Advertisement

Slopes of 3-Dimensional Subshifts of Finite Type

  • Etienne Moutot
  • Pascal Vanier
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10846)

Abstract

In this paper we study the directions of periodicity of three-dimensional subshifts of finite type (SFTs) and in particular their slopes. A configuration of a subshift has a slope of periodicity if it is periodic in exactly one direction, the slope being the angles of the periodicity vector. In this paper, we prove that any \(\varSigma ^0_2\) set may be realized as a a set of slopes of an SFT.

Notes

Acknowledgements

The authors would like to thank anonymous reviewers who pointed out a mistake in a previous version of the paper.

This work was supported by grant TARMAC ANR 12 BS02 007 01.

References

  1. 1.
    Aubrun, N., Sablik, M.: Simulation of effective subshifts by two-dimensional subshifts of finite type. Acta Applicandae Math. 126(1), 35–63 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Berger, R.: The Undecidability of the Domino Problem. Ph.D. thesis, Harvard University (1964)Google Scholar
  3. 3.
    Berger, R.: The Undecidability of the Domino Problem. No. 66 in Memoirs of the American Mathematical Society, The American Mathematical Society (1966)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Culik II, K., Kari, J.: An aperiodic set of Wang cubes. J. Univers. Comput. Sci. 1(10), 675–686 (1995)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Durand, B., Romashchenko, A., Shen, A.: Fixed-point tile sets and their applications. J. Comput. Syst. Sci. 78(3), 731–764 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Gurevich, Y., Koryakov, I.: Remarks on Berger’s paper on the domino problem. Siberian Math. J. 13(2), 319–320 (1972)CrossRefzbMATHGoogle Scholar
  7. 7.
    Hochman, M., Meyerovitch, T.: A characterization of the entropies of multidimensional shifts of finite type. Ann. Math. 171(3), 2011–2038 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Jeandel, E., Rao, M.: An aperiodic set of 11 Wang tiles. CoRR abs/1506.06492 (2015). http://arxiv.org/abs/1506.06492
  9. 9.
    Jeandel, E., Vanier, P.: Slopes of tilings. In: Kari, J. (ed.) JAC, pp. 145–155. Turku Center for Computer Science (2010)Google Scholar
  10. 10.
    Jeandel, E., Vanier, P.: Characterizations of periods of multi-dimensional shifts. Ergod. Theor. Dyn. Syst. 35(2), 431–460 (2015). http://journals.cambridge.org/article_S0143385713000606MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Kari, J.: The nilpotency problem of one-dimensional cellular automata. SIAM J.Comput. 21(3), 571–586 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kari, J.: A small aperiodic set of Wang tiles. Discrete Math. 160(1–3), 259–264 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Lind, D.A., Marcus, B.: An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, New York (1995)CrossRefzbMATHGoogle Scholar
  14. 14.
    Meyerovitch, T.: Growth-type invariants for \(\mathbb{Z}^d\) subshifts of finite type and arithmetical classes of real numbers. Inventiones Math. 184(3), 567–589 (2010)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Myers, D.: Non recursive tilings of the plane II. J. Symbolic Log. 39(2), 286–294 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Ollinger, N.: Two-by-two substitution systems and the undecidability of the domino problem. In: Beckmann, A., Dimitracopoulos, C., Löwe, B. (eds.) CiE 2008. LNCS, vol. 5028, pp. 476–485. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-69407-6_51CrossRefzbMATHGoogle Scholar
  17. 17.
    Poupet, V.: Yet another aperiodic tile set. In: Journées Automates Cellulaires (JAC), pp. 191–202. TUCS (2010)Google Scholar
  18. 18.
    Robinson, R.M.: Undecidability and nonperiodicity for tilings of the plane. Inventiones Math. 12(3), 177–209 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Rogers Jr., H.: Theory of Recursive Functions and Effective Computability. MIT Press, Cambridge (1987)zbMATHGoogle Scholar
  20. 20.
    Wang, H.: Proving theorems by pattern recognition I. Commun. ACM 3(4), 220–234 (1960)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.LIP, ENS de Lyon – CNRS – INRIA – UCBL – Université de LyonLyon CedexFrance
  2. 2.Laboratoire d’Algorithmique, Complexité et Logique Université de Paris-Est, LACL, UPECParisFrance

Personalised recommendations