Advertisement

Microbiome and Diseases: Inflammatory Bowel Diseases

  • Kai Hildner
  • Nadine Waldschmitt
  • Dirk Haller
Chapter

Abstract

Inflammatory bowel diseases, such as Crohn’s disease and ulcerative colitis, are chronically relapsing, immune-mediated disorders of the gastrointestinal tract that have been steadily increasing over the past decades. The hallmark of IBD is an uncontrolled manifestation of intestinal and extraintestinal inflammation within genetically susceptible individuals. Herein, compelling research on host genetics pave the way to a better understanding of disease pathogenesis. Over 200 genetic risk factors have been identified showing a disturbed cross talk of the immune epithelial cell microbiota axis. Additionally, epidemiologic studies pointed toward Western lifestyle and habits as part of central environmental factors contributing to both development and maintenance of intestinal inflammation. In this regard, the gut microbiota is thought to play a decisive role in disease progression. The intestinal microbiota was unequivocally shown to be indispensable in orchestrating the development and functionality of the immune system further having a critical impact on both intestinal homeostasis and inflammation in preclinical models. Even though profound changes in the composition of the intestinal microbiota have been frequently observed in human IBD, unraveling cause and consequences of intestinal dysbiosis need further understanding of the interaction between host genetics, microbial ecosystems, and environmental triggers. In this chapter we will discuss different aspects of the etiology of intestinal inflammation and particularly address the role of host-microbe interaction in disease development, progression, and intervention.

References

  1. Abreu, M. T., Fukata, M., & Arditi, M. (2005). TLR signaling in the gut in health and disease. Journal of Immunology, 174, 4453–4460.CrossRefGoogle Scholar
  2. Adolph, T. E., Tomczak, M. F., Niederreiter, L., Ko, H. J., Bock, J., Martinez-Naves, E., Glickman, J. N., Tschurtschenthaler, M., Hartwig, J., Hosomi, S., Flak, M. B., Cusick, J. L., Kohno, K., Iwawaki, T., Billmann-Born, S., Raine, T., Bharti, R., Lucius, R., Kweon, M. N., Marciniak, S. J., Choi, A., Hagen, S. J., Schreiber, S., Rosenstiel, P., Kaser, A., & Blumberg, R. S. (2013). Paneth cells as a site of origin for intestinal inflammation. Nature, 503, 272–276.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Ahmad, T., Satsangi, J., Mcgovern, D., Bunce, M., & Jewell, D. P. (2001). Review article: The genetics of inflammatory bowel disease. Alimentary Pharmacology & Therapeutics, 15, 731–748.CrossRefGoogle Scholar
  4. Baillie, M. (1793). The morbid anatomy of some of the most important parts of the human body. London: J. Johnson and G. Nicol.Google Scholar
  5. Balish, E., & Warner, T. (2002). Enterococcus faecalis induces inflammatory bowel disease in interleukin-10 knockout mice. The American Journal of Pathology, 160, 2253–2257.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bean, R. H. (1962). The treatment of chronic ulcerative colitis with 6-mercaptopurine. The Medical Journal of Australia, 49(2), 592–593.PubMedGoogle Scholar
  7. Benjamin, J. L., Sumpter, R., Jr., Levine, B., & Hooper, L. V. (2013). Intestinal epithelial autophagy is essential for host defense against invasive bacteria. Cell Host & Microbe, 13, 723–734.CrossRefGoogle Scholar
  8. Bennett, R. A., Rubin, P. H., & Present, D. H. (1991). Frequency of inflammatory bowel disease in offspring of couples both presenting with inflammatory bowel disease. Gastroenterology, 100, 1638–1643.PubMedCrossRefGoogle Scholar
  9. Bibiloni, R., Fedorak, R. N., Tannock, G. W., Madsen, K. L., Gionchetti, P., Campieri, M., de Simone, C., & Sartor, R. B. (2005). VSL#3 probiotic-mixture induces remission in patients with active ulcerative colitis. The American Journal of Gastroenterology, 100, 1539–1546.PubMedCrossRefGoogle Scholar
  10. Blaydon, D. C., Biancheri, P., Di, W. L., Plagnol, V., Cabral, R. M., Brooke, M. A., van Heel, D. A., Ruschendorf, F., Toynbee, M., Walne, A., O’toole, E. A., Martin, J. E., Lindley, K., Vulliamy, T., Abrams, D. J., Macdonald, T. T., Harper, J. I., & Kelsell, D. P. (2011). Inflammatory skin and bowel disease linked to ADAM17 deletion. The New England Journal of Medicine, 365, 1502–1508.PubMedCrossRefGoogle Scholar
  11. Colombel, J. F., Grandbastien, B., Gower-Rousseau, C., Plegat, S., Evrard, J. P., Dupas, J. L., Gendre, J. P., Modigliani, R., Belaiche, J., Hostein, J., Hugot, J. P., van Kruiningen, H., & Cortot, A. (1996). Clinical characteristics of Crohn’s disease in 72 families. Gastroenterology, 111, 604–607.PubMedCrossRefGoogle Scholar
  12. Crohn, B. B., Ginzburg, L., & Oppenheimer, G. D. (1932). Regional ileitis: A pathologic and clinical entity. JAMA, 99(16), 1323–1329.CrossRefGoogle Scholar
  13. Eckburg, P. B., Bik, E. M., Bernstein, C. N., Purdom, E., Dethlefsen, L., Sargent, M., Gill, S. R., Nelson, K. E., & Relman, D. A. (2005). Diversity of the human intestinal microbial flora. Science, 308, 1635–1638.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Elliott, M. J., Maini, R. N., Feldmann, M., Long-Fox, A., Charles, P., Bijl, H., & Woody, J. N. (1994). Repeated therapy with monoclonal antibody to tumour necrosis factor alpha (cA2) in patients with rheumatoid arthritis. Lancet, 344, 1125–1127.PubMedCrossRefGoogle Scholar
  15. Frank, D. N., St Amand, A. L., Feldman, R. A., Boedeker, E. C., Harpaz, N., & Pace, N. R. (2007). Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proceedings of the National Academy of Sciences of the United States of America, 104, 13780–13785.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Fritz, T., Niederreiter, L., Adolph, T., Blumberg, R. S., & Kaser, A. (2011). Crohn’s disease: NOD2, autophagy and ER stress converge. Gut, 60, 1580–1588.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Fukuda, S., Toh, H., Hase, K., Oshima, K., Nakanishi, Y., Yoshimura, K., Tobe, T., Clarke, J. M., Topping, D. L., Suzuki, T., Taylor, T. D., Itoh, K., Kikuchi, J., Morita, H., Hattori, M., & Ohno, H. (2011). Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature, 469, 543–547.PubMedCrossRefGoogle Scholar
  18. Furrie, E., Macfarlane, S., Kennedy, A., Cummings, J. H., Walsh, S. V., O’neil, D. A., & Macfarlane, G. T. (2005). Synbiotic therapy (Bifidobacterium longum/Synergy 1) initiates resolution of inflammation in patients with active ulcerative colitis: A randomised controlled pilot trial. Gut, 54, 242–249.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Gevers, D., Kugathasan, S., Denson, L. A., Vazquez-Baeza, Y., van Treuren, W., Ren, B., Schwager, E., Knights, D., Song, S. J., Yassour, M., Morgan, X. C., Kostic, A. D., Luo, C., Gonzalez, A., Mcdonald, D., Haberman, Y., Walters, T., Baker, S., Rosh, J., Stephens, M., Heyman, M., Markowitz, J., Baldassano, R., Griffiths, A., Sylvester, F., Mack, D., Kim, S., Crandall, W., Hyams, J., Huttenhower, C., Knight, R., & Xavier, R. J. (2014). The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host & Microbe, 15, 382–392.CrossRefGoogle Scholar
  20. Grivennikov, S. I., Greten, F. R., & Karin, M. (2010). Immunity, inflammation, and cancer. Cell, 140, 883–899.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Gulamhusein, A. F., Eaton, J. E., Tabibian, J. H., Atkinson, E. J., Juran, B. D., & Lazaridis, K. N. (2016). Duration of inflammatory bowel disease is associated with increased risk of cholangiocarcinoma in patients with primary sclerosing cholangitis and IBD. The American Journal of Gastroenterology, 111, 705–711.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Gunther, C., Martini, E., Wittkopf, N., Amann, K., Weigmann, B., Neumann, H., Waldner, M. J., Hedrick, S. M., Tenzer, S., Neurath, M. F., & Becker, C. (2011). Caspase-8 regulates TNF-alpha-induced epithelial necroptosis and terminal ileitis. Nature, 477, 335–339.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Gupta, N., Bostrom, A. G., Kirschner, B. S., Ferry, G. D., Gold, B. D., Cohen, S. A., Winter, H. S., Baldassano, R. N., Abramson, O., Smith, T., & Heyman, M. B. (2010). Incidence of stricturing and penetrating complications of Crohn’s disease diagnosed in pediatric patients. Inflammatory Bowel Diseases, 16, 638–644.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Haller, D., Holt, L., Kim, S. C., Schwabe, R. F., Sartor, R. B., & Jobin, C. (2003). Transforming growth factor-beta 1 inhibits non-pathogenic Gram negative bacteria-induced NF-kappa B recruitment to the interleukin-6 gene promoter in intestinal epithelial cells through modulation of histone acetylation. The Journal of Biological Chemistry, 278, 23851–23860.PubMedCrossRefGoogle Scholar
  25. Haller, D., Russo, M. P., Sartor, R. B., & Jobin, C. (2002). IKK beta and phosphatidylinositol 3-kinase/Akt participate in non-pathogenic Gram-negative enteric bacteria-induced RelA phosphorylation and NF-kappa B activation in both primary and intestinal epithelial cell lines. The Journal of Biological Chemistry, 277, 38168–38178.PubMedCrossRefGoogle Scholar
  26. Hansen, R., Russell, R. K., Reiff, C., Louis, P., Mcintosh, F., Berry, S. H., Mukhopadhya, I., Bisset, W. M., Barclay, A. R., Bishop, J., Flynn, D. M., Mcgrogan, P., Loganathan, S., Mahdi, G., Flint, H. J., El-Omar, E. M., & Hold, G. L. (2012). Microbiota of de-novo pediatric IBD: Increased Faecalibacterium prausnitzii and reduced bacterial diversity in Crohn’s but not in ulcerative colitis. The American Journal of Gastroenterology, 107, 1913–1922.PubMedCrossRefGoogle Scholar
  27. Hormannsperger, G., Schaubeck, M., & Haller, D. (2015). Intestinal microbiota in animal models of inflammatory diseases. ILAR Journal, 56, 179–191.PubMedCrossRefGoogle Scholar
  28. Hugot, J. P., Chamaillard, M., Zouali, H., Lesage, S., Cezard, J. P., Belaiche, J., Almer, S., Tysk, C., O’Morain, C. A., Gassull, M., Binder, V., Finkel, Y., Cortot, A., Modigliani, R., Laurent-Puig, P., Gower-Rousseau, C., Macry, J., Colombel, J. F., Sahbatou, M., & Thomas, G. (2001). Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature, 411, 599–603.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Human Microbiome Project, C. (2012). Structure, function and diversity of the healthy human microbiome. Nature, 486, 207–214.CrossRefGoogle Scholar
  30. Johansson, M. E., Phillipson, M., Petersson, J., Velcich, A., Holm, L., & Hansson, G. C. (2008). The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proceedings of the National Academy of Sciences of the United States of America, 105, 15064–15069.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Joossens, M., Huys, G., Cnockaert, M., de Preter, V., Verbeke, K., Rutgeerts, P., Vandamme, P., & Vermeire, S. (2011). Dysbiosis of the faecal microbiota in patients with Crohn’s disease and their unaffected relatives. Gut, 60, 631–637.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Jostins, L., Ripke, S., Weersma, R. K., Duerr, R. H., Mcgovern, D. P., Hui, K. Y., Lee, J. C., Schumm, L. P., Sharma, Y., Anderson, C. A., Essers, J., Mitrovic, M., Ning, K., Cleynen, I., Theatre, E., Spain, S. L., Raychaudhuri, S., Goyette, P., Wei, Z., Abraham, C., Achkar, J. P., Ahmad, T., Amininejad, L., Ananthakrishnan, A. N., Andersen, V., Andrews, J. M., Baidoo, L., Balschun, T., Bampton, P. A., Bitton, A., Boucher, G., Brand, S., Buning, C., Cohain, A., Cichon, S., D’Amato, M., de Jong, D., Devaney, K. L., Dubinsky, M., Edwards, C., Ellinghaus, D., Ferguson, L. R., Franchimont, D., Fransen, K., Gearry, R., Georges, M., Gieger, C., Glas, J., Haritunians, T., Hart, A., Hawkey, C., Hedl, M., Hu, X., Karlsen, T. H., Kupcinskas, L., Kugathasan, S., Latiano, A., Laukens, D., Lawrance, I. C., Lees, C. W., Louis, E., Mahy, G., Mansfield, J., Morgan, A. R., Mowat, C., Newman, W., Palmieri, O., Ponsioen, C. Y., Potocnik, U., Prescott, N. J., Regueiro, M., Rotter, J. I., Russell, R. K., Sanderson, J. D., Sans, M., Satsangi, J., Schreiber, S., Simms, L. A., Sventoraityte, J., Targan, S. R., Taylor, K. D., Tremelling, M., Verspaget, H. W., de Vos, M., Wijmenga, C., Wilson, D. C., Winkelmann, J., Xavier, R. J., Zeissig, S., Zhang, B., Zhang, C. K., Zhao, H., International, IBDGC, Silverberg, M. S., Annese, V., Hakonarson, H., Brant, S. R., Radford-Smith, G., Mathew, C. G., Rioux, J. D., et al. (2012). Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature, 491, 119–124.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Kaplan, G. G. (2015). The global burden of IBD: From 2015 to 2025. Nature Reviews Gastroenterology & Hepatology, 12, 720–727.CrossRefGoogle Scholar
  34. Kelsen, J., & Baldassano, R. N. (2008). Inflammatory bowel disease: The difference between children and adults. Inflammatory Bowel Diseases, 14(Suppl 2), S9–S11.PubMedPubMedCentralGoogle Scholar
  35. Khor, B., Gardet, A., & Xavier, R. J. (2011). Genetics and pathogenesis of inflammatory bowel disease. Nature, 474, 307–317.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Kim, S. C., Tonkonogy, S. L., Albright, C. A., Tsang, J., Balish, E. J., Braun, J., Huycke, M. M., & Sartor, R. B. (2005). Variable phenotypes of enterocolitis in interleukin 10-deficient mice monoassociated with two different commensal bacteria. Gastroenterology, 128, 891–906.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Knight, D. M., Trinh, H., Le, J., Siegel, S., Shealy, D., Mcdonough, M., Scallon, B., Moore, M. A., Vilcek, J., Daddona, P., et al. (1993). Construction and initial characterization of a mouse-human chimeric anti-TNF antibody. Molecular Immunology, 30, 1443–1453.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Knights, D., Parfrey, L. W., Zaneveld, J., Lozupone, C., & Knight, R. (2011). Human-associated microbial signatures: Examining their predictive value. Cell Host & Microbe, 10, 292–296.CrossRefGoogle Scholar
  39. Kobayashi, K. S., Chamaillard, M., Ogura, Y., Henegariu, O., Inohara, N., Nunez, G., & Flavell, R. A. (2005). Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science, 307, 731–734.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Kostic, A. D., Gevers, D., Siljander, H., Vatanen, T., Hyotylainen, T., Hamalainen, A. M., Peet, A., Tillmann, V., Poho, P., Mattila, I., Lahdesmaki, H., Franzosa, E. A., Vaarala, O., de Goffau, M., Harmsen, H., Ilonen, J., Virtanen, S. M., Clish, C. B., Oresic, M., Huttenhower, C., Knip, M., Group, DS, & Xavier, R. J. (2015). The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes. Cell Host & Microbe, 17, 260–273.CrossRefGoogle Scholar
  41. Kuhn, R., Lohler, J., Rennick, D., Rajewsky, K., & Muller, W. (1993). Interleukin-10-deficient mice develop chronic enterocolitis. Cell, 75, 263–274.CrossRefPubMedGoogle Scholar
  42. Lee, T., Clavel, T., Smirnov, K., Schmidt, A., Lagkouvardos, I., Walker, A., Lucio, M., Michalke, B., Schmitt-Kopplin, P., Fedorak, R., & Haller, D. (2017). Oral versus intravenous iron replacement therapy distinctly alters the gut microbiota and metabolome in patients with IBD. Gut, 66, 863–871.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Lepage, P., Hasler, R., Spehlmann, M. E., Rehman, A., Zvirbliene, A., Begun, A., Ott, S., Kupcinskas, L., Dore, J., Raedler, A., & Schreiber, S. (2011). Twin study indicates loss of interaction between microbiota and mucosa of patients with ulcerative colitis. Gastroenterology, 141, 227–236.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Lesage, S., Zouali, H., Cezard, J. P., Colombel, J. F., Belaiche, J., Almer, S., Tysk, C., O’Morain, C., Gassull, M., Binder, V., Finkel, Y., Modigliani, R., Gower-Rousseau, C., Macry, J., Merlin, F., Chamaillard, M., Jannot, A. S., Thomas, G., Hugot, J. P., & Group, E-I, Group, E & Group, G. (2002). CARD15/NOD2 mutational analysis and genotype-phenotype correlation in 612 patients with inflammatory bowel disease. American Journal of Human Genetics, 70, 845–857.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Levine, J. S., & Burakoff, R. (2011). Extraintestinal manifestations of inflammatory bowel disease. Gastroenterology and Hepatology (NY), 7, 235–241.Google Scholar
  46. Li, J., Jia, H., Cai, X., Zhong, H., Feng, Q., Sunagawa, S., Arumugam, M., Kultima, J. R., Prifti, E., Nielsen, T., Juncker, A. S., Manichanh, C., Chen, B., Zhang, W., Levenez, F., Wang, J., Xu, X., Xiao, L., Liang, S., Zhang, D., Zhang, Z., Chen, W., Zhao, H., Al-Aama, J. Y., Edris, S., Yang, H., Wang, J., Hansen, T., Nielsen, H. B., Brunak, S., Kristiansen, K., Guarner, F., Pedersen, O., Dore, J., Ehrlich, S. D., Bork, P., Wang, J., & Meta, HITC. (2014). An integrated catalog of reference genes in the human gut microbiome. Nature Biotechnology, 32, 834–841.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Liu, J. Z., van Sommeren, S., Huang, H., Ng, S. C., Alberts, R., Takahashi, A., Ripke, S., Lee, J. C., Jostins, L., Shah, T., Abedian, S., Cheon, J. H., Cho, J., Dayani, N. E., Franke, L., Fuyuno, Y., Hart, A., Juyal, R. C., Juyal, G., Kim, W. H., Morris, A. P., Poustchi, H., Newman, W. G., Midha, V., Orchard, T. R., Vahedi, H., Sood, A., Sung, J. Y., Malekzadeh, R., Westra, H. J., Yamazaki, K., Yang, S. K., International Multiple Sclerosis Genetics, C, International, IBDGC, Barrett, J. C., Alizadeh, B. Z., Parkes, M., Bk, T., Daly, M. J., Kubo, M., Anderson, C. A., & Weersma, R. K. (2015). Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nature Genetics, 47, 979–986.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Liu, T. C., & Stappenbeck, T. S. (2016). Genetics and pathogenesis of inflammatory bowel disease. Annual Review of Pathology, 11, 127–148.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Lozupone, C. A., Stombaugh, J., Gonzalez, A., Ackermann, G., Wendel, D., Vazquez-Baeza, Y., Jansson, J. K., Gordon, J. I., & Knight, R. (2013). Meta-analyses of studies of the human microbiota. Genetical Research, 23, 1704–1714.CrossRefGoogle Scholar
  50. Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K., & Knight, R. (2012). Diversity, stability and resilience of the human gut microbiota. Nature, 489, 220–230.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Macpherson, A. J., & Harris, N. L. (2004). Interactions between commensal intestinal bacteria and the immune system. Nature Reviews Immunology, 4, 478–485.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Macpherson, A. J., & Uhr, T. (2004). Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science, 303, 1662–1665.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Magro, F., Langner, C., Driessen, A., Ensari, A., Geboes, K., Mantzaris, G. J., Villanacci, V., Becheanu, G., Borralho Nunes, P., Cathomas, G., Fries, W., Jouret-Mourin, A., Mescoli, C., De Petris, G., Rubio, C. A., Shepherd, N. A., Vieth, M., Eliakim, R., European Society of, P, European, CS, & Colitis, O. (2013). European consensus on the histopathology of inflammatory bowel disease. Journal of Crohn’s & Colitis, 7, 827–851.CrossRefGoogle Scholar
  54. Mizoguchi, A., & Mizoguchi, E. (2010). Animal models of IBD: Linkage to human disease. Current Opinion in Pharmacology, 10, 578–587.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Mizoguchi, A., Takeuchi, T., Himuro, H., Okada, T., & Mizoguchi, E. (2016). Genetically engineered mouse models for studying inflammatory bowel disease. The Journal of Pathology, 238, 205–219.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Moayyedi, P., Surette, M. G., Kim, P. T., Libertucci, J., Wolfe, M., Onischi, C., Armstrong, D., Marshall, J. K., Kassam, Z., Reinisch, W., & Lee, C. H. (2015). Fecal microbiota transplantation induces remission in patients with active ulcerative colitis in a randomized controlled trial. Gastroenterology, 149, 102–109 e6.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Mohamadzadeh, M., Pfeiler, E. A., Brown, J. B., Zadeh, M., Gramarossa, M., Managlia, E., Bere, P., Sarraj, B., Khan, M. W., Pakanati, K. C., Ansari, M. J., O’Flaherty, S., Barrett, T., & Klaenhammer, T. R. (2011). Regulation of induced colonic inflammation by Lactobacillus acidophilus deficient in lipoteichoic acid. Proceedings of the National Academy of Sciences of the United States of America, 108(Suppl 1), 4623–4630.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Molodecky, N. A., Soon, I. S., Rabi, D. M., Ghali, W. A., Ferris, M., Chernoff, G., Benchimol, E. I., Panaccione, R., Ghosh, S., Barkema, H. W., & Kaplan, G. G. (2012). Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology, 142, 46–54 e42 quiz e30.CrossRefGoogle Scholar
  59. Nenci, A., Becker, C., Wullaert, A., Gareus, R., van Loo, G., Danese, S., Huth, M., Nikolaev, A., Neufert, C., Madison, B., Gumucio, D., Neurath, M. F., & Pasparakis, M. (2007). Epithelial NEMO links innate immunity to chronic intestinal inflammation. Nature, 446, 557–561.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Ocvirk, S., Sava, I. G., Lengfelder, I., Lagkouvardos, I., Steck, N., Roh, J. H., Tchaptchet, S., Bao, Y., Hansen, J. J., Huebner, J., Carroll, I. M., Murray, B. E., Sartor, R. B., & Haller, D. (2015). Surface-associated lipoproteins link enterococcus faecalis virulence to colitogenic activity in IL-10-deficient mice independent of their expression levels. PLoS Pathogens, 11, e1004911.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Ogura, Y., Bonen, D. K., Inohara, N., Nicolae, D. L., Chen, F. F., Ramos, R., Britton, H., Moran, T., Karaliuskas, R., Duerr, R. H., Achkar, J. P., Brant, S. R., Bayless, T. M., Kirschner, B. S., Hanauer, S. B., Nunez, G., & Cho, J. H. (2001). A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature, 411, 603–606.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Okou, D. T., Mondal, K., Faubion, W. A., Kobrynski, L. J., Denson, L. A., Mulle, J. G., Ramachandran, D., Xiong, Y., Svingen, P., Patel, V., Bose, P., Waters, J. P., Prahalad, S., Cutler, D. J., Zwick, M. E., & Kugathasan, S. (2014). Exome sequencing identifies a novel FOXP3 mutation in a 2-generation family with inflammatory bowel disease. Journal of Pediatric Gastroenterology and Nutrition, 58, 561–568.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Oliva, S., di Nardo, G., Ferrari, F., Mallardo, S., Rossi, P., Patrizi, G., Cucchiara, S., & Stronati, L. (2012). Randomised clinical trial: The effectiveness of Lactobacillus reuteri ATCC 55730 rectal enema in children with active distal ulcerative colitis. Alimentary Pharmacology & Therapeutics, 35, 327–334.CrossRefGoogle Scholar
  64. Orholm, M., Munkholm, P., Langholz, E., Nielsen, O. H., Sorensen, T. I., & Binder, V. (1991). Familial occurrence of inflammatory bowel disease. The New England Journal of Medicine, 324, 84–88.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Paramsothy, S., Kamm, M. A., Kaakoush, N. O., Walsh, A. J., van den Bogaerde, J., Samuel, D., Leong, R. W. L., Connor, S., Ng, W., Paramsothy, R., Xuan, W., Lin, E., Mitchell, H. M., & Borody, T. J. (2017). Multidonor intensive faecal microbiota transplantation for active ulcerative colitis: A randomised placebo-controlled trial. Lancet, 389, 1218–1228.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Paulson, M. (1928). Chronic ulcerative colitis with reference to a bacterial etiology. Experimental studies. Archives of Internal Medicine, 41(1), 75–96.CrossRefGoogle Scholar
  67. Petnicki-Ocwieja, T., Hrncir, T., Liu, Y. J., Biswas, A., Hudcovic, T., Tlaskalova-Hogenova, H., & Kobayashi, K. S. (2009). Nod2 is required for the regulation of commensal microbiota in the intestine. Proceedings of the National Academy of Sciences of the United States of America, 106, 15813–15818.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Podolsky, D. K. (2002). Inflammatory bowel disease. The New England Journal of Medicine, 347, 417–429.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Rakoff-Nahoum, S., & Medzhitov, R. (2007). Regulation of spontaneous intestinal tumorigenesis through the adaptor protein MyD88. Science, 317, 124–127.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S., & Medzhitov, R. (2004). Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell, 118, 229–241.CrossRefGoogle Scholar
  71. Rehaume, L. M., Mondot, S., Aguirre De Carcer, D., Velasco, J., Benham, H., Hasnain, S. Z., Bowman, J., Ruutu, M., Hansbro, P. M., Mcguckin, M. A., Morrison, M., & Thomas, R. (2014). ZAP-70 genotype disrupts the relationship between microbiota and host, leading to spondyloarthritis and ileitis in SKG mice. Arthritis and Rheumatism, 66, 2780–2792.CrossRefGoogle Scholar
  72. Rehman, A., Lepage, P., Nolte, A., Hellmig, S., Schreiber, S., & Ott, S. J. (2010). Transcriptional activity of the dominant gut mucosal microbiota in chronic inflammatory bowel disease patients. Journal of Medical Microbiology, 59, 1114–1122.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Rehman, A., Rausch, P., Wang, J., Skieceviciene, J., Kiudelis, G., Bhagalia, K., Amarapurkar, D., Kupcinskas, L., Schreiber, S., Rosenstiel, P., Baines, J. F., & Ott, S. (2016). Geographical patterns of the standing and active human gut microbiome in health and IBD. Gut, 65, 238–248.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Rehman, A., Sina, C., Gavrilova, O., Hasler, R., Ott, S., Baines, J. F., Schreiber, S., & Rosenstiel, P. (2011). Nod2 is essential for temporal development of intestinal microbial communities. Gut, 60, 1354–1362.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Renz, H., von Mutius, E., Brandtzaeg, P., Cookson, W. O., Autenrieth, I. B., & Haller, D. (2011). Gene-environment interactions in chronic inflammatory disease. Natural Immunity, 12, 273–277.CrossRefGoogle Scholar
  76. Rescigno, M., Urbano, M., Valzasina, B., Francolini, M., Rotta, G., Bonasio, R., Granucci, F., Kraehenbuhl, J. P., & Ricciardi-Castagnoli, P. (2001). Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Natural Immunity, 2, 361–367.CrossRefGoogle Scholar
  77. Rieder, F., & Fiocchi, C. (2008). Intestinal fibrosis in inflammatory bowel disease—Current knowledge and future perspectives. Journal of Crohn’s & Colitis, 2, 279–290.CrossRefGoogle Scholar
  78. Rodriguez-Palacios, A., Kodani, T., Kaydo, L., Pietropaoli, D., Corridoni, D., Howell, S., Katz, J., Xin, W., Pizarro, T. T., & Cominelli, F. (2015). Stereomicroscopic 3D-pattern profiling of murine and human intestinal inflammation reveals unique structural phenotypes. Nature Communications, 6, 7577.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Rossen, N. G., Fuentes, S., van der Spek, M. J., Tijssen, J. G., Hartman, J. H., Duflou, A., Lowenberg, M., van den Brink, G. R., Mathus-Vliegen, E. M., de Vos, W. M., Zoetendal, E. G., D’Haens, G. R., & Ponsioen, C. Y. (2015). Findings from a randomized controlled trial of fecal transplantation for patients with ulcerative colitis. Gastroenterology, 149, 110–118 e4.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Ruiz, P. A., Hoffmann, M., Szcesny, S., Blaut, M., & Haller, D. (2005). Innate mechanisms for Bifidobacterium lactis to activate transient pro-inflammatory host responses in intestinal epithelial cells after the colonization of germ-free rats. Immunology, 115, 441–450.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Ruiz, P. A., Shkoda, A., Kim, S. C., Sartor, R. B., & Haller, D. (2006). IL-10 gene-deficient mice lack TGF-beta/Smad-mediated TLR2 degradation and fail to inhibit proinflammatory gene expression in intestinal epithelial cells under conditions of chronic inflammation. Annals of the New York Academy of Sciences, 1072, 389–394.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Rutgeerts, P., Goboes, K., Peeters, M., Hiele, M., Penninckx, F., Aerts, R., Kerremans, R., & Vantrappen, G. (1991). Effect of faecal stream diversion on recurrence of Crohn’s disease in the neoterminal ileum. Lancet, 338, 771–774.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Rutgeerts, P., Sandborn, W. J., Feagan, B. G., Reinisch, W., Olson, A., Johanns, J., Travers, S., Rachmilewitz, D., Hanauer, S. B., Lichtenstein, G. R., de Villiers, W. J., Present, D., Sands, B. E., & Colombel, J. F. (2005). Infliximab for induction and maintenance therapy for ulcerative colitis. The New England Journal of Medicine, 353, 2462–2476.PubMedPubMedCentralCrossRefGoogle Scholar
  84. Samouilidou, E. C., Karpouza, A. P., Kostopoulos, V., Bakirtzi, T., Pantelias, K., Petras, D., Tzanatou-Exarchou, H., & grapsa, E. J. (2012). Lipid abnormalities and oxidized LDL in chronic kidney disease patients on hemodialysis and peritoneal dialysis. Renal Failure, 34, 160–164.PubMedPubMedCentralCrossRefGoogle Scholar
  85. Sartor, R. B. (2008). Microbial influences in inflammatory bowel diseases. Gastroenterology, 134, 577–594.PubMedPubMedCentralCrossRefGoogle Scholar
  86. Satsangi, J., Parkes, M., Louis, E., Hashimoto, L., Kato, N., Welsh, K., Terwilliger, J. D., Lathrop, G. M., Bell, J. I., & Jewell, D. P. (1996). Two stage genome-wide search in inflammatory bowel disease provides evidence for susceptibility loci on chromosomes 3, 7 and 12. Nature Genetics, 14, 199–202.PubMedCrossRefGoogle Scholar
  87. Schaubeck, M., Clavel, T., Calasan, J., Lagkouvardos, I., Haange, S. B., Jehmlich, N., Basic, M., Dupont, A., Hornef, M., von Bergen, M., Bleich, A., & Haller, D. (2016). Dysbiotic gut microbiota causes transmissible Crohn’s disease-like ileitis independent of failure in antimicrobial defence. Gut, 65, 225–237.PubMedCrossRefGoogle Scholar
  88. Sellon, R. K., Tonkonogy, S., Schultz, M., Dieleman, L. A., Grenther, W., Balish, E., Rennick, D. M., & Sartor, R. B. (1998). Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice. Infection and Immunity, 66, 5224–5231.PubMedPubMedCentralGoogle Scholar
  89. Shan, M., Gentile, M., Yeiser, J. R., Walland, A. C., Bornstein, V. U., Chen, K., He, B., Cassis, L., Bigas, A., Cols, M., Comerma, L., Huang, B., Blander, J. M., Xiong, H., Mayer, L., Berin, C., Augenlicht, L. H., Velcich, A., & Cerutti, A. (2013). Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals. Science, 342, 447–453.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Slack, E., Hapfelmeier, S., Stecher, B., Velykoredko, Y., Stoel, M., Lawson, M. A., Geuking, M. B., Beutler, B., Tedder, T. F., Hardt, W. D., Bercik, P., Verdu, E. F., Mccoy, K. D., & Macpherson, A. J. (2009). Innate and adaptive immunity cooperate flexibly to maintain host-microbiota mutualism. Science, 325, 617–620.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Sokol, H., Pigneur, B., Watterlot, L., Lakhdari, O., Bermudez-Humaran, L. G., Gratadoux, J. J., Blugeon, S., Bridonneau, C., Furet, J. P., Corthier, G., Grangette, C., Vasquez, N., Pochart, P., Trugnan, G., Thomas, G., Blottiere, H. M., Dore, J., Marteau, P., Seksik, P., & Langella, P. (2008). Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proceedings of the National Academy of Sciences of the United States of America, 105, 16731–16736.PubMedPubMedCentralCrossRefGoogle Scholar
  92. Sood, A., Midha, V., Makharia, G. K., Ahuja, V., Singal, D., Goswami, P., & Tandon, R. K. (2009). The probiotic preparation, VSL#3 induces remission in patients with mild-to-moderately active ulcerative colitis. Clinical Gastroenterology and Hepatology, 7, 1202–1209 e1.PubMedCrossRefGoogle Scholar
  93. Steck, N., Hoffmann, M., Sava, I. G., Kim, S. C., Hahne, H., Tonkonogy, S. L., Mair, K., Krueger, D., Pruteanu, M., Shanahan, F., Vogelmann, R., Schemann, M., Kuster, B., Sartor, R. B., & Haller, D. (2011). Enterococcus faecalis metalloprotease compromises epithelial barrier and contributes to intestinal inflammation. Gastroenterology, 141, 959–971.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Steed, H., Macfarlane, G. T., Blackett, K. L., Bahrami, B., Reynolds, N., Walsh, S. V., Cummings, J. H., & Macfarlane, S. (2010). Clinical trial: The microbiological and immunological effects of synbiotic consumption—a randomized double-blind placebo-controlled study in active Crohn’s disease. Alimentary Pharmacology & Therapeutics, 32, 872–883.CrossRefGoogle Scholar
  95. Stokkers, P. C., Reitsma, P. H., Tytgat, G. N., & van Deventer, S. J. (1999). HLA-DR and -DQ phenotypes in inflammatory bowel disease: A meta-analysis. Gut, 45, 395–401.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Svartz, N. (1948). The treatment of rheumatic polyarthritis with acid azo compounds. Rheumatism, 4, 180–185.PubMedPubMedCentralGoogle Scholar
  97. Truelove, S. C., & Witts, L. J. (1955). Cortisone in ulcerative colitis; Final report on a therapeutic trial. British Medical Journal, 2, 1041–1048.PubMedPubMedCentralCrossRefGoogle Scholar
  98. Tursi, A., Brandimarte, G., Papa, A., Giglio, A., Elisei, W., Giorgetti, G. M., Forti, G., Morini, S., Hassan, C., Pistoia, M. A., Modeo, M. E., Rodino, S., D’Amico, T., Sebkova, L., Sacca, N., di Giulio, E., Luzza, F., Imeneo, M., Larussa, T., di Rosa, S., Annese, V., Danese, S., & Gasbarrini, A. (2010). Treatment of relapsing mild-to-moderate ulcerative colitis with the probiotic VSL#3 as adjunctive to a standard pharmaceutical treatment: A double-blind, randomized, placebo-controlled study. The American Journal of Gastroenterology, 105, 2218–2227.PubMedPubMedCentralCrossRefGoogle Scholar
  99. Tysk, C., Lindberg, E., Jarnerot, G., & Floderus-Myrhed, B. (1988). Ulcerative colitis and Crohn’s disease in an unselected population of monozygotic and dizygotic twins. A study of heritability and the influence of smoking. Gut, 29, 990–996.PubMedPubMedCentralCrossRefGoogle Scholar
  100. van Dullemen, H. M., van Deventer, S. J., Hommes, D. W., Bijl, H. A., Jansen, J., Tytgat, G. N., & Woody, J. (1995). Treatment of Crohn’s disease with anti-tumor necrosis factor chimeric monoclonal antibody (cA2). Gastroenterology, 109, 129–135.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Vangay, P., Ward, T., Gerber, J. S., & Knights, D. (2015). Antibiotics, pediatric dysbiosis, and disease. Cell Host & Microbe, 17, 553–564.CrossRefGoogle Scholar
  102. Vijay-Kumar, M., Aitken, J. D., Carvalho, F. A., Cullender, T. C., Mwangi, S., Srinivasan, S., Sitaraman, S. V., Knight, R., Ley, R. E., & Gewirtz, A. T. (2010). Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science, 328, 228–231.PubMedPubMedCentralCrossRefGoogle Scholar
  103. Vijay-Kumar, M., Sanders, C. J., Taylor, R. T., Kumar, A., Aitken, J. D., Sitaraman, S. V., Neish, A. S., Uematsu, S., Akira, S., Williams, I. R., & Gewirtz, A. T. (2007). Deletion of TLR5 results in spontaneous colitis in mice. The Journal of Clinical Investigation, 117, 3909–3921.PubMedPubMedCentralGoogle Scholar
  104. von Schillde, M. A., Hormannsperger, G., Weiher, M., Alpert, C. A., Hahne, H., Bauerl, C., van Huynegem, K., Steidler, L., Hrncir, T., Perez-Martinez, G., Kuster, B., & Haller, D. (2012). Lactocepin secreted by Lactobacillus exerts anti-inflammatory effects by selectively degrading proinflammatory chemokines. Cell Host & Microbe, 11, 387–396.CrossRefGoogle Scholar
  105. Waidmann, M., Bechtold, O., Frick, J. S., Lehr, H. A., Schubert, S., Dobrindt, U., Loeffler, J., Bohn, E., & Autenrieth, I. B. (2003). Bacteroides vulgatus protects against Escherichia coli-induced colitis in gnotobiotic interleukin-2-deficient mice. Gastroenterology, 125, 162–177.PubMedCrossRefGoogle Scholar
  106. Wen, L., Ley, R. E., Volchkov, P. Y., Stranges, P. B., Avanesyan, L., Stonebraker, A. C., Hu, C., Wong, F. S., Szot, G. L., Bluestone, J. A., Gordon, J. I., & Chervonsky, A. V. (2008). Innate immunity and intestinal microbiota in the development of type 1 diabetes. Nature, 455, 1109–1113.PubMedPubMedCentralCrossRefGoogle Scholar
  107. Whelan, K., & Quigley, E. M. (2013). Probiotics in the management of irritable bowel syndrome and inflammatory bowel disease. Current Opinion in Gastroenterology, 29, 184–189.PubMedPubMedCentralCrossRefGoogle Scholar
  108. Wilks, S. (1859). Morbid appearances in the intestines of Miss Bankes. London Medical Gazette, 2, 264–265.Google Scholar
  109. Williams, R. O., Feldmann, M., & Maini, R. N. (1992). Anti-tumor necrosis factor ameliorates joint disease in murine collagen-induced arthritis. Proceedings of the National Academy of Sciences of the United States of America, 89, 9784–9788.PubMedPubMedCentralCrossRefGoogle Scholar
  110. Willing, B. P., Dicksved, J., Halfvarson, J., Andersson, A. F., Lucio, M., Zheng, Z., Jarnerot, G., Tysk, C., Jansson, J. K., & Engstrand, L. (2010). A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes. Gastroenterology, 139, 1844–1854 e1.PubMedPubMedCentralCrossRefGoogle Scholar
  111. Worthey, E. A., Mayer, A. N., Syverson, G. D., Helbling, D., Bonacci, B. B., Decker, B., Serpe, J. M., Dasu, T., Tschannen, M. R., Veith, R. L., Basehore, M. J., Broeckel, U., Tomita-Mitchell, A., Arca, M. J., Casper, J. T., Margolis, D. A., Bick, D. P., Hessner, M. J., Routes, J. M., Verbsky, J. W., Jacob, H. J., & Dimmock, D. P. (2011). Making a definitive diagnosis: Successful clinical application of whole exome sequencing in a child with intractable inflammatory bowel disease. Genetics in Medicine, 13, 255–262.PubMedPubMedCentralCrossRefGoogle Scholar
  112. Zocco, M. A., Dal Verme, L. Z., Cremonini, F., Piscaglia, A. C., Nista, E. C., Candelli, M., Novi, M., Rigante, D., Cazzato, I. A., Ojetti, V., Armuzzi, A., Gasbarrini, G., & Gasbarrini, A. (2006). Efficacy of Lactobacillus GG in maintaining remission of ulcerative colitis. Alimentary Pharmacology & Therapeutics, 23, 1567–1574.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Medicine 1University Hospital Erlangen, University of Erlangen-NurembergErlangenGermany
  2. 2.Chair of Nutrition and ImmunologyTechnical University of MunichMunichGermany
  3. 3.ZIEL – Institute for Food & Health, Technical University of MunichMunichGermany

Personalised recommendations