Advertisement

Operations on Boolean and Alternating Finite Automata

  • Michal Hospodár
  • Galina Jirásková
  • Ivana Krajňáková
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10846)

Abstract

We investigate the descriptional complexity of basic regular operations on languages represented by Boolean and alternating finite automata. In particular, we consider the operations of difference, symmetric difference, star, reversal, left quotient, and right quotient, and get tight upper bounds \(m+n, m+n, 2^n, 2^n, m,\) and \(2^m\), respectively, for Boolean automata, and \(m+n+1, m+n, 2^n, 2^n, m+1\), and \(2^m+1\), respectively, for alternating finite automata. To describe witnesses for symmetric difference, we use a ternary alphabet. All the remaining witnesses are defined over binary or unary alphabets that are shown to be optimal.

References

  1. 1.
    Brzozowski, J., Jirásková, G., Liu, B., Rajasekaran, A., Szykuła, M.: On the state complexity of the shuffle of regular languages. In: Câmpeanu, C., Manea, F., Shallit, J. (eds.) DCFS 2016. LNCS, vol. 9777, pp. 73–86. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-41114-9_6CrossRefzbMATHGoogle Scholar
  2. 2.
    Brzozowski, J.A., Leiss, E.L.: On equations for regular languages, finite automata, and sequential networks. Theoret. Comput. Sci. 10, 19–35 (1980).  https://doi.org/10.1016/0304-3975(80)90069-9MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Čevorová, K.: Kleene star on unary regular languages. In: Jurgensen, H., Reis, R. (eds.) DCFS 2013. LNCS, vol. 8031, pp. 277–288. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39310-5_26CrossRefGoogle Scholar
  4. 4.
    Chandra, A.K., Kozen, D., Stockmeyer, L.J.: Alternation. J. ACM 28(1), 114–133 (1981).  https://doi.org/10.1145/322234.322243MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Fellah, A., Jürgensen, H., Yu, S.: Constructions for alternating finite automata. Int. J. Comput. Math. 35(1–4), 117–132 (1990).  https://doi.org/10.1080/00207169008803893CrossRefzbMATHGoogle Scholar
  6. 6.
    Holzer, M., Kutrib, M.: Nondeterministic descriptional complexity of regular languages. Int. J. Found. Comput. Sci. 14(6), 1087–1102 (2003).  https://doi.org/10.1142/S0129054103002199MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and Computation. Addison-Wesley, Boston (1979)zbMATHGoogle Scholar
  8. 8.
    Hospodár, M., Jirásková, G.: Concatenation on deterministic and alternating automata. In: Bordihn, H., Freund, R., Nagy, B., Vaszil, G. (eds.) NCMA 2016, vol. 321, pp. 179–194. Österreichische Computer Gesellschaft (2016). books@ocg.atGoogle Scholar
  9. 9.
    Jirásková, G.: State complexity of some operations on binary regular languages. Theoret. Comput. Sci. 330(2), 287–298 (2005).  https://doi.org/10.1016/j.tcs.2004.04.011MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Jirásková, G.: Descriptional complexity of operations on alternating and Boolean automata. In: Hirsch, E.A., Karhumäki, J., Lepistö, A., Prilutskii, M. (eds.) CSR 2012. LNCS, vol. 7353, pp. 196–204. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-30642-6_19CrossRefzbMATHGoogle Scholar
  11. 11.
    Jirásková, G., Šebej, J.: Reversal of binary regular languages. Theoret. Comput. Sci. 449, 85–92 (2012).  https://doi.org/10.1016/j.tcs.2012.05.008MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Krajňáková, I., Jirásková, G.: Square on deterministic, alternating, and Boolean finite automata. In: Pighizzini, G., Câmpeanu, C. (eds.) DCFS 2017. LNCS, vol. 10316, pp. 214–225. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-60252-3_17CrossRefGoogle Scholar
  13. 13.
    Leiss, E.L.: Succint representation of regular languages by Boolean automata. Theoret. Comput. Sci. 13, 323–330 (1981).  https://doi.org/10.1016/S0304-3975(81)80005-9MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Maslov, A.N.: Estimates of the number of states of finite automata. Soviet Math. Doklady 11(5), 1373–1375 (1970)zbMATHGoogle Scholar
  15. 15.
    Nicaud, C.: Average state complexity of operations on unary automata. In: Kutyłowski, M., Pacholski, L., Wierzbicki, T. (eds.) MFCS 1999. LNCS, vol. 1672, pp. 231–240. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48340-3_21CrossRefzbMATHGoogle Scholar
  16. 16.
    Palmovský, M.: Kleene closure and state complexity. RAIRO - Theor. Inf. Appl. 50(3), 251–261 (2016).  https://doi.org/10.1051/ita/2016024MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Sipser, M.: Introduction to the theory of computation. Cengage Learn (2012)Google Scholar
  18. 18.
    Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages. Volume 1: Word, Language, Grammar, pp. 41–110. Springer, Heidelberg (1997).  https://doi.org/10.1007/978-3-642-59136-5_2CrossRefGoogle Scholar
  19. 19.
    Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations on regular languages. Theoret. Comput. Sci. 125(2), 315–328 (1994).  https://doi.org/10.1016/0304-3975(92)00011-FMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Michal Hospodár
    • 1
  • Galina Jirásková
    • 1
  • Ivana Krajňáková
    • 1
  1. 1.Mathematical InstituteSlovak Academy of SciencesKošiceSlovakia

Personalised recommendations