Advertisement

Pathological Processes

  • Jeffrey P. Pearson
  • Adil Aldhahrani
  • Peter I. Chater
  • Matthew D. Wilcox
Chapter

Abstract

A key factor in many lung diseases and in lung allograft deterioration is an inflammatory response leading to fibroproliferation. What is the evidence for gastroduodenal reflux and aspiration being a driver of these processes? The potential damaging agents in aspirated refluxate are food particles, and microbes (particularly when patients are treated with proton pump inhibitors (PPI) and microbial overgrowth of the stomach occurs). In addition gastric juice contains enzymes e.g. pepsin and lipase and gastric acid which all have the potential to damage airway mucosa [1]. If duodenal reflux into the stomach has occurred then the gastric juice will contain conjugated bile acids, bilirubin, phospholipids and digestive enzymes in particular trypsin, chymotrypsin and lipases. These pancreatic enzymes could survive in the stomach retaining activity if the pH has been elevated by the alkaline refluxate coming from the duodenum, or in patients on PPI treatment. For example trypsin retains functionality when exposed to pepsin at pH 4.0 for 6 h but was denatured by incubation with pepsin at pH 2.2 for 4 h [2].

References

  1. 1.
    Brownlee IA, et al. From gastric aspiration to airway inflammation. Monaldi Arch Chest Dis. 2010;73:54–63.PubMedGoogle Scholar
  2. 2.
    Pearson JP, Parikh S. Nature and properties of gastro-oesophageal and extra- oesophagel refluxate. Aliment Pharmacol Ther. 2011;33(suppl 1):1–7.PubMedGoogle Scholar
  3. 3.
    Que K, et al. Histological examination of the relationship between respiratory disorders and repetitive microaspiration using a rat gastro-duodenal contents reflux model. Exp Anim. 2011;60(2):141–50.CrossRefGoogle Scholar
  4. 4.
    Harding SM. Gastroesophageal reflux: a potential asthma trigger. Immunol Allergy Clin North Am. 2005;25:131–48.CrossRefPubMedGoogle Scholar
  5. 5.
    Aikawa T, et al. Marked goblet cell hyperplasia with mucus accumulation in the airways of patients who died of severe acute asthma attack. Chest. 1992;101:916–21.CrossRefPubMedGoogle Scholar
  6. 6.
    Tang T, et al. Aspiration of gastric fluid in pulmonary allografts: effects of pH. J Surg Res. 2013;181:E31–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Li B, et al. Chronic aspiration of gastric fluid induces the development of obliterative bronchiolitis in rat lung transplants. Am J Transplant. 2008;8:1614–21.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Hartwig MG, et al. Chronic aspiration of gastric fluid accelerates pulmonary dysfunction in a rat model of lung transplantation. J Thorac Cardiovasc Surg. 2006;131:209–17.CrossRefPubMedGoogle Scholar
  9. 9.
    Cheng CM, et al. Macrophage activation by gastric fluid suggests MMP involvement in aspiration-induced lung disease. Immunobiology. 2010;215:173–81.CrossRefPubMedGoogle Scholar
  10. 10.
    Cho NH, et al. Induction of the gene encoding macrophage chemoattractant protein 1 by orientia tsutsugamushi in human endothelial cells involves activation of transcription factor activator protein 1. Infect Immun. 2002;70:4841–50.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Chen D, et al. Protease activated receptor 1 activation is necessary for monocyte chemoattractant protein 1 dependent leucocyte recruitment in vivo. J Exp Med. 2008;205:1739–46.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Chiu HY, et al. Study of gastric fluid induced cytokine and chemokine expression in airway smooth muscle cells and airway remodelling. Cytokine. 2011;56:726–31.CrossRefPubMedGoogle Scholar
  13. 13.
    Doherty T, Broide D. Cytokines and growth factors in airway remodelling in asthma. Curr Opin Immunol. 2007;19:676–80.CrossRefPubMedGoogle Scholar
  14. 14.
    Barbas AS, et al. Chronic aspiration shifts the immune response from Th1 to Th2 in a murine model of asthma. Eur J Clin Invest. 2008;38:596–602.CrossRefPubMedGoogle Scholar
  15. 15.
    Imai T, et al. Identification and molecular characterisation of fractalkine receptor CX3CR1 which mediates both leucocyte migration and adhesion. Cell. 1997;91:521–30.CrossRefPubMedGoogle Scholar
  16. 16.
    Murphy DM, O’Byrne PM. Recent advances in the pathophysiology of asthma. Chest. 2010;137:1417–26.CrossRefPubMedGoogle Scholar
  17. 17.
    Lan H, et al. The PTEN tumor suppressor inhibits human airway smooth muscle cell migration. Int J Mol Med. 2010;26:893–9.PubMedGoogle Scholar
  18. 18.
    Bathoorn E, et al. Cytotoxicity and induction of inflammation by pepsin and acid in bronchial epithelial cells. Int J Inflamm. 2011;2011:569416.  https://doi.org/10.4061/2011/569416.CrossRefGoogle Scholar
  19. 19.
    Bulmer DM, et al. Laryngeal mucosa: its susceptibility to damage by acid and pepsin. Laryngoscope. 2010;120:777–82.CrossRefPubMedGoogle Scholar
  20. 20.
    Su KC, et al. Bile acids increase alveolar epithelial permeability via mitogen-activated protein kinase, cytosolic phospholipase A2, cyclooxygenase-2, prostaglandin E2 and junctional proteins. Respirology. 2013;18:848–56.CrossRefPubMedGoogle Scholar
  21. 21.
    Ware LB, Matthay MA. The acute respiratory distress syndrome. N Engl J Med. 2000;342:1334–49.CrossRefPubMedGoogle Scholar
  22. 22.
    Matthay MA, et al. Lung epithelium fluid transport and the resolution of pulmonary edema. Physiol Rev. 2002;82:569–600.CrossRefPubMedGoogle Scholar
  23. 23.
    Perng DW, et al. Exposure of airway epithelium to bile acids associated with gastroesophageal reflux symptoms. Chest. 2007;132:1548–56.CrossRefPubMedGoogle Scholar
  24. 24.
    Peyssonnaux C, et al. HIF-1alpha expression regulates the bactericidal capacity of phagocytes. J Clin Invest. 2005;115:1806–15.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Eltzschig HK, Carmeliet P. Hypoxia and inflammation. N Engl J Med. 2011;364:656–65.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Cramer T, et al. HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell. 2003;112:645–57.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Nizet V, Johnson RS. Interdependence of hypoxic and innate immune responses. Nat Rev Immunol. 2009;9:609–17.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Legendre C, et al. Bile acids repress hypoxia-inducible factor 1 and modulate the airway immune response. Infect Immun. 2014;82:3531–41.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Reen FJ, et al. Respiratory pathogens adopt a chronic lifestyle in response to bile. PLoS One. 2012;7:e45978.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Brodlie M, et al. Bile acid aspiration in people with cystic fibrosis before and after lung transplantation. Eur Respir J. 2015;46(6):1820–3.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Goss CH, Burns JJ. Exacerbations in cystic fibrosis. 1: Epidemiology and pathogenesis. Thorax. 2007;62:360–7.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Raghu G, et al. High prevalence of abnormal acid gastro-oesophageal reflux in idiopathic pulmonary fibrosis. Eur Respir J. 2006;27:136–42.CrossRefPubMedGoogle Scholar
  33. 33.
    Salvioli B, et al. Gastro-oesophageal reflux and interstitial lung disease. Dig Liver Dis. 2006;38:879–84.CrossRefPubMedGoogle Scholar
  34. 34.
    Sweet MP, et al. Gastro-oesophageal reflux in patients with idiopathic pulmonary fibrosis referred for lung transplantation. J Thorac Cardiovasc Surg. 2007;133:1078–84.CrossRefPubMedGoogle Scholar
  35. 35.
    Lee JS, et al. Gastroesophageal reflux therapy is associated with longer survival in patients with idiopathic pulmonary fibrosis. Am J Crit Care Med. 2011;184:1390–4.CrossRefGoogle Scholar
  36. 36.
    Rosen R, et al. The presence of pepsin in the lung and its relationship to pathologic gastro-esophageal reflux. Neurogastroenterol Motil. 2012;24:129–e85.CrossRefPubMedGoogle Scholar
  37. 37.
    Ali MS, et al. Bile acids in Laryngopharyngeal refluxate: will they enhance or attenuate the action of pepsin? Laryngoscope. 2012;123:434–9.CrossRefPubMedGoogle Scholar
  38. 38.
    Parsons JP, Mastronarde JG. Gastroesophageal reflux disease and asthma. Curr Opin Pulm Med. 2010;16:60–3.CrossRefPubMedGoogle Scholar
  39. 39.
    Ravelli AM, Panarotto MB, Verdoni L, et al. Pulmonary aspiration shown by scintigraphy in gastroesophageal reflux-related respiratory disease. Chest. 2006;130:1520–6.CrossRefPubMedGoogle Scholar
  40. 40.
    Araujo AC, Aprile LR, Dantas RO, et al. Bronchial responsiveness during esophageal acid infusion. Lung. 2008;186:123–8.CrossRefPubMedGoogle Scholar
  41. 41.
    Bonacin D, Fabijanic D, Rasic M, et al. Gastroesophageal reflux disease and pulmonary function: a potential role of dead space extension. Med Sci Monit. 2012;18:CR271–5.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    D’Ovidio F, Mura M, Ridsdale R, et al. The effect of reflux and bile acid aspiration on the lung allograft and its surfactant and innate immunity molecules SP-A and SP-D. Am J Transpl. 2006;6:1930–8.CrossRefGoogle Scholar
  43. 43.
    Blondeau K, Mertens V, Vanaudenaerde BA, et al. Gastro-oesophageal reflux and gastric aspiration in lung transplant patients with or without chronic rejection. Eur Respir J. 2008;31:707–13.CrossRefPubMedGoogle Scholar
  44. 44.
    Birk DE. Type V collagen: heterotypic type I/V collagen interactions in regulation of fibril assembly. Micron. 2001;32:223–37.CrossRefPubMedGoogle Scholar
  45. 45.
    Burlingham WJ, Love RB, Jankowska-Gan E, et al. Il-17-depenent cellular immunity to obliterative bronchiolitis in human lung transplants. J Clin Invest. 2007;117:3498–506.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Yoshida S, haque A, Mizobuchi T, et al. Anti-type V collagen lymphocytes that express Il-17 and IL-23 induce rejection pathology in fresh and well healed lung transplants. Am J Transplant. 2006;6:724–35.CrossRefPubMedGoogle Scholar
  47. 47.
    Bobadilla JL, Jankowska-Gan E, Quingyong X, et al. Reflux-induced collagen type V sensitization. Chest. 2010;138:363–70.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Davis SD, Shankaran V, Kovacs EJ, et al. Gastroesophageal disease after transplantation: Pathophysiology and implications for treatment. Surgery. 2010;148:737–45.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Cantu E, Appel JZ, Hartwig MG, et al. Early fundoplication prevents chronic allograft dysfunction in patients with gastroesophageal reflux disease. Ann Thorac Surg. 2004;78:1142–51.CrossRefPubMedGoogle Scholar
  50. 50.
    Robertson AGN, Shenfine J, Ward C, et al. A call for standardization of anti-reflux surgery in the lung transplant population. Transplantation. 2009;87:1112–4.CrossRefPubMedGoogle Scholar
  51. 51.
    Robertson AGN, Ward C, Pearson JP, et al. Lung transplantation, gastroesophageal reflux, and fundoplication. Ann Thorac Surg. 2010;89:653–60.CrossRefPubMedGoogle Scholar
  52. 52.
    Fisichella PM, Davis CS, Lowery E, et al. Pulmonary immune changes early after laparoscopic antireflux surgery in lung transplant patients with gastroesophageal reflux disease. J Surg Res. 2012;177:E65–73.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Neujahr DC, Mohammed A, Ulukpo O, et al. Surgical correction of gastroesophageal reflux in lung transplant patients is associated with decreased effector CD8 cells in lung lavages: a case series. Chest. 2010;138:937–43.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jeffrey P. Pearson
    • 1
  • Adil Aldhahrani
    • 1
  • Peter I. Chater
    • 1
  • Matthew D. Wilcox
    • 1
  1. 1.Institute of Cell and Molecular BiosciencesNewcastle University, The Medical SchoolNewcastle upon TyneUK

Personalised recommendations