Advertisement

Homogenization in Magnetic-Shape-Memory Polymer Composites

  • Sergio ContiEmail author
  • Martin Lenz
  • Matthäus Pawelczyk
  • Martin Rumpf
Chapter
Part of the International Series of Numerical Mathematics book series (ISNM, volume 169)

Abstract

Magnetic-shape-memory materials (e.g. specific NiMnGa alloys) react with a large change of shape to the presence of an external magnetic field. As an alternative for the difficult to manufacture single crystal of these alloys we study composite materials in which small magnetic-shape-memory particles are embedded in a polymer matrix. The macroscopic properties of the composite depend strongly on the geometry of the microstructure and on the characteristics of the particles and the polymer.

We present a variational model based on micromagnetism and elasticity, and derive via homogenization an effective macroscopic model under the assumption that the microstructure is periodic. We then study numerically the resulting cell problem, and discuss the effect of the microstructure on the macroscopic material behavior. Our results may be used to optimize the shape of the particles and the microstructure.

Keywords

Homogenization Magnetic shape memory Micromagnetism Calculus of variations Shape optimization 

Mathematics Subject Classification (2010).

Primary 74Q05; Secondary 74F15 

Notes

Acknowledgements

This work was partially supported by the Deutsche Forschungsgemeinschaft through Schwerpunktprogramm 1239 Änderung von Mikrostruktur und Form fester Werkstoffe durch äußere Magnetfelder and through Sonderforschungsbereich 1060 Die Mathematik der emergenten Effekte.

References

  1. 1.
    G. Allaire. Shape optimization by the homogenization method, volume 146 of Applied Mathematical Sciences. Springer, New York, 2002.zbMATHGoogle Scholar
  2. 2.
    A. Braides and A. Defranceschi. Homogenization of multiple integrals. Claredon Press, Oxford, 1998.zbMATHGoogle Scholar
  3. 3.
    K. Bhattacharya. Microstructure of Martensite: Why it forms and how it gives rise to the Shape-Memory Effect. Oxford University Press, Oxford, 2003.zbMATHGoogle Scholar
  4. 4.
    J. Ball and R. D. James. Fine phase mixtures as minimizers of the energy. Arch. Ration. Mech. Analysis, 100:13, 1987.MathSciNetCrossRefGoogle Scholar
  5. 5.
    W. Brown. Micromagnetics. Wiley, New York, 1963.zbMATHGoogle Scholar
  6. 6.
    D. Cioranescu and P. Donato. An introduction to homogenization. Oxford University Press, Oxford, 1999.zbMATHGoogle Scholar
  7. 7.
    S. Conti, M. Lenz, and M. Rumpf. Modeling and simulation of magnetic shape-memory polymer composites. J. Mech. Phys. Solids, 55:1462, 2007.MathSciNetCrossRefGoogle Scholar
  8. 8.
    S. Conti, M. Lenz, and M. Rumpf. Macroscopic behaviour of magnetic shape-memory polycrystals and polymer composites. Mat. Sci. Engrg. A, 481–482:351, 2008.CrossRefGoogle Scholar
  9. 9.
    S. Conti, M. Lenz, and M. Rumpf. Modeling and simulation of large microstructured particles in magnetic-shape-memory. Adv. Eng. Mater., 14:582–588, 2012.CrossRefGoogle Scholar
  10. 10.
    S. Conti, M. Lenz, and M. Rumpf. Hysteresis in magnetic shape memory composites: modeling and simulation. J. Mech. Phys. Solids, 89:272–286, 2016.MathSciNetCrossRefGoogle Scholar
  11. 11.
    A. Desimone. Energy minimizers for large ferromagnetic bodies. Arch. Rat. Mech. Anal., 125:99, 1993.MathSciNetCrossRefGoogle Scholar
  12. 12.
    J. Feuchtwanger et al. Energy absorpion in Ni-Mn-Ga polymer composites. J. Appl. Phys., 93:8528, 2003.CrossRefGoogle Scholar
  13. 13.
    J. Feuchtwanger et al. Large energy absorpion in Ni-Mn-Ga polymer composites. J. Appl. Phys., 97:10M319, 2005.Google Scholar
  14. 14.
    A. Hubert and R. Schäfer. Magnetic domains. Springer, Berlin, 1998.Google Scholar
  15. 15.
    O. Heczko, N. Scheerbaum, and O. Gutfleisch. Magnetic shape memory phenomena. In Nanoscale magnetic materials and applications, pp. 399–439. Springer, 2009.Google Scholar
  16. 16.
    H. Hosoda, S. Takeuchi, T. Inamura, and K. Wakashima. Material design and shape memory properties of smart composites composed of polymer and ferromagnetic shape memory alloy particles. Sci. Technol. Adv. Mater., 5:503, 2004.CrossRefGoogle Scholar
  17. 17.
    S. Kauffmann-Weiss, N. Scheerbaum, J. Liu, H. Klauss, L. Schultz, E. Mäder, R. Häßler, G. Heinrich, and O. Gutfleisch. Reversible magnetic field induced strain in Ni2MnGa-polymer-composites. Adv. Eng. Mater., 14:20–27, 2012.CrossRefGoogle Scholar
  18. 18.
    J. Liu, N. Scheerbaum, S. Kauffmann-Weiss, and O. Gutfleisch. NiMn-based alloys and composites for magnetically controlled dampers and actuators. Adv. Eng. Mater., 8:653–667, 2012.CrossRefGoogle Scholar
  19. 19.
    J. Liu, N. Scheerbaum, S. Weiß, and O. Gutfleisch. Ni–Mn–In–Co single-crystalline particles for magnetic shape memory composites. Applied Physics Letters, 95:152503, 2009.CrossRefGoogle Scholar
  20. 20.
    G. W. Milton. The theory of composites. Cambridge University Press, Cambridge, 2002.CrossRefGoogle Scholar
  21. 21.
    S. J. Murray, M. Marioni, S. M. Allen, R. C. O’Handley, and T. A. Lograsso. 6% magnetic-field-induced strain by twin-boundary motion in ferromagnetic Ni-Mn-Ga. Appl. Phys. Lett., 77:886, 2000.CrossRefGoogle Scholar
  22. 22.
    M. Pawelczyk. Homogenization for magnetic shape memory materials. Master’s thesis, Universität Bonn, 2014.Google Scholar
  23. 23.
    G. Pisante. Homogenization of micromagnetics large bodies. ESAIM: control, optimisation and calculus of variations, 10:295–314, 2004.MathSciNetCrossRefGoogle Scholar
  24. 24.
    M. Pitteri and G. Zanzotto. Continuum models for phase transitions and twinning in crystals. CRC/Chapman & Hall, London, 2003.zbMATHGoogle Scholar
  25. 25.
    N. Scheerbaum, D. Hinz, O. Gutfleisch, K.-H. Müller, and L. Schultz. Textured polymer bonded composites with NiMnGa magnetic shape memory particles. Acta Mater., 55:2707, 2007.CrossRefGoogle Scholar
  26. 26.
    A. Sozinov, A. A. Likhachev, N. Lanska, and K. Ullako. Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase. Appl. Phys. Lett., 80:1746, 2002.CrossRefGoogle Scholar
  27. 27.
    B. Tian, F. Chen, Y. Tong, L. Li, and Y. Zheng. Bending properties of epoxy resin matrix composites filled with Ni-Mn-Ga ferromagnetic shape memory alloy powders. Materials Letters, 63:1729–1732, 2009.CrossRefGoogle Scholar
  28. 28.
    B. Tian, F. Chen, Y. Tong, L. Li, and Y. Zheng. Magnetic field induced strain and damping behavior of Ni-Mn-Ga particles/epoxy resin composite. Journal of Alloys and Compounds, 604:137–141, 2014.CrossRefGoogle Scholar
  29. 29.
    R. Tickle, R. James, T. Shield, M. Wuttig, and V. Kokorin. Ferromagnetic shape memory in the NiMnGa system. IEEE Trans. Magn., 35:4301–4310, 1999.CrossRefGoogle Scholar
  30. 30.
    K. Ullakko, J. K. Huang, C. Kantner, R. C. O’Handley, and V. V. Kokorin. Large magnetic-field-induced strains in Ni2MnGa single crystals. Appl. Phys. Lett., 69:1966, 1996.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Sergio Conti
    • 1
    Email author
  • Martin Lenz
    • 2
  • Matthäus Pawelczyk
    • 3
  • Martin Rumpf
    • 2
  1. 1.Institut für Angewandte MathematikUniversität BonnBonnGermany
  2. 2.Institut für Numerische SimulationUniversität BonnBonnGermany
  3. 3.Institut für GeometrieTechnische Universität DresdenDresdenGermany

Personalised recommendations