Borody, T. J., & Campbell, J. (2012). Fecal microbiota transplantation: Techniques, applications, and issues. Gastroenterology Clinics of North America, 41, 781–803.CrossRefPubMedGoogle Scholar
  6. Borody, T. J., Warren, E. F., Leis, S. M., Surace, R., Ashman, O., & Siarakas, S. (2004). Bacteriotherapy using fecal flora: Toying with human motions. Journal of Clinical Gastroenterology, 38, 475–483.CrossRefPubMedGoogle Scholar
  7. Brandt, L. J., Aroniadis, O. C., Mellow, M., Kanatzar, A., Kelly, C., Park, T., et al. (2012). Long-term follow-up of colonoscopic fecal microbiota transplant for recurrent Clostridium difficile infection. The American Journal of Gastroenterology, 107, 1079–1087.CrossRefPubMedGoogle Scholar
  8. Cammarota, G., Ianiro, G., Tilg, H., Rajilic-Stojanovic, M., Kump, P., Satokari, R., et al. (2017). European consensus conference on faecal microbiota transplantation in clinical practice. Gut, 66, 569–580.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Collins, S. M., Kassam, Z., & Bercik, P. (2013). The adoptive transfer of behavioral phenotype via the intestinal microbiota: Experimental evidence and clinical implications. Current Opinion in Microbiology, 16, 240–245.CrossRefPubMedGoogle Scholar
  10. Costello, S., Waters, O., Bryant, R., Katsikeros, R., Makanyanga, J., Schoeman, M., et al. (2017). OP36: Short duration, low intensity pooled faecal microbiota transplantation induces remission in patients with mild-moderately active ulcerative colitis: a randomized controlled trial. JCC, 11S1, S23.Google Scholar
  11. Couturier-Maillard, A., Secher, T., Rehman, A., Normand, S., De Arcangelis, A., Haesler, R., et al. (2013). NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer. The Journal of Clinical Investigation, 123, 700–711.PubMedPubMedCentralGoogle Scholar
  12. Deltheil, T., Guiard, B. P., Cerdan, J., David, D. J., Tanaka, K. F., Reperant, C., et al. (2008). Behavioral and serotonergic consequences of decreasing or increasing hippocampus brain-derived neurotrophic factor protein levels in mice. Neuropharmacology, 55, 1006–1014.CrossRefPubMedGoogle Scholar
  13. Eiseman, B., Silen, W., Bascom, G. S., & Kauvar, A. J. (1958). Fecal enema as an adjunct in the treatment of pseudomembranous enterocolitis. Surgery, 44, 854–859.PubMedPubMedCentralGoogle Scholar
  14. Ge, H. D. D. (2000). Zhou Hou Bei Ji Fang. Tianjin: Tianjin Science & Technology Press.Google Scholar
  15. George, R. H., Symonds, J. M., Dimock, F., Brown, J. D., Arabi, Y., Shinagawa, N., et al. (1978a). Identification of Clostridium difficile as a cause of pseudomembranous colitis. British Medical Journal, 1, 695.CrossRefPubMedPubMedCentralGoogle Scholar
  16. George, W. L., Sutter, V. L., Goldstein, E. J., Ludwig, S. L., & Finegold, S. M. (1978b). Aetiology of antimicrobial-agent-associated colitis. Lancet, 1, 802–803.CrossRefPubMedGoogle Scholar
  17. Gilbert, D. N., Moellering, R. C., Eliopoulos, G. M., & Sande, M. A. (2004). The Sanford guide to antimicrobial therapy (34th ed.). Sperryville, VA: Antimicromial Therapy, Inc..Google Scholar
  18. Hamilton, M. J., Weingarden, A. R., Sadowsky, M. J., & Khoruts, A. (2012). Standardized frozen preparation for transplantation of fecal microbiota for recurrent Clostridium difficile infection. The American Journal of Gastroenterology, 107, 761–767.CrossRefPubMedGoogle Scholar
  19. Johnsen, P. H., Hilpusch, F., Cavanagh, J. P., Leikanger, I. S., Kolstad, C., Valle, P. C., et al. (2018). Faecal microbiota transplantation versus placebo for moderate-to-severe irritable bowel syndrome: a double-blind, randomised, placebo-controlled, parallel-group, single-centre trial. The Lancet Gastroenterology and Hepatology, 3, 17–24.CrossRefPubMedGoogle Scholar
  20. Kelly, C. P. (1996). Immune response to Clostridium difficile infection. European Journal of Gastroenterology and Hepatology, 8, 1048–1053.CrossRefPubMedGoogle Scholar
  21. Khoruts, A., & Sadowsky, M. J. (2011). Therapeutic transplantation of the distal gut microbiota. Mucosal Immunology, 4, 4–7.CrossRefPubMedGoogle Scholar
  22. Koo, H. L., Van, J. N., Zhao, M., Ye, X., Revell, P. A., Jiang, Z. D., et al. (2014). Real-time polymerase chain reaction detection of asymptomatic Clostridium difficile colonization and rising C. difficile-associated disease rates. Infection Control and Hospital Epidemiology, 35, 667–673.CrossRefPubMedGoogle Scholar
  23. Kootte, R. S., Levin, E., Salojarvi, J., Smits, L. P., Hartstra, A. V., Udayappan, S. D., et al. (2017). Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition. Cell Metabolism, 26, 611–619 e616.CrossRefPubMedGoogle Scholar
  24. Kump, P., Wurm, P., Grochenig, H. P., Wenzl, H., Petritsch, W., Halwachs, B., et al. (2018). The taxonomic composition of the donor intestinal microbiota is a major factor influencing the efficacy of faecal microbiota transplantation in therapy refractory ulcerative colitis. Alimentary Pharmacology and Therapeutics, 47, 67–77.CrossRefPubMedGoogle Scholar
  25. Kyne, L., Warny, M., Qamar, A., & Kelly, C. P. (2000). Asymptomatic carriage of Clostridium difficile and serum levels of IgG antibody against toxin A. The New England Journal of Medicine, 342, 390–397.CrossRefPubMedGoogle Scholar
  26. Kyne, L., Warny, M., Qamar, A., & Kelly, C. P. (2001). Association between antibody response to toxin A and protection against recurrent Clostridium difficile diarrhoea. Lancet, 357, 189–193.CrossRefPubMedGoogle Scholar
  27. Larson, H. E., Price, A. B., Honour, P., & Borriello, S. P. (1978). Clostridium difficile and the aetiology of pseudomembranous colitis. Lancet, 1, 1063–1066.CrossRefPubMedGoogle Scholar
  28. Lee, C. H., Steiner, T., Petrof, E. O., Smieja, M., Roscoe, D., Nematallah, A., et al. (2016). Frozen vs fresh fecal microbiota transplantation and clinical resolution of diarrhea in patients with recurrent clostridium difficile infection: A randomized clinical trial. JAMA, 315, 142–149.CrossRefPubMedGoogle Scholar
  29. Leffler, D. A., & Lamont, J. T. (2015). Clostridium difficile infection. The New England Journal of Medicine, 372, 1539–1548.CrossRefPubMedGoogle Scholar
  30. Lewin, R. A. (2001). More on Merde. Perspectives in Biology and Medicine, 44, 594–607.CrossRefPubMedGoogle Scholar
  31. Li, S. M. D. (2011). Ben Cao Gang Mu. Bejing: Huaxia Press.Google Scholar
  32. Miller, B. A., Chen, L. F., Sexton, D. J., & Anderson, D. J. (2011). Comparison of the burdens of hospital-onset, healthcare facility-associated Clostridium difficile Infection and of healthcare-associated infection due to methicillin-resistant Staphylococcus aureus in community hospitals. Infection Control and Hospital Epidemiology, 32, 387–390.CrossRefPubMedGoogle Scholar
  33. Moayyedi, P., Surette, M. G., Kim, P. T., Libertucci, J., Wolfe, M., Onischi, C., et al. (2015). Fecal microbiota transplantation induces remission in patients with active ulcerative colitis in a randomized controlled trial. Gastroenterology, 149, 102–109 e106.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Ott, S. J., Waetzig, G. H., Rehman, A., Moltzau-Anderson, J., Bharti, R., Grasis, J. A., et al. (2017). Efficacy of sterile fecal filtrate transfer for treating patients with Clostridium difficile Infection. Gastroenterology, 152, 799–811 e797.CrossRefPubMedGoogle Scholar
  35. Paramsothy, S., Kamm, M. A., Kaakoush, N. O., Walsh, A. J., van den Bogaerde, J., Samuel, D., et al. (2017). Multidonor intensive faecal microbiota transplantation for active ulcerative colitis: A randomised placebo-controlled trial. Lancet, 389, 1218–1228.CrossRefPubMedGoogle Scholar
  36. Postigo, R., & Kim, J. H. (2012). Colonoscopic versus nasogastric fecal transplantation for the treatment of Clostridium difficile infection: A review and pooled analysis. Infection, 40, 643–648.CrossRefPubMedGoogle Scholar
  37. Ratner, M. (2014). Fecal transplantation poses dilemma for FDA. Nature Biotechnology, 32, 401–402.CrossRefPubMedGoogle Scholar
  38. Ridaura, V. K., Faith, J. J., Rey, F. E., Cheng, J., Duncan, A. E., Kau, A. L., et al. (2013). Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science, 341, 1241214.CrossRefGoogle Scholar
  39. Rossen, N. G., Fuentes, S., van der Spek, M. J., Tijssen, J. G., Hartman, J. H., Duflou, A., et al. (2015). Findings from a randomized controlled trial of fecal transplantation for patients with ulcerative colitis. Gastroenterology, 149, 110–118 e114.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Sambol, S. P., Merrigan, M. M., Tang, J. K., Johnson, S., & Gerding, D. N. (2002). Colonization for the prevention of Clostridium difficile disease in hamsters. The Journal of Infectious Diseases, 186, 1781–1789.CrossRefPubMedGoogle Scholar
  41. Sandler, R. H., Finegold, S. M., Bolte, E. R., Buchanan, C. P., Maxwell, A. P., Vaisanen, M. L., et al. (2000). Short-term benefit from oral vancomycin treatment of regressive-onset autism. Journal of Child Neurology, 15, 429–435.CrossRefPubMedGoogle Scholar
  42. Satokari, R., Mattila, E., Kainulainen, V., & Arkkila, P. E. (2015). Simple faecal preparation and efficacy of frozen inoculum in faecal microbiota transplantation for recurrent Clostridium difficile infection – An observational cohort study. Alimentary Pharmacology and Therapeutics, 41, 46–53.CrossRefPubMedGoogle Scholar
  43. Sepehri, S., Kotlowski, R., Bernstein, C. N., & Krause, D. O. (2007). Microbial diversity of inflamed and noninflamed gut biopsy tissues in inflammatory bowel disease. Inflammatory Bowel Diseases, 13, 675–683.CrossRefPubMedGoogle Scholar
  44. Siegmund, B. (2017). Is intensity the solution for FMT in ulcerative colitis? Lancet, 389, 1170–1172.CrossRefPubMedGoogle Scholar
  45. Smith, M., Kassam, Z., Edelstein, C., Burgess, J., & Alm, E. (2014). OpenBiome remains open to serve the medical community. Nature Biotechnology, 32, 867.CrossRefPubMedGoogle Scholar
  46. Sokol, H., Seksik, P., Furet, J. P., Firmesse, O., Nion-Larmurier, I., Beaugerie, L., et al. (2009). Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflammatory Bowel Diseases, 15, 1183–1189.CrossRefPubMedGoogle Scholar
  47. Surawicz, C. M., & Alexander, J. (2011). Treatment of refractory and recurrent Clostridium difficile infection. Nature reviews. Gastroenterology and Hepatology, 8, 330–339.PubMedPubMedCentralGoogle Scholar
  48. Turnbaugh, P. J., Ley, R. E., Mahowald, M. A., Magrini, V., Mardis, E. R., & Gordon, J. I. (2006). An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 444, 1027–1031.CrossRefGoogle Scholar
  49. van Nood, E., Vrieze, A., Nieuwdorp, M., Fuentes, S., Zoetendal, E. G., de Vos, W. M., et al. (2013). Duodenal infusion of donor feces for recurrent Clostridium difficile. The New England Journal of Medicine, 368, 407–415.CrossRefPubMedGoogle Scholar
  50. Walker, A. W., Sanderson, J. D., Churcher, C., Parkes, G. C., Hudspith, B. N., Rayment, N., et al. (2011). High-throughput clone library analysis of the mucosa-associated microbiota reveals dysbiosis and differences between inflamed and non-inflamed regions of the intestine in inflammatory bowel disease. BMC Microbiology, 11, 7.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Zhang, F., Luo, W., Shi, Y., Fan, Z., & Ji, G. (2012). Should we standardize the 1,700-year-old fecal microbiota transplantation? The American Journal of Gastroenterology, 107, 1755 author reply pp. 1755–1756.CrossRefPubMedGoogle Scholar
  52. Zuo, T., Wong, S. H., Lam, K., Lui, R., Cheung, K., Tang, W., et al. (2018, April). Bacteriophage transfer during faecal microbiota transplantation in Clostridium difficile infection is associated with treatment outcome. Gut, 67(4), 634–643.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Medizinische Klinik für Gastroenterologie, Infektiologie, RheumatologieCharité – Universitätsmedizin Berlin, Campus Benjamin FranklinBerlinGermany

Personalised recommendations