Advertisement

A Modal Logic Analysis of a Line-Following Robot

  • Steve Battle
  • Matthew Thompson
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 732)

Abstract

The behaviour of a reactive, line-following robot is analysed using modal logic. This provides an approach that is complementary to numerical simulation, allowing us to explore the qualitative state-space of the robot coupled with its environment. The envisionment of this state-space can be described as a Kripke model, and model-checking tools enable us to analyse this model to search for stable equilibria that contain goal states.

Keywords

Kripke model Modal logic Robotics 

References

  1. 1.
    Ashby, W.: Design for a Brain. Chapman and Hall, London (1960)CrossRefGoogle Scholar
  2. 2.
    Ashby, W.R.: An Introduction to Cybernetics. Chapman and Hall Ltd., London (1956)CrossRefGoogle Scholar
  3. 3.
    Forbus, K.D.: Qualitative Process Theory. MIT AI Lab Memo, Cambridge (1982)Google Scholar
  4. 4.
    Forbus, K.D.: Qualitative physics: past, present, and future. In: Exploring Artificial Intelligence, chap. 7, pp. 239–296. Morgan-Kaufmann Publishers Inc., San Francisco (1988)CrossRefGoogle Scholar
  5. 5.
    Harel, D., Kantor, A.: Modal scenarios as automata. In: Dershowitz, N., Nissan, E. (eds.) Language, Culture, Computation. Computing - Theory and Technology. LNCS, vol. 8001, pp. 156–167. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-45321-2_7CrossRefGoogle Scholar
  6. 6.
    De Kleer, J.: Qualitative and quantitative knowledge in classical mechanics. Technical report 352 (1975)Google Scholar
  7. 7.
    Kripke, S.A.: Semantical analysis of modal logic in normal propositional calculi. Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 9(56), 67–96 (1963)CrossRefGoogle Scholar
  8. 8.
    Kuipers, B.: Qualitative simulation. Artif. Intell. 29, 289–338 (2001)MathSciNetCrossRefGoogle Scholar
  9. 9.
    del Cerro, L.F., Fauthoux, D., Gasquet, O., Herzig, A., Longin, D., Massacci, F.: Lotrec: the generic tableau prover for modal and description logics. In: Goré, R., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS, vol. 2083, pp. 453–458. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45744-5_38CrossRefGoogle Scholar
  10. 10.
    Pask, G.: An Approach to Cybernetics. Hutchinson Science Library. Harper, New York (1961)Google Scholar
  11. 11.
    Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th Annual Symposium on Foundations of Computer Science, SFCS 1977, pp. 46–57. IEEE Computer Society, Washington, DC (1977)Google Scholar
  12. 12.
    Prior, A.N.: Papers on Time and Tense. Oxford University Press, Oxford (2003)Google Scholar
  13. 13.
    Santos, F., Carmo, J.: Indirect action, influence and responsibility. In: Brown, M.A., Carmo, J. (eds.) Deontic Logic, Agency and Normative Systems. WC, pp. 194–215. Springer, London (1996).  https://doi.org/10.1007/978-1-4471-1488-8_11CrossRefGoogle Scholar
  14. 14.
    van Diggelen, J.: Using modal logic in mobile robots. Ph.D. thesis, Utrecht University (2002)Google Scholar
  15. 15.
    Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Inf. Comput. 115, 1–37 (1994)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Wiley, T., Sammut, C., Bratko, I.: Qualitative planning with quantitative constraints for online learning of robotic behaviours. In: Brodley, C.E., Stone, P. (eds.) AAAI, pp. 2578–2584. AAAI Press (2014)Google Scholar
  17. 17.
    Yershova, A., Tovar, B., Ghrist, R., LaValle, S.M.: Bitbots: simple robots solving complex tasks. In: Proceedings of the 20th National Conference on Artificial Intelligence, AAAI 2005, vol. 3, pp. 1336–1341. AAAI Press (2005)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Computer Science and Creative TechnologiesThe University of the West of EnglandBristolUK
  2. 2.Computer ScienceUniversity of BathBathUK

Personalised recommendations