Advertisement

Field Effect and Applications

  • Paulo Roberto BuenoEmail author
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

Chapter  1 discussed the importance of establishing a unified standpoint for electronics and electrochemistry, and also showed that this can be done by suitably defining chemical or electrochemical capacitances. In Chap.  2, a detailed description was given about how chemical or electrochemical capacitances (if an electrolyte is considered in the analysis) can be derived using the first principles of quantum mechanics.

References

  1. 1.
    A.J. Bard, L.R. Faulkner, Electrochemical Methods Fundamentals and Applications, 2nd edn. (Wiley, New York, 2000)Google Scholar
  2. 2.
    G.A. Snook, P. Kao, A.S. Best, Conducting-polymer-based supercapacitor devices and electrodes. J. Power Sources 196(1), 1–12 (2011)Google Scholar
  3. 3.
    G.P. Wang, L. Zhang, J.J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41(2), 797–828 (2012)PubMedGoogle Scholar
  4. 4.
    L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38(9), 2520–2531 (2009)PubMedGoogle Scholar
  5. 5.
    D.A. Miranda, P.R. Bueno, Density functional theory and an experimentally-designed energy functional of electron density. Phys. Chem. Chem. Phys. 18(37), 25984–25992 (2016)PubMedPubMedCentralGoogle Scholar
  6. 6.
    A. Santos, J.P. Piccoli, N.A. Santos, E.M. Cilli, P.R. Bueno, Redox-tagged peptide for capacitive diagnostic assays. Biosens. Bioelectron. 68, 281–287 (2015)PubMedGoogle Scholar
  7. 7.
    P.R. Bueno, G.T. Feliciano, J.J. Davis, Capacitance spectroscopy and density functional theory. Phys. Chem. Chem. Phys. 17, 9375–9382 (2015)PubMedGoogle Scholar
  8. 8.
    M.S. Gudiksen, L. J. Lauhon, J. Wang, D.C. Smith, C.M. Lieber, Growth of nanowire superlattice structures for nanoscale photonics and electronics, Nature 415(6872), 617–620 (2002)PubMedGoogle Scholar
  9. 9.
    K. Ariga, J.P. Hill, Q.M. Ji, Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. Phys. Chem. Chem. Phys. 9(19), 2319–2340 (2007)PubMedGoogle Scholar
  10. 10.
    J.N. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A.Z Elorza, N. Camara, F.J.G. de Abajo, R. Hillenbrand, F.H.L. Koppens, Optical nano-imaging of gate-tunable graphene plasmons. Nature 487(7405), 77–81 (2012)PubMedGoogle Scholar
  11. 11.
    Z.H. Chen, Y.M. Lin, M.J. Rooks, P. Avouris, Graphene nano-ribbon electronics. Physica E-Low-dimensional systems and nanostructures, 40(2), 228–232 (2007)Google Scholar
  12. 12.
    D. Grieshaber, R. MacKenzie, J. Voros, E. Reimhult, Electrochemical biosensors-sensor principles and architectures. Sensors, 8(3), 1400–1458 (2008)PubMedGoogle Scholar
  13. 13.
    H.I. Hanafi, S. Tiwari, I. Khan, Fast and long retention-time nano-crystal memory. IEEE Trans. Electron Devices 43(9), 1553–1558 (1996)Google Scholar
  14. 14.
    M.C. McAlpine, H. Ahmad, D.W. Wang, J.R. Heath, Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors. Nat. Mater. 6(5), 379–384 (2007)PubMedPubMedCentralGoogle Scholar
  15. 15.
    V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker, S. Seal, Graphene based materials: past, present and future. Prog. Mater Sci. 56(8), 1178–1271 (2011)Google Scholar
  16. 16.
    Z.L. Wang, Functional oxide nanobelts: materials, properties and potential applications in nanosystems and biotechnology. Annu. Rev. Phys. Chem. 55, 159–196 (2004)PubMedGoogle Scholar
  17. 17.
    K. Balasubramanian, M. Burghard, Biosensors based on carbon nanotubes. Anal. Bioanal. Chem. 385(3), 452–468 (2006)PubMedGoogle Scholar
  18. 18.
    C. Bartic, G. Borghs, Organic thin-film transistors as transducers for (bio) analytical applications. Anal. Bioanal. Chem. 384(2), 354–365 (2006)Google Scholar
  19. 19.
    J. Vanderspiegel, I. Lauks, P. Chan, D. Babic, The extended gate chemically sensitive field-effect transistor as multi-species microprobe. Sens. Actuators 4(2), 291–298 (1983)Google Scholar
  20. 20.
    Y. Ohno, K. Maehashi, Y. Yamashiro, K. Matsumoto, Electrolyte-gated graphene field-effect transistors for detecting pH protein adsorption. Nano Lett. 9(9), 3318–3322 (2009)PubMedGoogle Scholar
  21. 21.
    S. Rosenblatt, Y. Yaish, J. Park, J. Gore, V. Sazonova, P.L. McEuen, High performance electrolyte gated carbon nanotube transistors. Nano Lett. 2(8), 869–872 (2002)Google Scholar
  22. 22.
    M. Berggren, A. Richter-Dahlfors, Organic bioelectronics. Adv. Mater. 19(20), 3201–3213 (2007)Google Scholar
  23. 23.
    C.R. Bondy, S.J. Loeb, Amide based receptors for anions. Coord. Chem. Rev. 240 (1–2), 77–99 (2003)Google Scholar
  24. 24.
    R.H. Friend, R.W. Gymer, A.B. Holmes, J.H. Burroughes, R.N. Marks, C. Taliani, D.D.C. Bradley, D.A. Dos Santos, J.L. Bredas, M. Logdlund, W.R. Salaneck, Electroluminescence in conjugated polymers. Nature 397 (6715), 121-128 (1999)Google Scholar
  25. 25.
    M.; Kaempgen, C.K. Chan, J. Ma, Y. Cui, G. Gruner, Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett. 9(5), 1872–1876 (2009)PubMedGoogle Scholar
  26. 26.
    U. Lange, N.V. Roznyatouskaya, V.M. Mirsky, Conducting polymers in chemical sensors and arrays. Anal. Chim. Acta 614(1), 1–26 (2008)PubMedGoogle Scholar
  27. 27.
    P. Lin, F. Yan, Organic thin-film transistors for chemical and biological sensing. Adv. Mater. 24(1), 34–51 (2012)PubMedGoogle Scholar
  28. 28.
    J.T. Mabeck, G.G. Malliaras, Chemical and biological sensors based on organic thin-film transistors. Anal. Bioanal. Chem. 384(2), 343–353 (2006)PubMedGoogle Scholar
  29. 29.
    I. McCulloch, M. Heeney, C. Bailey, K. Genevicius, I. Macdonald, M. Shkunov, D. Sparrowe, S. Tierney, R. Wagner, W.M. Zhang, M.L. Chabinyc, R.J. Kline, M.D. McGehee, M.F. Toney, Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nat. Mater. 5(4), 328–333PubMedGoogle Scholar
  30. 30.
    J. Piccoli, R. Hein, A.H. El-Sagheer, T. Brown, E.M. Cilli, P.R. Bueno, J.J. Davis, Redox capacitive assaying of c-reactive protein at a peptide supported aptamer interface. Anal. Chem. 90(5), 3005–3008 (2018)PubMedGoogle Scholar
  31. 31.
    P.R. Bueno, T.A. Benites, J.J. Davis. The mesoscopic electrochemistry of molecular junctions. Sci. Rep. 6, 18400 (2016)Google Scholar
  32. 32.
    P.R. Bueno, F.C.B. Fernandes, J.J. Davis, Quantum capacitance as a reagentless molecular sensing element. Nanoscale (2017)Google Scholar
  33. 33.
    S. Luryi, Quantum capacitance devices. Appl. Phys. Lett. 52, 501 (1988)Google Scholar
  34. 34.
    W.T. Yang, R.G. Parr, Hardness, softness and the fukui function in the electronic theory of metals and catalysis, in Proceedings of the National Academy of Sciences of the United States of America, 82 (20), 6723–6726 (1985)Google Scholar
  35. 35.
    E. Laviron, AC polarograpy and faradaic impedance of strongly adsorbed electroactive species. 2. Theoretical-study of a quasi-reversible reaction in the case of Framkin isotherm. J. Electroanal. Chem. 105(1), 25–34 (1979)Google Scholar
  36. 36.
    E. Laviron, AC polarography and faradaic impedance of strongly adsorbed electroactive species. 1. Theoretical and experimental-study of quasi-reversible reaction in the case of Langmuir isotherm. J. Electroanal. Chem. 97(2), 135–149 (1979)Google Scholar
  37. 37.
    A.L. Eckermann, D.J. Feld, J.A. Shaw, T.J. Meade, Electrochemistry of redox-active self-assembled monolayers. Coord. Chem. Rev. 254(15–16), 1769–1802 (2010)PubMedPubMedCentralGoogle Scholar
  38. 38.
    P.R. Bueno, J.J. Davis, G. Mizzon, Capacitance spectroscopy: A versatile approach to resolving the redox density of states and kinetics in redox-active self-assembled monolayers. J. Phys. Chem. C. 116(30), 8822–8829 (2012)PubMedGoogle Scholar
  39. 39.
    P.R. Bueno, D.A. Miranda, Conceptual density functional theory for electron transfer and transport in mesoscopic systems. Phys. Chem. Chem. Phys. 19(8), 6184–6195 (2017)PubMedPubMedCentralGoogle Scholar
  40. 40.
    S.K. Dey, Y.T. Long, S. Chowdhury, T.C. Sutherland, H.S. Mandal, H.B. Kraatz, Study of electron transfer in ferrocene-labeled collagen-like peptides. Langmuir 23(12), 6475 (2007)PubMedGoogle Scholar
  41. 41.
    H.S. Mandal, H.B. Kraatz, Electron transfer mechanism in helical peptides. J. Phys. Chem. A Lett. 3(6), 709–713 (2012)PubMedGoogle Scholar
  42. 42.
    A. Shah, B. Adhikari, S. Martic, A. Munir, S. Shahzad, K. Ahmad, H.B. Kraatz, Electron transfer in peptides. Chem. Soc. Rev. 44 (4), 1015–1027 (2015)PubMedGoogle Scholar
  43. 43.
    X.Y. Xiao, B.Q. Xu, N.J. Tao, Conductance titration of single-peptide molecules. J. Am. Chem. Soc. 126(17), 5370–5371 (2004)PubMedGoogle Scholar
  44. 44.
    X.L. Li, J. He, J. Hihath, B.Q. Xu, S.M. Lindsay, N.J. Tao, Conductance of single alkanedithiols: conduction mechanism and effect of molecule-electrode contacts. J. Am. Chem. Soc. 128(6), 2135–2141 (2006)PubMedGoogle Scholar
  45. 45.
    W.Y. Wang, T. Lee, M.A. Reed, Mechanism of electron conduction in self-assembled alkanethiol monolayer devices. Phys. Rev. B 68(3), (2003)Google Scholar
  46. 46.
    P. Senet, Kohn-Sham orbital formulation of the chemical electronic responses, including the hardness. J. Chem. Phys. 107(7), 2516–2524 (1997)Google Scholar
  47. 47.
    F.C.B. Fernandes, A. Santos, D.C. Martins, M.S. Goes, P.R. Bueno, Comparing label free electrochemical impedimetric and capacitive biosensing architectures. Biosens. Bioelectron. 57, 96–102 (2014)PubMedPubMedCentralGoogle Scholar
  48. 48.
    F.C.B. Fernandes, M.S. Góes, J.J. Davis, P.R. Bueno, Label free redox capacitive biosensing. Biosens. Bioelectron. 50, 437–440 (2013)PubMedPubMedCentralGoogle Scholar
  49. 49.
    F.C.B. Fernandes, A.V. Patil, P.R. Bueno, J.J. Davis, Optimized diagnostic assays based on redox tagged bioreceptive interfaces. Anal. Chem. 87(24), 12137–12144 (2015)PubMedGoogle Scholar
  50. 50.
    A.V. Patil, F.C.B. Fernandes, P.R. Bueno, J.J. Davis, lmmittance electroanalysis in diagnostics. Anal. Chem. 87(2), 944–950 (2015)Google Scholar
  51. 51.
    J. Piccoli, A. Santos, N.A. Santos, P.R. Bueno, E.M. Cilli, Peptide in capacitance electroanalysis for diagnostics. J. Pept. Sci. 22, S24–S24 (2016)Google Scholar
  52. 52.
    J.P. Piccoli, A. Santos, N.A. Santos, E.N. Lorenzon, E.M. Cilli, P.R. Bueno, The self-assembly of redox active peptides: synthesis and electrochemical capacitive behavior. Biopolymers 106(3), 357–367 (2016)PubMedGoogle Scholar
  53. 53.
    J.P. Piccoli, N.A. Santos, E.N. Lorenzon, A. Santos, F.C.B. Fernandes, P.R. Bueno, E.M.Cilli, Ferrocene-peptides: a new approach for self-assembled monolayers. J. Pept. Sci. 20, S204–S205 (2014)Google Scholar
  54. 54.
    S. Fletcher, A non-Marcus model for electrostatic fluctuations in long range electron transfer. J. Solid State Electrochem. 11(7), 965–969 (2007)Google Scholar
  55. 55.
    S. Fletcher, The theory of electron transfer. J. Solid State Electrochem. 14(5), 705–739 (2010)Google Scholar
  56. 56.
    R.A. Marcus, N. Sutin, Electron transfers in chemistry and biology. Biochim. Biophys. Acta 811(3), 265–322 (1985)Google Scholar
  57. 57.
    J. Lehr, J.R. Weeks, A. Santos, G.T. Feliciano, M.I.G. Nicholson, J.J. Davis, P.R. Bueno. Mapping the ionic fingerprints of molecular monolayers. Phys. Chem. Chem. Phys. (2017)Google Scholar
  58. 58.
    P.R. Bueno, G.T. Feliciano, J.J. Davis, Capacitance spectroscopy and density functional theory. Phys. Chem. Chem. Phys. 17, 9375–9382 (2015)PubMedGoogle Scholar
  59. 59.
    J. Lehr, F.C.B. Fernandes, P.R. Bueno, J.J. Davis, Label-free capacitive diagnostics: exploiting local redox probe state occupancy. Anal. Chem. 86(5), 2559–2564 (2014)PubMedPubMedCentralGoogle Scholar
  60. 60.
    A. Santos, F.C. Carvalho, M.C. Roque-Barreira, P.R. Bueno, Impedance-derived electrochemical capacitance spectroscopy for the evaluation of lectin-glycoprotein binding affinity. Biosens. Bioelectron. 62, 102–105 (2014)PubMedGoogle Scholar
  61. 61.
    A. Santos, P.R. Bueno, Glycoprotein assay based on the optimized immittance signal of a redox tagged and lectin-based receptive interface. Biosens. Bioelectron. 83, 368–378 (2016)PubMedGoogle Scholar
  62. 62.
    S.M. Marques, A. Santos, L.M. Goncalves, J.C. Sousa, P.R. Bueno, Sensitive label-free electron chemical capacitive signal transduction for D-dimer electroanalysis. Electrochim. Acta 182, 946–952 (2015)Google Scholar
  63. 63.
    J.S. Hwang, K.J. Kong, D. Ahn, G.S. Lee, D.J. Ahn, S.W. Hwang, Electrical transport through 60 base pairs of poly(dG)-poly(dC) DNA molecules. Appl. Phys. Lett. 81(6), 1134–1136 (2002)Google Scholar
  64. 64.
    D. Porath, A. Bezryadin, S. de Vries, C. Dekker, Direct measurement of electrical transport through DNA molecules. Nature 403(6770), 635–638 (2000)PubMedGoogle Scholar
  65. 65.
    N.J. Tao, Electron transport in molecular junctions. Nat. Nanotechnol. 1(3), 173–181 (2006)PubMedGoogle Scholar
  66. 66.
    A.K. Mahapatro, K.J. Jeong, G.U. Lee, D.B. Janes, Sequence specific electronic conduction through polyion-stabilized double-stranded DNA in nanoscale break junctions. Nanotechnology 18(19), 195202 (2007)Google Scholar
  67. 67.
    E. Meggers, M.E. Michel-Beyerle, B. Giese, Sequence dependent long range hole transport in DNA. J. Am. Chem. Soc. 120(49), 12950–12955 (1998)Google Scholar
  68. 68.
    K.H. Yoo, D.H. Ha, J.O. Lee, J.W. Park, J. Kim, J.J. Kim, H.Y. Lee, T. Kawai, H.Y. Choi, Electrical conduction through Poly(dA)-Poly(dT) and Poly(dG)-Poly(dC) DNA molecules. Phys. Rev. Lett. 87(19), 198102 (2001)Google Scholar
  69. 69.
    L.T. Cai, H. Tabata, T. Kawai, Self-assembled DNA networks and their electrical conductivity. Appl. Phys. Lett. 77(19), 3105–3106 (2000)Google Scholar
  70. 70.
    W.C. Ribeiro, L.M. Goncalves, S. Liebana, M.I. Pividori, P.R. Bueno, Molecular conductance of double-stranded DNA evaluated by electrochemical capacitance spectroscopy. Nanoscale 8(16), 8931–8938 (2016)PubMedGoogle Scholar
  71. 71.
    E. Wierzbinski, R. Venkatramani, K.L. Davis, S. Bezer, J. Kong, Y. Xing, E. Borguet, C. Achim, D.N. Beratan, D.H. Waldeck, The single-molecule conductance and electrochemical electron-transfer rate are related by a power law. Acs Nano 7(6), 5391–5401 (2013)PubMedGoogle Scholar
  72. 72.
    H.B. Heersche, P. Jarillo-Herrero, J.B. Oostinga, L.M.K. Vandersypen, A.F. Morpurgo, Bipolar supercurrent in graphene. Nature 446 (7131), 56–59 (2007)PubMedGoogle Scholar
  73. 73.
    A.V. Patil, F.B. Fernandes, P.R. Bueno, J.J. Davis, Graphene-based protein biomarker detection. Bioanalysis 7(6), 725–742 (2015)PubMedGoogle Scholar
  74. 74.
    X. Zhang, B.R.S. Rajaraman, H. Liu, S. Ramakrishna, Graphene’s potential in materials science and engineering. RSC Advances 4(55), 28987–29011 (2014)Google Scholar
  75. 75.
    F. Sharifi, S. Ghobadian, F.R. Cavalcanti, N. Hashemi, Paper-based devices for energy applications. Renew. Sustain. Energy Rev. 52, 1453–1472 (2015)Google Scholar
  76. 76.
    J. Xia, F. Chen, J. Li, N. Tao, Measurement of the quantum capacitance of graphene. Nat. Nanotechnol. 4(8), 505–509 (2009)PubMedGoogle Scholar
  77. 77.
    F.A. Gutierrez, F.C.B. Fernandes, G.A. Rivas, P.R. Bueno, Mesoscopic behaviour of multi-layered graphene: the meaning of supercapacitance revisited. Phys. Chem. Chem. Phys. 19(9), 6792–6806 (2017)PubMedGoogle Scholar
  78. 78.
    P.R. Bueno, J.J. Davis, Measuring quantum capacitance in energetically addressable molecular layers. Anal. Chem. 86, 1337–1341 (2014)PubMedPubMedCentralGoogle Scholar
  79. 79.
    Y.Q. Xue, M.A. Ratner, Theoretical principles of single-molecule electronics: A chemical and mesoscopic view. Int. J. Quantum Chem. 102(5), 911–924 (2005)Google Scholar
  80. 80.
    M. Brandbyge, J.L. Mozos, P. Ordejon, J. Taylor, K. Stokbro. Density-functional method for nonequilibrium electron transport. Phys. Rev. B. 65(16) (2002)Google Scholar
  81. 81.
    M. Bruchez, M. Moronne, P. Gin, S. Weiss, A.P. Alivisatos, Semiconductor nanocrystals as fluorescent biological labels. Science 281(5385), 2013–2016 (1998)Google Scholar
  82. 82.
    W.C.W. Chan, S.M. Nie. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281(5385), 2016–2018 (1998)PubMedGoogle Scholar
  83. 83.
    X. Michalet, F.F. Pinaud, L.A. Bentolila, J.M. Tsay, S. Doose, J.J. Li, G. Sundaresan, A.M. Wu, S.S. Gambhir, S. Weiss, Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307(5709), 538–544 (2005)PubMedPubMedCentralGoogle Scholar
  84. 84.
    A.P. Alivisatos. Semiconductor clusters, nanocrystals, and quantum dots. Science 271(5251), 933–937 (1996)Google Scholar
  85. 85.
    C.W.J. Beenakker, H. Vanhouten, Quantum transport in semiconductor nanostructures. Solid State Phys. 44, 1–228 (1991)Google Scholar
  86. 86.
    T. Mokari, E. Rothenberg, I. Popov, R. Costi, U. Banin, Selective growth of metal tips onto semiconductor quantum rods and tetrapods. Science 304(5678), 1787–1790 (2004)PubMedGoogle Scholar
  87. 87.
    F.F. Hudari, G.G. Bessegato, F.C.B. Fernandes, M.V.B. Zanoni, P.R. Bueno, Reagentless detection of low-molecular-weight triamterene using self-doped TiO2 Nanotubes. Anal. Chem. (2018)Google Scholar
  88. 88.
    J.R. Lakowicz, Radiative decay engineering: biophysical and biomedical applications. Anal. Biochem. 298(1), 1–24 (2001)PubMedGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.São Paulo State University (UNESP)AraraquaraBrazil

Personalised recommendations