Advertisement

Introduction to Fundamental Concepts

  • Paulo Roberto BuenoEmail author
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

This chapter discusses the importance of establishing a unified approach to electronics and electrochemistry.

References

  1. 1.
    F.A. Buot, Mesoscopic physics and nanoelectronics—Nanoscience and nanotechnology. Phys. Rep.—Review Section of Phys. Lett. 234(2–3), 73–174 (1993)Google Scholar
  2. 2.
    Y. Cui, Z.H. Zhong, D.L. Wang, W.U. Wang, C.M. Lieber, High performance silicon nanowire field effect transistors. Nano Lett. 3(2), 149–152 (2003)CrossRefGoogle Scholar
  3. 3.
    M.S. Gudiksen, L. J. Lauhon, J. Wang, D.C. Smith, C.M. Lieber, Growth of nanowire superlattice structures for nanoscale photonics and electronics, Nature 415(6872), 617–620 (2002)CrossRefGoogle Scholar
  4. 4.
    W. Lu, C.M. Lieber, Nanoelectronics from the bottom up. Nat. Mater. 6(11), 841–850 (2007)PubMedCrossRefGoogle Scholar
  5. 5.
    Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699–712 (2012)PubMedCrossRefGoogle Scholar
  6. 6.
    A. Nitzan, M. A. Ratner, Electron transport in molecular wire junctions. Science 300(5624), 1384–1389 (2003)PubMedCrossRefGoogle Scholar
  7. 7.
    N.J. Tao, Electron transport in molecular junctions. Nat. Nanotechnol. 1(3), 173–181 (2006)CrossRefGoogle Scholar
  8. 8.
    J. Gabelli, G. Feve, J.M. Berroir, B. Placais, A. Cavanna, B. Etienne, Y. Jin, D.C. Glattli, Violation of Kirchhoff’s laws for a coherent RC circuit. Science 313(5786), 499–502 (2006)PubMedCrossRefGoogle Scholar
  9. 9.
    R. Landauer. Electrical resistance of disordered one-dimensional lattices. Philos. Mag. 21(172), 863–867 (1970)CrossRefGoogle Scholar
  10. 10.
    R. Landauer. Future evolution of computer. Phys. Today 23(7), 22 (1970)Google Scholar
  11. 11.
    Y. Gefen, Y. Imry, M.Y. Azbel, Quantum oscillations and the Aharonov-Bohm effect for parallel resistors. Phys. Rev. Lett. 52(2), 129–132 (1984)CrossRefGoogle Scholar
  12. 12.
    S. Ilani, L.A.K. Donev, M. Kindermann, P.L. McEuen, Measurement of the quantum capacitance of interacting electrons in carbon nanotubes. Nat. Phys. 2, 687–691 (2006)CrossRefGoogle Scholar
  13. 13.
    M. Büttiker, A. Thomas, A. Prêtre, Mesoscopic capacitors. Phys. Lett. A 180(4–5), 364–369 (1993)CrossRefGoogle Scholar
  14. 14.
    L.P. Kadanoff, G. Baym, Quantum Statistical Mechanics: Green’s Function Methods in Equilibrium and Nonequilibrium Problems (W.A. Benjamin Inc, New York, 1962)Google Scholar
  15. 15.
    B.Q. Xu, X.Y. Xiao, X.M. Yang, L. Zang, N.J. Tao, Large gate modulation in the current of a room temperature single molecule transistor. J. Am. Chem. Soc. 127(8), 2386–2387 (2005)PubMedCrossRefGoogle Scholar
  16. 16.
    C.R. Arroyo, S. Tarkuc, R. Frisenda, J.S. Seldenthuis, C.H.M. Woerde, R. Eelkema, F.C. Grozema, H.S.J. van der Zant, Signatures of quantum interference effects on charge transport through a single benzene ring. Angew. Chem.-International Edition 52(11), 3152–3155 (2013)PubMedCrossRefGoogle Scholar
  17. 17.
    C. Li, A. Mishchenko, T. Wandlowski. Charge transport in single molecular junctions at the solid/liquid interface, in Unimolecular and Supramolecular Electronics Ii: Chemistry and Physics Meet at Metal-Molecule Interfaces, vol. 313, ed. by R.M. Metzger (2012), pp 121–188Google Scholar
  18. 18.
    L. Venkataraman, J.E. Klare, C. Nuckolls, M.S. Hybertsen, M.L. Steigerwald. Dependence of single-molecule junction conductance on molecular conformation. Nature 442(7105), 904–907 (2006)PubMedCrossRefGoogle Scholar
  19. 19.
    N.J. Tao, Probing potential-tuned resonant tunneling through redox molecules with scanning tunneling microscopy. Phys. Rev. Lett. 76(21), 4066–4069 (1996)CrossRefGoogle Scholar
  20. 20.
    W.C. Ribeiro, L.M. Goncalves, S. Liebana, M.I. Pividori, P.R. Bueno, Molecular conductance of double-stranded DNA evaluated by electrochemical capacitance spectroscopy. Nanoscale 8(16), 8931–8938 (2016)CrossRefGoogle Scholar
  21. 21.
    P.R. Bueno, J.J. Davis, Measuring quantum capacitance in energetically addressable molecular layers. Anal. Chem. 86, 1337–1341 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    P.R. Bueno, T.A. Benites, J.J. Davis. The mesoscopic electrochemistry of molecular junctions. Sci. Rep. 6, 18400 (2016)Google Scholar
  23. 23.
    Y.Q. Xue, M.A. Ratner, Theoretical principles of single-molecule electronics: A chemical and mesoscopic view. Int. J. Quantum Chem. 102(5), 911–924 (2005)CrossRefGoogle Scholar
  24. 24.
    A.M. Kuznetsov, J. Ulstrup, Electron Transfer in Chemistry and Biology. An Introduction to the Theory (Wiley, Chichester, 1999)Google Scholar
  25. 25.
    P.R. Bueno, J.J. Davis, G. Mizzon, Capacitance spectroscopy: A versatile approach to resolving the redox density of states and kinetics in redox-active self-assembled monolayers. J. Phys. Chem. C. 116(30), 8822–8829 (2012)CrossRefGoogle Scholar
  26. 26.
    P.R. Bueno, C. Gabrielli. Electrochemistry, Nanomaterials and Nanostructures (Springer, New York, 2008)Google Scholar
  27. 27.
    P.R. Bueno, F. Fabregat-Santiago, J.J Davis, Elucidating capacitance and resistance terms in confined electroactive molecular layers. Anal. Chem. 85(1), 411–417 (2013)PubMedCrossRefGoogle Scholar
  28. 28.
    F.A. Gutierrez, F.C.B. Fernandes, G.A. Rivas, P.R. Bueno, Mesoscopic behaviour of multi-layered graphene: the meaning of supercapacitance revisited. Phys. Chem. Chem. Phys. 19(9), 6792–6806 (2017)CrossRefGoogle Scholar
  29. 29.
    D.A. Miranda, P.R. Bueno, Density functional theory and an experimentally-designed energy functional of electron density. Phys. Chem. Chem. Phys. 18(37), 25984–25992 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd edn. (Wiley, New York, 2001)Google Scholar
  31. 31.
    N. Agrait, A.L. Yeyati, J.M. van Ruitenbeek, Quantum properties of atomic-sized conductors. Phys. Rep.—Review Section of Phys. Lett. 377(2–3), 81–279 (2003)CrossRefGoogle Scholar
  32. 32.
    M. Brandbyge, J.L. Mozos, P. Ordejon, J. Taylor, K. Stokbro. Density-functional method for nonequilibrium electron transport. Phys. Rev. B. 65(16) (2002)Google Scholar
  33. 33.
    A.P. Alivisatos. Semiconductor clusters, nanocrystals, and quantum dots. Science 271(5251), 933–937 (1996)CrossRefGoogle Scholar
  34. 34.
    M. Bruchez, M. Moronne, P. Gin, S. Weiss, A.P. Alivisatos, Semiconductor nanocrystals as fluorescent biological labels. Science 281(5385), 2013–2016 (1998)CrossRefGoogle Scholar
  35. 35.
    W.C.W. Chan, S.M. Nie. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281(5385), 2016–2018 (1998)CrossRefGoogle Scholar
  36. 36.
    X. Michalet, F.F. Pinaud, L.A. Bentolila, J.M. Tsay, S. Doose, J.J. Li, G. Sundaresan, A.M. Wu, S.S. Gambhir, S. Weiss, Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307(5709), 538–544 (2005)PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    C.W.J. Beenakker, H. Vanhouten, Quantum transport in semiconductor nanostructures. Solid State Phys. 44, 1–228 (1991)Google Scholar
  38. 38.
    T. Mokari, E. Rothenberg, I. Popov, R. Costi, U. Banin, Selective growth of metal tips onto semiconductor quantum rods and tetrapods. Science 304(5678), 1787–1790 (2004)CrossRefGoogle Scholar
  39. 39.
    J. Lehr, J.R. Weeks, A. Santos, G.T. Feliciano, M.I.G. Nicholson, J.J. Davis, P.R. Bueno. Mapping the ionic fingerprints of molecular monolayers. Phys. Chem. Chem. Phys. (2017)Google Scholar
  40. 40.
    S. Luryi, Quantum capacitance devices. Appl. Phys. Lett. 52, 501 (1988)CrossRefGoogle Scholar
  41. 41.
    P.R. Bueno, G.T. Feliciano, J.J. Davis, Capacitance spectroscopy and density functional theory. Phys. Chem. Chem. Phys. 17, 9375–9382 (2015)CrossRefGoogle Scholar
  42. 42.
    A.L. Eckermann, D.J. Feld, J.A. Shaw, T.J. Meade, Electrochemistry of redox-active self-assembled monolayers. Coord. Chem. Rev. 254(15–16), 1769–1802 (2010)PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    P.R. Bueno, D.A. Miranda, Conceptual density functional theory for electron transfer and transport in mesoscopic systems. Phys. Chem. Chem. Phys. 19(8), 6184–6195 (2017)PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    J. Cecchetto, F.C.B. Fernandes, R. Lopes, P.R. Bueno, The capacitive sensing of NS1 Flavivirus biomarker. Biosens. Bioelectron. 87, 949–956 (2017)PubMedCrossRefGoogle Scholar
  45. 45.
    F.C.B. Fernandes, M.S. Goes, J.J. Davis, P.R. Bueno, Label free redox capacitive biosensing. Biosens. Bioelectron. 50, 437–440 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    J. Lehr, F.C.B. Fernandes, P.R. Bueno, J.J. Davis, Label-free capacitive diagnostics: exploiting local redox probe state occupancy. Anal. Chem. 86(5), 2559–2564 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    A. Santos, F.C. Carvalho, M.C. Roque-Barreira, P.R. Bueno, Impedance-derived electrochemical capacitance spectroscopy for the evaluation of lectin-glycoprotein binding affinity. Biosens. Bioelectron. 62, 102–105 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    A. Santos, J.P. Piccoli, N.A. Santos, E.M. Cilli, P.R. Bueno, Redox-tagged peptide for capacitive diagnostic assays. Biosens. Bioelectron. 68, 281–287 (2015)CrossRefGoogle Scholar
  49. 49.
    F.F. Hudari, G.G. Bessegato, F.C.B. Fernandes, M.V.B. Zanoni, P.R. Bueno, Reagentless detection of low-molecular-weight triamterene using self-doped TiO2 Nanotubes. Anal. Chem. (2018)Google Scholar
  50. 50.
    E.P. Wigner, Lower limit for the energy derivative of the scattering phase shift. Phys. Rev. 98(1), 145–147 (1955)CrossRefGoogle Scholar
  51. 51.
    J.B. Goodenough, K.S. Park, The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135(4), 1167–1176 (2013)PubMedCrossRefGoogle Scholar
  52. 52.
    Q. Wang, J.E. Moser, M. Gratzel, Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells. J. Phys. Chem. B. 109(31), 14945–14953 (2005)PubMedCrossRefGoogle Scholar
  53. 53.
    A.S. Arico, P. Bruce, B. Scrosati, J.M. Tarascon, W. Van Schalkwijk. Nanostructured materials for advanced energy conversion and storage devices. Nature Materials 4(5), 366–377 (2005)PubMedCrossRefGoogle Scholar
  54. 54.
    B.C.H. Steele, A. Heinzel, Materials for fuel-cell technologies. Nature 414(6861), 345–352 (2001)PubMedCrossRefGoogle Scholar
  55. 55.
    P.R. Bueno; G.D. Schrott, P.S. Bonanni, S.N. Simison, J.P. Busalmen, Biochemical capacitance of geobacter sulfurreducens biofilms. Chemsuschem 8(15), 2492–2495 (2015)PubMedCrossRefGoogle Scholar
  56. 56.
    P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries. Nature 407(6803), 496–499 (2000)PubMedCrossRefGoogle Scholar
  57. 57.
    P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7(11), 845–854 (2008)PubMedCrossRefGoogle Scholar
  58. 58.
    J.M. Tarascon, M. Armand. Issues and challenges facing rechargeable lithium batteries. Nature 414(6861), 359–367 (2001)PubMedCrossRefGoogle Scholar
  59. 59.
    S.S. Iqbal, M.W. Mayo, J.G. Bruno, B.V. Bronk, C.A. Batt, J.P. Chambers, A review of molecular recognition technologies for detection of biological threat agents. Biosens. Bioelectron. 15(11–12), 549–578 (2000)PubMedCrossRefGoogle Scholar
  60. 60.
    J.R. Lakowicz, Radiative decay engineering: biophysical and biomedical applications. Anal. Biochem. 298(1), 1–24 (2001)CrossRefGoogle Scholar
  61. 61.
    N. Nelson, C.F. Yocum, Structure and function of photosystems I and II. Ann. Rev. Plant Biol. 57, 521–565 (2006)PubMedCrossRefGoogle Scholar
  62. 62.
    S. Hammes-Schiffer, Theory of proton-coupled electron transfer in energy conversion processes. Acc. Chem. Res. 42(12), 1881–1889 (2009)PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Y. Qiao, S.J. Bao, C.M. Li, Electrocatalysis in microbial fuel cells-from electrode material to direct electrochemistry. Energy Environ. Sci. 3(5), 544–553 (2010)CrossRefGoogle Scholar
  64. 64.
    C.J. Brabec, N.S. Sariciftci, J.C. Hummelen, Plastic solar cells. Adv. Funct. Mater. 11(1), 15–26 (2001)CrossRefGoogle Scholar
  65. 65.
    D. Gust, T.A. Moore, A.L. Moore, Mimicking photosynthetic solar energy transduction. Acc. Chem. Res. 34(1), 40–48 (2001)PubMedCrossRefGoogle Scholar
  66. 66.
    F. Odobel, E. Blart, M. Lagree, M. Villieras, H. Boujtita, N. El Murr, S. Caramori, C.A. Bignozzi, Porphyrin dyes for TiO2 sensitization. J. Mater. Chem. 13(3), 502–510 (2003)CrossRefGoogle Scholar
  67. 67.
    G.M. Crouch, D. Han, S.K. Fullerton-Shirey, D.B. Go, P.W. Bohn, Addressable direct-write nanoscale filament formation and dissolution by nanoparticle-mediated bipolar electrochemistry. Acs Nano 11(5), 4976–4984 (2017)PubMedCrossRefGoogle Scholar
  68. 68.
    N. Ebejer, A.G. Guell, S.C.S. Lai, K. McKelvey, M.E. Snowden, P.R. Unwin, Scanning electrochemical cell microscopy: a versatile technique for nanoscale electrochemistry and functional imaging. In Annual Review of Analytical Chemistry, vol 6, ed. by R.G. Cooks, J.E. Pemberton (2013), pp. 329–351Google Scholar
  69. 69.
    S. Lemay, H. White, Electrochemistry at the nanoscale: tackling old questions, posing new ones. Acc. Chem. Res. 49(11), 2371–2371 (2016)PubMedCrossRefGoogle Scholar
  70. 70.
    S.M. Oja, Y.S. Fan, C.M. Armstrong, P. Defnet, B. Zhang, Nanoscale electrochemistry revisited. Anal. Chem. 88(1), 414–430 (2016)PubMedCrossRefGoogle Scholar
  71. 71.
    S.M. Oja, Y.S. Fan, C.M. Armstrong, P. Defnet, B. Zhang, Nanoscale electrochemistry revisited, vol. 88 (2016, p. 414). Anal. Chem. 88(12), 6628–6628 (2016)PubMedCrossRefGoogle Scholar
  72. 72.
    S.M. Oja, M. Wood, B. Zhang, Nanoscale electrochemistry. Anal. Chem. 85(2), 473–486 (2013)Google Scholar
  73. 73.
    H. Sugimura, K. Okiguchi, N. Nakagiri, M. Miyashita, Nanoscale patterning of an organosilane monolayer on the basis of tip-induced electrochemistry in atomic force microscopy. J. Vac. Sci. Technol. B 14(6), 4140–4143 (1996)CrossRefGoogle Scholar
  74. 74.
    S. Zaleski, A.J. Wilson, M. Mattei, X. Chen, G. Goubert, M.F. Cardinal, K.A. Willets, R.P. Van Duyne, Investigating nanoscale electrochemistry with surface- and tip-enhanced Raman spectroscopy. Acc. Chem. Res. 49(9), 2023–2030 (1996)PubMedCrossRefGoogle Scholar
  75. 75.
    T.V.P. Bliss, G.L. Collingridge, A synaptic model of memory—long-term potentiation in the hippocampus. Nature 361(6407), 31–39 (1993)PubMedCrossRefGoogle Scholar
  76. 76.
    N.C. Danbolt, Glutamate uptake. Prog. Neurobiol. 65(1), 1–105 (2001)PubMedCrossRefGoogle Scholar
  77. 77.
    B.K. Day, F. Pomerleau, J.J. Burmeister, P. Huettl, G.A. Gerhardt, Microelectrode array studies of basal and potassium-evoked release of L-glutamate in the anesthetized rat brain. J. Neurochem. 96(6), 1626–1635 (2006)PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    E.N. Pothos, V. Davila, D. Sulzer, Presynaptic recording of quanta from midbrain dopamine neurons and modulation of the quantal size. J. Neurosci. 18(11), 4106–4118 (1998)PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    H. Jeong, B. Tombor, R. Albert, Z.N. Oltvai, A.L. Barabasi, The large-scale organization of metabolic networks. Nature 407(6804), 651–654 (2000)PubMedCrossRefGoogle Scholar
  80. 80.
    A. Magasinski, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala, G. Yushin, High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat. Mater. 9(4), 353–358 (2010)PubMedCrossRefGoogle Scholar
  81. 81.
    Q.F. Zhang, E. Uchaker, S.L. Candelaria, G.Z. Cao, Nanomaterials for energy conversion and storage. Chem. Soc. Rev. 42(7), 3127–3171 (2013)PubMedCrossRefGoogle Scholar
  82. 82.
    S.Y. Chung, J.T. Bloking, Y.M. Chiang, Electronically conductive phospho-olivines as lithium storage electrodes. Nat. Mater. 1(2), 123–128 (2002)PubMedCrossRefGoogle Scholar
  83. 83.
    B. Kang, G. Ceder, Battery materials for ultrafast charging and discharging. Nature 458(7235), 190–193 (2009)PubMedCrossRefGoogle Scholar
  84. 84.
    M. Prabu, S. Selvasekarapandian, A.R. Kulkarni, S. Karthikeyan, G. Hirankumar, C. Sanjeeviraja, Ionic transport properties of LiCoPO4 cathode material. Solid State Sci. 13(9), 1714–1718 (2011)CrossRefGoogle Scholar
  85. 85.
    E. Laviron, AC polarograpy and faradaic impedance of strongly adsorbed electroactive species. 2. Theoretical-study of a quasi-reversible reaction in the case of Framkin isotherm. J. Electroanal. Chem. 105(1), 25–34 (1979)Google Scholar
  86. 86.
    E. Laviron, AC polarography and faradaic impedance of strongly adsorbed electroactive species. 1. Theoretical and experimental-study of quasi-reversible reaction in the case of Langmuir isotherm. J. Electroanal. Chem. 97(2), 135–149 (1979)Google Scholar
  87. 87.
    P. Gibot, M. Casas-Cabanas, L. Laffont, S. Levasseur, P. Carlach, S. Hamelet, J.M. Tarascon, C. Masquelier, Room-temperature single-phase Li insertion/extraction in nanoscale Li(x)FePO(4). Nat. Mater. 7(9), 741–747 (2008)Google Scholar
  88. 88.
    S.C. Yin, H. Grondey, P. Strobel, M. Anne, L.F. Nazar, Electrochemical property: Structure relationships in monoclinic Li3-yV2(PO4)(3). J. Am. Chem. Soc. 125(34), 10402–10411 (2003)Google Scholar
  89. 89.
    A.J. Bard, L.R. Faulkner, Electrochemical Methods Fundamentals and Applications, 2nd edn. (Wiley, New York, 2000)Google Scholar
  90. 90.
    S. Das Sarma, S. Adam, E.H. Hwang, E. Rossi, Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 83(2), 407–470 (2011)CrossRefGoogle Scholar
  91. 91.
    E. McCann, V.I. Fal’ko, Landau-level degeneracy and quantum Hall effect in a graphite bilayer. Phys. Rev. Lett. 96(8) (2006)Google Scholar
  92. 92.
    R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Quantum entanglement. Rev. Mod. Phys. 81(2), 865–942 (2009)CrossRefGoogle Scholar
  93. 93.
    A. Nitzan, A relationship between electron-transfer rates and molecular conduction. J. Phys. Chem. A 105(12), 2677–2679 (2001)CrossRefGoogle Scholar
  94. 94.
    A. Nitzan, Electron transmission through molecules and molecular interfaces. Ann. Rev. Phys. Chem. 52, 681–750 (2001)Google Scholar
  95. 95.
    E. Wierzbinski, R. Venkatramani, K.L. Davis, S. Bezer, J. Kong, Y. Xing, E. Borguet, C. Achim, D.N. Beratan, D.H. Waldeck, The single-molecule conductance and electrochemical electron-transfer rate are related by a power law. Acs Nano 7(6), 5391–5401 (2013)CrossRefGoogle Scholar
  96. 96.
    E. Katz, I. Willner, Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications. Angew. Chem. International Edition 43(45), 6042–6108 (2004)PubMedCrossRefGoogle Scholar
  97. 97.
    C. Mora, K. Le Hur, Universal resistances of the quantum resistance-capacitance circuit. Nat. Phys. 6(9), 697–701 (2010)CrossRefGoogle Scholar
  98. 98.
    F. Fogolari, A. Brigo, H. Molinari, The Poisson-Boltzmann equation for biomolecular electrostatics: a tool for structural biology. J. Mol. Recognit. 15(6), 377–392 (2002)PubMedCrossRefGoogle Scholar
  99. 99.
    M.S. Goes, H. Rahman, J. Ryall, J.J. Davis, P.R. Bueno, A dielectric model of self-assembled monolayer interfaces by capacitive spectroscopy. Langmuir 28(25), 9689–9699 (2012)PubMedCrossRefGoogle Scholar
  100. 100.
    A.Y. Grosberg, T.T. Nguyen, B.I. Shklovskii, Colloquium: the physics of charge inversion in chemical and biological systems. Rev. Mod. Phys. 74(2), 329–345 (2002)CrossRefGoogle Scholar
  101. 101.
    Y. Levin, Electrostatic correlations: from plasma to biology. Rep. Prog. Phys. 65(11), 1577–1632 (2002)CrossRefGoogle Scholar
  102. 102.
    P. Geerlings, S. Fias, Z. Boisdenghien, F. De Proft, Conceptual DFT: chemistry from the linear response function. Chem. Soc. Rev. 43(14), 4989–5008 (2014)PubMedCrossRefGoogle Scholar
  103. 103.
    P.R. Bueno, J.J. Davis, Elucidating redox level dispersion and local dielectric effects within electroactive molecular films. Anal. Chem. 86(4), 1977–2004 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    R. Landauer, Conductance from transmission—common-sense points. Phys. Scr. T42, 110–114 (1992)CrossRefGoogle Scholar
  105. 105.
    R.A. Marcus, N. Sutin, Electron transfers in chemistry and biology. Biochim. Biophys. Acta 811(3), 265–322 (1985)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.São Paulo State University (UNESP)AraraquaraBrazil

Personalised recommendations