Towards Estimating and Predicting User Perception on Software Product Variants

  • Jabier MartinezEmail author
  • Jean-Sébastien Sottet
  • Alfonso García Frey
  • Tegawendé F. Bissyandé
  • Tewfik Ziadi
  • Jacques Klein
  • Paul Temple
  • Mathieu Acher
  • Yves le Traon
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10826)


Estimating and predicting user subjective perceptions on software products is a challenging, yet increasingly important, endeavour. As an extreme case study, we consider the problem of exploring computer-generated art object combinations that will please the maximum number of people. Since it is not feasible to gather feedbacks for all art products because of a combinatorial explosion of possible configurations as well as resource and time limitations, the challenging objective is to rank and identify optimal art product variants that can be generated based on their average likability. We present the use of Software Product Line (SPL) techniques for gathering and leveraging user feedbacks within the boundaries of a variability model. Our approach is developed in two phases: (1) the creation of a data set using a genetic algorithm and real feedback and (2) the application of a data mining technique on this data set to create a ranking enriched with confidence metrics. We perform a case study of a real-world computer-generated art system. The results of our approach on the arts domain reveal interesting directions for the analysis of user-specific qualities of SPLs.


Software product lines Quality attributes Quality estimation Computer-generated art Product variants 



Martinez and Tewfik’s work is supported by the ITEA3 15010 REVaMP\(^2\) project: FUI the Île-de-France region and BPI in France.


  1. 1.
    Al-Hajjaji, M.: Scalable sampling and prioritization for product-line testing. In: Software Engineering & Management 2015, Dresden, Germany, pp. 295–298 (2015)Google Scholar
  2. 2.
    Bavota, G., Carnevale, F., De Lucia, A., Di Penta, M., Oliveto, R.: Putting the developer in-the-loop: an interactive GA for software re-modularization. In: Fraser, G., Teixeira de Souza, J. (eds.) SSBSE 2012. LNCS, vol. 7515, pp. 75–89. Springer, Heidelberg (2012). Scholar
  3. 3.
    Benavides, D., Trinidad, P., Ruiz-Cortés, A.: Automated reasoning on feature models. In: Pastor, O., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 491–503. Springer, Heidelberg (2005). Scholar
  4. 4.
    Boden, M.A., Edmonds, E.A.: What is generative art? Digit. Creat. 20(1–2), 21–46 (2009)CrossRefGoogle Scholar
  5. 5.
    do Carmo Machado, I., McGregor, J.D., de Almeida, E.S.: Strategies for testing products in software product lines. ACM SIGSOFT SE Notes 37(6), 1–8 (2012)CrossRefGoogle Scholar
  6. 6.
    Cohen, D.M., Dalal, S.R., Fredman, M.L., Patton, G.C.: The AETG system: an approach to testing based on combinatiorial design. IEEE TSE 23(7), 437–444 (1997)Google Scholar
  7. 7.
    Galindo, J.A., Alférez, M., Acher, M., Baudry, B., Benavides, D.: A variability-based testing approach for synthesizing video sequences. In: ISSTA (2014)Google Scholar
  8. 8.
    Ghannem, A., El Boussaidi, G., Kessentini, M.: Model refactoring using interactive genetic algorithm. In: Ruhe, G., Zhang, Y. (eds.) SSBSE 2013. LNCS, vol. 8084, pp. 96–110. Springer, Heidelberg (2013). Scholar
  9. 9.
    Hemmati, H., Arcuri, A., Briand, L.C.: Achieving scalable model-based testing through test case diversity. ACM Trans. Softw. Eng. Methodol. 22(1), 6 (2013)CrossRefGoogle Scholar
  10. 10.
    Henard, C., Papadakis, M., Perrouin, G., Klein, J., Heymans, P., Traon, Y.L.: Bypassing the combinatorial explosion: using similarity to generate and prioritize t-wise test configurations for software product lines. IEEE TSE 40(7), 650–670 (2014)Google Scholar
  11. 11.
    Henard, C., Papadakis, M., Perrouin, G., Klein, J., Traon, Y.L.: Multi-objective test generation for software product lines. In: SPLC, pp. 62–71 (2013)Google Scholar
  12. 12.
    Hornby, G.S., Bongard, J.C.: Accelerating human-computer collaborative search through learning comparative and predictive user models. In: GECCO (2012)Google Scholar
  13. 13.
    Johansen, M.F., Haugen, Ø., Fleurey, F., Eldegard, A.G., Syversen, T.: Generating better partial covering arrays by modeling weights on sub-product lines. In: France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.) MODELS 2012. LNCS, vol. 7590, pp. 269–284. Springer, Heidelberg (2012). Scholar
  14. 14.
    Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented domain analysis (FODA) feasibility study. Technical report, DTIC Document (1990)Google Scholar
  15. 15.
    Li, Y.: Adaptive learning evaluation model for evolutionary art. In: CEC (2012)Google Scholar
  16. 16.
    Martínez, H.P., Yannakakis, G.N., Hallam, J.: Don’t classify ratings of affect; rank them!. Trans. Affect. Comput. 5(3), 314–326 (2014)CrossRefGoogle Scholar
  17. 17.
    Martinez, J., Rossi, G., Ziadi, T., Bissyandé, T.F.D.A., Klein, J., Traon, Y.L.: Estimating and predicting average likability on computer-generated artwork variants. In: GECCO (Companion), pp. 1431–1432. ACM (2015)Google Scholar
  18. 18.
    Martinez, J., Sottet, J.-S., Frey, A.G., Ziadi, T., Bissyandé, T., Vanderdonckt, J., Klein, J., Le Traon, Y.: Variability management and assessment for user interface design. In: Sottet, J.-S., García Frey, A., Vanderdonckt, J. (eds.) Human Centered Software Product Lines. HIS, pp. 81–106. Springer, Cham (2017). Scholar
  19. 19.
    Romero, J., Machado, P. (eds.): The Art of Artificial Evolution: A Handbook on Evolutionary Art and Music. Natural Computing Series. Springer, Heidelberg (2008). Scholar
  20. 20.
    Sayyad, A.S., Menzies, T., Ammar, H.: On the value of user preferences in search-based software engineering: a case study in software product lines. In: ICSE (2013)Google Scholar
  21. 21.
    Siegmund, N., Rosenmüller, M., Kästner, C., Giarrusso, P.G., Apel, S., Kolesnikov, S.S.: Scalable prediction of non-functional properties in software product lines: footprint and memory consumption. IST 55(3), 491–507 (2013)Google Scholar
  22. 22.
    Takagi, H.: Interactive evolutionary computation: fusion of the capabilities of EC optimization and human evaluation. IEEE 89(9), 1275–1296 (2001)CrossRefGoogle Scholar
  23. 23.
    White, J., Benavides, D., Schmidt, D.C., Trinidad, P., Dougherty, B., Cortés, A.R.: Automated diagnosis of feature model configurations. JSS 83(7), 1094–1107 (2010)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jabier Martinez
    • 1
    Email author
  • Jean-Sébastien Sottet
    • 2
  • Alfonso García Frey
    • 4
  • Tegawendé F. Bissyandé
    • 3
  • Tewfik Ziadi
    • 1
  • Jacques Klein
    • 3
  • Paul Temple
    • 5
  • Mathieu Acher
    • 5
  • Yves le Traon
    • 3
  1. 1.Sorbonne University, UPMCParisFrance
  2. 2.Luxembourg Institute of Science and TechnologyEsch-sur-AlzetteLuxembourg
  3. 3.University of LuxembourgLuxembourgLuxembourg
  4. 4.YotakoLuxembourgLuxembourg
  5. 5.Univ Rennes, Inria, CNRS, IRISARennesFrance

Personalised recommendations