Advertisement

Microbiome and Diseases: Hepatic Disorders

  • Ina BergheimEmail author
  • Detlef Schuppan
Chapter

Abstract

Intensive research efforts aim to understand the multifaceted molecular mechanisms underlying disease onset and progression of nonalcoholic fatty liver disease (NAFLD) and alcohol-induced liver disease (ALD). Taken together, NAFLD and ALD are the most common liver diseases worldwide, and universally accepted therapies other than lifestyle interventions either focusing on weight reduction and physical exercise or alcohol abstinence are lacking. During the last decade, alterations of intestinal microbiota composition and intestinal barrier function leading to an increased translocation of bacterial endotoxin and of metabolites originating from an altered intestinal microbiome are emerging as key pathogenic factors in both diseases. In this book chapter, present knowledge and understanding of the interplay of intestinal microbiota, intestinal barrier function, and the development of nonalcoholic and alcoholic liver diseases, respectively, are summarized.

References

  1. Adachi, Y., Bradford, B. U., Gao, W., Bojes, H. K., & Thurman, R. G. (1994). Inactivation of Kupffer cells prevents early alcohol-induced liver injury. Hepatology, 20, 453–460.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Adachi, Y., Moore, L. E., Bradford, B. U., Gao, W., & Thurman, R. G. (1995). Antibiotics prevent liver injury in rats following long-term exposure to ethanol. Gastroenterology, 108, 218–224.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Backhed, F., Ding, H., Wang, T., Hooper, L. V., Koh, G. Y., Nagy, A., et al. (2004). The gut microbiota as an environmental factor that regulates fat storage. Proceedings of the National Academy of Sciences of the United States of America, 101, 15718–15723.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bajaj, J. S., Heuman, D. M., Sanyal, A. J., Hylemon, P. B., Sterling, R. K., Stravitz, R. T., et al. (2013). Modulation of the metabiome by rifaximin in patients with cirrhosis and minimal hepatic encephalopathy. PLoS One, 8, e60042.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bajaj, J. S., Heuman, D. M., Hylemon, P. B., Sanyal, A. J., White, M. B., Monteith, P., et al. (2014). Altered profile of human gut microbiome is associated with cirrhosis and its complications. Journal of Hepatology, 60, 940–947.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bala, S., Marcos, M., Gattu, A., Catalano, D., & Szabo, G. (2014). Acute binge drinking increases serum endotoxin and bacterial DNA levels in healthy individuals. PLoS One, 9, e96864.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Balmer, M. L., Slack, E., de Gottardi, A., Lawson, M. A., Hapfelmeier, S., Miele, L., et al. (2014). The liver may act as a firewall mediating mutualism between the host and its gut commensal microbiota. Science Translational Medicine, 6, 237ra266.CrossRefGoogle Scholar
  8. Barrea, L., Di Somma, C., Muscogiuri, G., Tarantino, G., Tenore, G. C., Orio, F., et al. (2017). Nutrition, inflammation and liver-spleen axis. Critical Reviews in Food Science and Nutrition, 57(16), 3472–3488.CrossRefGoogle Scholar
  9. Beilharz, J. E., Kaakoush, N. O., Maniam, J., & Morris, M. J. (2016). The effect of short-term exposure to energy-matched diets enriched in fat or sugar on memory, gut microbiota and markers of brain inflammation and plasticity. Brain, Behavior, and Immunity, 57, 304–313.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bergheim, I., Weber, S., Vos, M., Kramer, S., Volynets, V., Kaserouni, S., et al. (2008). Antibiotics protect against fructose-induced hepatic lipid accumulation in mice: role of endotoxin. Journal of Hepatology, 48, 983–992.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bode, J. C., Bode, C., Heidelbach, R., Durr, H. K., & Martini, G. A. (1984). Jejunal microflora in patients with chronic alcohol abuse. Hepato-Gastroenterology, 31, 30–34.PubMedPubMedCentralGoogle Scholar
  12. Bode, C., Kugler, V., & Bode, J. C. (1987). Endotoxemia in patients with alcoholic and non-alcoholic cirrhosis and in subjects with no evidence of chronic liver disease following acute alcohol excess. Journal of Hepatology, 4, 8–14.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bode, C., Kolepke, R., Schafer, K., & Bode, J. C. (1993). Breath hydrogen excretion in patients with alcoholic liver disease – evidence of small intestinal bacterial overgrowth. Zeitschrift für Gastroenterologie, 31, 3–7.PubMedPubMedCentralGoogle Scholar
  14. Boursier, J., Mueller, O., Barret, M., Machado, M., Fizanne, L., Araujo-Perez, F., et al. (2016). The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology, 63, 764–775.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Brun, P., Castagliuolo, I., Di Leo, V., Buda, A., Pinzani, M., Palu, G., et al. (2007). Increased intestinal permeability in obese mice: new evidence in the pathogenesis of nonalcoholic steatohepatitis. American Journal of Physiology. Gastrointestinal and Liver Physiology, 292, G518–G525.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Cani, P. D., Bibiloni, R., Knauf, C., Waget, A., Neyrinck, A. M., Delzenne, N. M., et al. (2008). Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes, 57, 1470–1481.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Casafont Morencos, F., de las Heras Castano, G., Martin Ramos, L., Lopez Arias, M. J., Ledesma, F., & Pons Romero, F. (1996). Small bowel bacterial overgrowth in patients with alcoholic cirrhosis. Digestive Diseases and Sciences, 41, 552–556.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Chen, Y., Qin, N., Guo, J., Qian, G., Fang, D., Shi, D., et al. (2014). Functional gene arrays-based analysis of fecal microbiomes in patients with liver cirrhosis. BMC Genomics, 15, 753.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Chen, L. Z., Xin, Y. N., Geng, N., Jiang, M., Zhang, D. D., & Xuan, S. Y. (2015). PNPLA3 I148M variant in nonalcoholic fatty liver disease: demographic and ethnic characteristics and the role of the variant in nonalcoholic fatty liver fibrosis. World Journal of Gastroenterology, 21, 794–802.PubMedPubMedCentralCrossRefGoogle Scholar
  20. David, L. A., Maurice, C. F., Carmody, R. N., Gootenberg, D. B., Button, J. E., Wolfe, B. E., et al. (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature, 505, 559–563.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Del Chierico, F., Nobili, V., Vernocchi, P., Russo, A., Stefanis, C., Gnani, D., et al. (2017). Gut microbiota profiling of pediatric nonalcoholic fatty liver disease and obese patients unveiled by an integrated meta-omics-based approach. Hepatology, 65, 451–464.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Dukowicz, A. C., Lacy, B. E., & Levine, G. M. (2007). Small intestinal bacterial overgrowth: A comprehensive review. Gastroenterology and Hepatology (New York), 3, 112–122.Google Scholar
  23. Dulai, P. S., Singh, S., Patel, J., Soni, M., Prokop, L. J., Younossi, Z., et al. (2017). Increased risk of mortality by fibrosis stage in nonalcoholic fatty liver disease: Systematic review and meta-analysis. Hepatology, 65, 1557–1565.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Elamin, E. E., Masclee, A. A., Dekker, J., & Jonkers, D. M. (2013). Ethanol metabolism and its effects on the intestinal epithelial barrier. Nutrition Reviews, 71, 483–499.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Engstler, A. J., Aumiller, T., Degen, C., Durr, M., Weiss, E., Maier, I. B., et al. (2016). Insulin resistance alters hepatic ethanol metabolism: Studies in mice and children with non-alcoholic fatty liver disease. Gut, 65, 1564–1571.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Engstler, A. J., Sellmann, C., Jin, C. J., Brandt, A., Herz, K., Priebs, J., et al. (2017). Treatment with alpha-galactosylceramide protects mice from early onset of nonalcoholic steatohepatitis: Role of intestinal barrier function. Molecular Nutrition and Food Research, 61(5).  https://doi.org/10.1002/mnfr.201600985
  27. Enomoto, N., Ikejima, K., Yamashina, S., Hirose, M., Shimizu, H., Kitamura, T., et al. (2001). Kupffer cell sensitization by alcohol involves increased permeability to gut-derived endotoxin. Alcoholism: Clinical and Experimental Research, 25, 51S–54S.CrossRefGoogle Scholar
  28. Fu, X. S., & Jiang, F. (2006). Cisapride decreasing orocecal transit time in patients with nonalcoholic steatohepatitis. Hepatobiliary and Pancreatic Diseases International: HBPD INT, 5, 534–537.PubMedPubMedCentralGoogle Scholar
  29. Fukui, H., Brauner, B., Bode, J. C., & Bode, C. (1991). Plasma endotoxin concentrations in patients with alcoholic and non-alcoholic liver disease: reevaluation with an improved chromogenic assay. Journal of Hepatology, 12, 162–169.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Gaeta, G. B., Perna, P., Adinolfi, L. E., Utili, R., & Ruggiero, G. (1982). Endotoxemia in a series of 104 patients with chronic liver diseases: Prevalence and significance. Digestion, 23, 239–244.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Gangarapu, V., Ince, A. T., Baysal, B., Kayar, Y., Kilic, U., Gok, O., et al. (2015). Efficacy of rifaximin on circulating endotoxins and cytokines in patients with nonalcoholic fatty liver disease. European Journal of Gastroenterology and Hepatology, 27, 840–845.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Grander, C., Adolph, T. E., Wieser, V., Lowe, P., Wrzosek, L., Gyongyosi, B., et al. (2018). Recovery of ethanol-induced Akkermansia muciniphila depletion ameliorates alcoholic liver disease. Gut, 67(5), 891–901.  https://doi.org/10.1136/gutjnl-2016-313432 CrossRefPubMedPubMedCentralGoogle Scholar
  33. György, P. (1954). Antibiotics and liver injury. Annals of the New York Academy of Sciences, 57, 925–931.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Hagstrom, H. (2017). Alcohol consumption in concomitant liver disease: How much is too much? Current Hepatology Reports, 16, 152–157.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Henao-Mejia, J., Elinav, E., Jin, C., Hao, L., Mehal, W. Z., Strowig, T., et al. (2012). Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature, 482, 179–185.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Hirakawa, M., Iida, M., Kohrogi, N., & Fujishima, M. (1988). Hydrogen breath test assessment of orocecal transit time: comparison with barium meal study. The American Journal of Gastroenterology, 83, 1361–1363.PubMedPubMedCentralGoogle Scholar
  37. Jena, P. K., Prajapati, B., Mishra, P. K., & Seshadri, S. (2016). Influence of gut microbiota on inflammation and pathogenesis of sugar rich diet induced diabetes. Immunome Research, 12(1), 109.Google Scholar
  38. Jiang, W., Wu, N., Wang, X., Chi, Y., Zhang, Y., Qiu, X., et al. (2015). Dysbiosis gut microbiota associated with inflammation and impaired mucosal immune function in intestine of humans with non-alcoholic fatty liver disease. Scientific Reports, 5, 8096.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Jin, C. J., Engstler, A. J., Sellmann, C., Ziegenhardt, D., Landmann, M., Kanuri, G., et al. (2016). Sodium butyrate protects mice from the development of the early signs of nonalcoholic fatty liver disease: Role of melatonin and lipid peroxidation. The British Journal of Nutrition, 23, 1–12.Google Scholar
  40. Jin, C. J., Engstler, A. J., Ziegenhardt, D., Bischoff, S. C., Trautwein, C., & Bergheim, I. (2017). Loss of lipopolysaccharide-binding protein attenuates the development of diet-induced non-alcoholic fatty liver disease in mice. Journal of Gastroenterology and Hepatology, 32, 708–715.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Jun, D. W., Kim, K. T., Lee, O. Y., Chae, J. D., Son, B. K., Kim, S. H., et al. (2010). Association between small intestinal bacterial overgrowth and peripheral bacterial DNA in cirrhotic patients. Digestive Diseases and Sciences, 55, 1465–1471.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Kanuri, G., Spruss, A., Wagnerberger, S., Bischoff, S. C., & Bergheim, I. (2011). Role of tumor necrosis factor α (TNFα) in the onset of fructose-induced nonalcoholic fatty liver disease in mice. The Journal of Nutritional Biochemistry, 22, 527–534.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Kanuri, G., Ladurner, R., Skibovskaya, J., Spruss, A., Konigsrainer, A., Bischoff, S. C., et al. (2015). Expression of toll-like receptors 1-5 but not TLR 6-10 is elevated in livers of patients with non-alcoholic fatty liver disease. Liver International, 35, 562–568.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Kim, C. H., & Younossi, Z. M. (2008). Nonalcoholic fatty liver disease: A manifestation of the metabolic syndrome. Cleveland Clinic Journal of Medicine, 75, 721–728.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Kirpich, I. A., Feng, W., Wang, Y., Liu, Y., Beier, J. I., Arteel, G. E., et al. (2013). Ethanol and dietary unsaturated fat (corn oil/linoleic acid enriched) cause intestinal inflammation and impaired intestinal barrier defense in mice chronically fed alcohol. Alcohol (Fayetteville, New York), 47, 257–264.CrossRefGoogle Scholar
  46. Koop, D. R., Klopfenstein, B., Iimuro, Y., & Thurman, R. G. (1997). Gadolinium chloride blocks alcohol-dependent liver toxicity in rats treated chronically with intragastric alcohol despite the induction of CYP2E1. Molecular Pharmacology, 51, 944–950.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Lakshmi, C. P., Ghoshal, U. C., Kumar, S., Goel, A., Misra, A., Mohindra, S., et al. (2010). Frequency and factors associated with small intestinal bacterial overgrowth in patients with cirrhosis of the liver and extra hepatic portal venous obstruction. Digestive Diseases and Sciences, 55, 1142–1148.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Lam, Y. Y., Ha, C. W., Hoffmann, J., Oscarsson, J., Dinudom, A., Mather, T. J., et al. (2015). Effects of dietary fat profile on gut permeability and microbiota and their relationships with metabolic changes in mice. Obesity, 23, 1429–1439.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Leclercq, S., De Saeger, C., Delzenne, N., de Timary, P., & Stärkel, P. (2014a). Role of inflammatory pathways, blood mononuclear cells, and gut-derived bacterial products in alcohol dependence. Biological Psychiatry, 76, 725–733.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Leclercq, S., Matamoros, S., Cani, P. D., Neyrinck, A. M., Jamar, F., Stärkel, P., et al. (2014b). Intestinal permeability, gut-bacterial dysbiosis, and behavioral markers of alcohol-dependence severity. Proceedings of the National Academy of Sciences of the United States of America, 111, E4485–E4493.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Ley, R. E., Backhed, F., Turnbaugh, P., Lozupone, C. A., Knight, R. D., & Gordon, J. I. (2005). Obesity alters gut microbial ecology. Proceedings of the National Academy of Sciences of the United States of America, 102, 11070–11075.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Lin, R.-S., Lee, F.-Y., Lee, S.-D., Tsai, Y.-T., Lin, H. C., Rei-Hwa, L., et al. (1995). Endotoxemia in patients with chronic liver diseases: Relationship to severity of liver diseases, presence of esophaegeal varices, and hyperdynamic circulation. Journal of Hepatology, 22, 165–172.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Loomba, R., Seguritan, V., Li, W., Long, T., Klitgord, N., Bhatt, A., et al. (2017). Gut microbiome-based metagenomic signature for non-invasive detection of advanced fibrosis in human nonalcoholic fatty liver disease. Cell Metabology, 25, 1054–1062 e1055.CrossRefGoogle Scholar
  54. Luckey, T., Reyniers, J., György, P., & Forbes, M. (1954). Germfree animals and liver necrosis. Annals of the New York Academy of Sciences, 57, 932–935.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Ludwig, J., Viggiano, T. R., McGill, D. B., & Oh, B. J. (1980). Nonalcoholic steatohepatitis: Mayo Clinic experiences with a hitherto unnamed disease. Mayo Clinic Proceedings, 55, 434–438.PubMedPubMedCentralGoogle Scholar
  56. Mann, R. E., Smart, R. G., & Govoni, R. (2003). The epidemiology of alcoholic liver disease. Alcohol Research and Health, 27, 209–219.PubMedPubMedCentralGoogle Scholar
  57. Miele, L., Valenza, V., La Torre, G., Montalto, M., Cammarota, G., Ricci, R., et al. (2009). Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology, 49, 1877–1887.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Miyaaki, H., & Nakao, K. (2017). Significance of genetic polymorphisms in patients with nonalcoholic fatty liver disease. Clinical Journal of Gastroenterology, 10, 201–207.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Morencos, F. C., de las Heras Castano, G., Martin Ramos, L., Lopez Arias, M. J., Ledesma, F., & Pons Romero, F. (1995). Small bowel bacterial overgrowth in patients with alcoholic cirrhosis. Digestive Diseases and Sciences, 40, 1252–1256.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Muegge, B. D., Kuczynski, J., Knights, D., Clemente, J. C., González, A., Fontana, L., et al. (2011). Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science (New York), 332, 970–974.CrossRefGoogle Scholar
  61. Mutlu, E. A., Gillevet, P. M., Rangwala, H., Sikaroodi, M., Naqvi, A., Engen, P. A., et al. (2012). Colonic microbiome is altered in alcoholism. American Journal of Physiology – Gastrointestinal and Liver Physiology, 302, G966–G978.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Nazim, M., Stamp, G., & Hodgson, H. J. (1989). Non-alcoholic steatohepatitis associated with small intestinal diverticulosis and bacterial overgrowth. Hepato-Gastroenterology, 36, 349–351.PubMedPubMedCentralGoogle Scholar
  63. Neuschwander-Tetri, B. A., & Caldwell, S. H. (2003). Nonalcoholic steatohepatitis: Summary of an AASLD single topic conference. Hepatology, 37, 1202–1219.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Pande, C., Kumar, A., & Sarin, S. K. (2009). Small-intestinal bacterial overgrowth in cirrhosis is related to the severity of liver disease. Alimentary Pharmacology and Therapeutics, 29, 1273–1281.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Parlesak, A., Schafer, C., Schutz, T., Bode, J. C., & Bode, C. (2000). Increased intestinal permeability to macromolecules and endotoxemia in patients with chronic alcohol abuse in different stages of alcohol-induced liver disease. Journal of Hepatology, 32, 742–747.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Pataky, Z., Genton, L., Spahr, L., Lazarevic, V., Terraz, S., Gaia, N., et al. (2016). Impact of hypocaloric hyperproteic diet on gut microbiota in overweight or obese patients with nonalcoholic fatty liver disease: A pilot study. Digestive Diseases and Sciences, 61, 2721–2731.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Patterson, E., O’Doherty, R. M., Murphy, E. F., Wall, R., O’Sullivan, O., Nilaweera, K., et al. (2014). Impact of dietary fatty acids on metabolic activity and host intestinal microbiota composition in C57BL/6J mice. British Journal of Nutrition, 111, 1905–1917.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Rehm, J., Taylor, B., Mohapatra, S., Irving, H., Baliunas, D., Patra, J., et al. (2010). Alcohol as a risk factor for liver cirrhosis: A systematic review and meta-analysis. Drug and Alcohol Review, 29, 437–445.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Rivera, C. A., Bradford, B. U., Seabra, V., & Thurman, R. G. (1998). Role of endotoxin in the hypermetabolic state after acute ethanol exposure. The American Journal of Physiology, 275, G1252–G1258.PubMedPubMedCentralGoogle Scholar
  70. Romero-Gomez, M., Zelber-Sagi, S., & Trenell, M. (2017). Treatment of NAFLD with diet, physical activity and exercise. Journal of Hepatology, 67(4), 829–846.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Ruiz, A. G., Casafont, F., Crespo, J., Cayón, A., Mayorga, M., Estebanez, A., et al. (2007). Lipopolysaccharide-binding protein plasma levels and liver TNF-alpha gene expression in obese patients: Evidence for the potential role of endotoxin in the pathogenesis of non-alcoholic steatohepatitis. Obesity Surgery, 17, 1374.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Rutenburg, A. M., Sonnenblick, E., Koven, I., Aprahamian, H. A., Reiner, L., & Fine, J. (1957). The role of intestinal bacteria in the development of dietary cirrhosis in rats. The Journal of Experimental Medicine, 106, 1–14.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Satapathy, S. K., & Sanyal, A. J. (2015). Epidemiology and natural history of nonalcoholic fatty liver disease. Seminars in Liver Disease, 35, 221–235.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Savolainen, V., Liesto, K., Männikkö, A., Penttilä, A., & Karhunen, P. (1993). Alcohol consumption and alcoholic liver disease: evidence of a threshold level of effects of ethanol. Alcoholism: Clinical and Experimental Research, 17, 1112–1117.CrossRefGoogle Scholar
  75. Schuppan, D., & Schattenberg, J. M. (2013). Non-alcoholic steatohepatitis: pathogenesis and novel therapeutic approaches. Journal of Gastroenterology and Hepatology, 28(Suppl 1), 68–76.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Sellmann, C., Priebs, J., Landmann, M., Degen, C., Engstler, A. J., Jin, C. J., et al. (2015). Diets rich in fructose, fat or fructose and fat alter intestinal barrier function and lead to the development of nonalcoholic fatty liver disease over time. The Journal of Nutritional Biochemistry, 26, 1183–1192.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Shapiro, H., Suez, J., & Elinav, E. (2017). Personalized microbiome-based approaches to metabolic syndrome management and prevention. Journal of Diabetes, 9, 226–236.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Sonnenburg, J. L., & Backhed, F. (2016). Diet-microbiota interactions as moderators of human metabolism. Nature, 535, 56–64.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Soza, A., Riquelme, A., Gonzalez, R., Alvarez, M., Perez-Ayuso, R. M., Glasinovic, J. C., et al. (2005). Increased orocecal transit time in patients with nonalcoholic fatty liver disease. Digestive Diseases and Sciences, 50, 1136–1140.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Spencer, M. D., Hamp, T. J., Reid, R. W., Fischer, L. M., Zeisel, S. H., & Fodor, A. A. (2011). Association between composition of the human gastrointestinal microbiome and development of fatty liver with choline deficiency. Gastroenterology, 140, 976–986.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Spruss, A., Kanuri, G., Wagnerberger, S., Haub, S., Bischoff, S. C., & Bergheim, I. (2009). Toll-like receptor 4 is involved in the development of fructose-induced hepatic steatosis in mice. Hepatology, 50, 1094–1104.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Spruss, A., Kanuri, G., Uebel, K., Bischoff, S. C., & Bergheim, I. (2011). Role of the inducible nitric oxide synthase in the onset of fructose-induced steatosis in mice. Antioxidants and Redox Signaling, 14, 2121–2135.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Spruss, A., Kanuri, G., Stahl, C., Bischoff, S. C., & Bergheim, I. (2012). Metformin protects against the development of fructose-induced steatosis in mice: role of the intestinal barrier function. Laboratory Investigation, 92, 1020–1032.PubMedPubMedCentralCrossRefGoogle Scholar
  84. Starkel, P., & Schnabl, B. (2016). Bidirectional communication between liver and gut during alcoholic liver disease. Seminars in Liver Disease, 36, 331–339.PubMedPubMedCentralCrossRefGoogle Scholar
  85. Starley, B. Q., Calcagno, C. J., & Harrison, S. A. (2010). Nonalcoholic fatty liver disease and hepatocellular carcinoma: A weighty connection. Hepatology, 51, 1820–1832.PubMedPubMedCentralCrossRefGoogle Scholar
  86. Sutter, A. G., Palanisamy, A. P., Lench, J. H., Jessmore, A. P., & Chavin, K. D. (2015). Development of steatohepatitis in Ob/Ob mice is dependent on Toll-like receptor 4. Annals of Hepatology, 14, 735–743.PubMedPubMedCentralGoogle Scholar
  87. Szabo, G. (2015). Gut-liver axis in alcoholic liver disease. Gastroenterology, 148, 30–36.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Thuy, S., Ladurner, R., Volynets, V., Wagner, S., Strahl, S., Konigsrainer, A., et al. (2008). Nonalcoholic fatty liver disease in humans is associated with increased plasma endotoxin and plasminogen activator inhibitor 1 concentrations and with fructose intake. The Journal of Nutrition, 138, 1452–1455.PubMedPubMedCentralCrossRefGoogle Scholar
  89. Townsend, S. A., & Newsome, P. N. (2016). Non-alcoholic fatty liver disease in 2016. British Medical Bulletin, 119, 143–156.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Uesugi, T., Froh, M., Arteel, G. E., Bradford, B. U., & Thurman, R. G. (2001). Toll-like receptor 4 is involved in the mechanism of early alcohol-induced liver injury in mice. Hepatology, 34, 101–108.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Volynets, V., Kuper, M. A., Strahl, S., Maier, I. B., Spruss, A., Wagnerberger, S., et al. (2012). Nutrition, intestinal permeability, and blood ethanol levels are altered in patients with nonalcoholic fatty liver disease (NAFLD). Digestive Diseases and Sciences, 57, 1932–1941.PubMedPubMedCentralCrossRefGoogle Scholar
  92. Vrieze, A., Van Nood, E., Holleman, F., Salojarvi, J., Kootte, R. S., Bartelsman, J. F., et al. (2012). Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology, 143, 913–916 e917.PubMedPubMedCentralCrossRefGoogle Scholar
  93. Wagnerberger, S., Spruss, A., Kanuri, G., Volynets, V., Stahl, C., Bischoff, S. C., et al. (2012). Toll-like receptors 1-9 are elevated in livers with fructose-induced hepatic steatosis. The British Journal of Nutrition, 107, 1727–1738.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Wagnerberger, S., Fiederlein, L., Kanuri, G., Stahl, C., Millonig, G., Mueller, S., et al. (2013). Sex-specific differences in the development of acute alcohol-induced liver steatosis in mice. Alcohol and Alcoholism (Oxford, Oxfordshire), 48, 648–656.CrossRefGoogle Scholar
  95. Wiest, R., Albillos, A., Trauner, M., Bajaj, J. S., & Jalan, R. (2017). Targeting the gut-liver axis in liver disease. Journal of Hepatology, 67(5), 1084–1103.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Wigg, A., Roberts-Thomson, I., Dymock, R., McCarthy, P., Grose, R., & Cummins, A. (2001). The role of small intestinal bacterial overgrowth, intestinal permeability, endotoxaemia, and tumour necrosis factor α in the pathogenesis of non-alcoholic steatohepatitis. Gut, 48, 206–211.PubMedPubMedCentralCrossRefGoogle Scholar
  97. World Health Organization. (2014). Age-standardized death rates of liver cirrhosis. World Health Organization.Google Scholar
  98. World Health Organization, and Unit, W.H.O.M.o.S.A. (2014). Global status report on alcohol and health, 2014. World Health Organization.Google Scholar
  99. Wu, G. D., Chen, J., Hoffmann, C., Bittinger, K., Chen, Y. Y., Keilbaugh, S. A., et al. (2011). Linking long-term dietary patterns with gut microbial enterotypes. Science, 334, 105–108.PubMedPubMedCentralCrossRefGoogle Scholar
  100. Wu, H., Esteve, E., Tremaroli, V., Khan, M. T., Caesar, R., Manneras-Holm, L., et al. (2017). Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nature Medicine, 23, 850–858.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Yang, C. Y., Chang, C. S., & Chen, G. H. (1998). Small-intestinal bacterial overgrowth in patients with liver cirrhosis, diagnosed with glucose H2 or CH4 breath tests. Scandinavian Journal of Gastroenterology, 33, 867–871.PubMedPubMedCentralCrossRefGoogle Scholar
  102. Yeh, M. M., & Brunt, E. M. (2014). Pathological features of fatty liver disease. Gastroenterology, 147, 754–764.PubMedPubMedCentralCrossRefGoogle Scholar
  103. Younossi, Z. M., Koenig, A. B., Abdelatif, D., Fazel, Y., Henry, L., & Wymer, M. (2016). Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology, 64(1), 73–84.  https://doi.org/10.1002/hep.28431 CrossRefPubMedPubMedCentralGoogle Scholar
  104. Yuki, T., & Thurman, R. G. (1980). The swift increase in alcohol metabolism. Time course for the increase in hepatic oxygen uptake and the involvement of glycolysis. Biochemical Journal, 186, 119–126.PubMedPubMedCentralCrossRefGoogle Scholar
  105. Zhu, Y., Lin, X., Zhao, F., Shi, X., Li, H., Li, Y., et al. (2015). Meat, dairy and plant proteins alter bacterial composition of rat gut bacteria. Scientific Reports, 5, 15220.PubMedPubMedCentralCrossRefGoogle Scholar
  106. Zhu, Y., Shi, X., Lin, X., Ye, K., Xu, X., Li, C., et al. (2017). Beef, chicken, and soy proteins in diets induce different gut microbiota and metabolites in rats. Frontiers in Microbiology, 8, 1395.PubMedPubMedCentralCrossRefGoogle Scholar
  107. Zmora, N., Zeevi, D., Korem, T., Segal, E., & Elinav, E. (2016). Taking it personally: Personalized utilization of the human microbiome in health and disease. Cell Host and Microbe, 19, 12–20.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Lehrstuhl Ernährungsphysiologie – Department für ErnährungswissenschaftenUniversität WienWienGermany
  2. 2.Institut für Translationale Immunolgie (TIM), Universitätsmedizin Mainz – Johannes Gutenberg-Universität MainzMainzGermany

Personalised recommendations