Cis/Transgene Optimization pp 1-7 | Cite as
Introduction
Chapter
First Online:
Abstract
In recombinant protein production, quantity and quality are the major challenges, particularly in scale-up and high-throughput production systems. The present practical review uses computational analysis and in silico approaches for the systematic discovery of novel functional gene expression elements in microalgae, which has not been thoroughly studied. This introduction outlines the matrix attachment regions (MARs), translation initiation sites (TIS), signal peptide (SP) sequences, gene optimization, and transformation systems.
Keywords
Computational biology Gene optimization Matrix attachment regions Signal peptide Translation initiation sitesReferences
- 1.Agalarov SC, Sogorin EA, Shirokikh NE, Spirin AS (2011) Insight into the structural organization of the omega leader of TMV RNA: the role of various regions of the sequence in the formation of a compact structure of the omega RNA. Biochem Biophys Res Commun 404:250–253. https://doi.org/10.1016/j.bbrc.2010.11.102CrossRefPubMedGoogle Scholar
- 2.Arope S, Harraghy N, Pjanic M, Mermod N (2013) Molecular characterization of a human matrix attachment region epigenetic regulator. PLoS ONE 8:e79262. https://doi.org/10.1371/journal.pone.0079262CrossRefPubMedPubMedCentralGoogle Scholar
- 3.Barnes D, Franklin S, Schultz J, Henry R, Brown E, Coragliotti A, Mayfield SP (2005) Contribution of 5′- and 3′-untranslated regions of plastid mRNAs to the expression of Chlamydomonas reinhardtii chloroplast genes. Mol Genet Genomics 274:625–636. https://doi.org/10.1007/s00438-005-0055-yCrossRefPubMedGoogle Scholar
- 4.Bellucci M, Alpini A, Paolocci F, Cong L, Arcioni S (2000) Accumulation of maize γ-zein and γ-zein: KDEL to high levels in tobacco leaves and differential increase of BiP synthesis in transformants. TAG Theor Appl Genet 101:796–804. https://doi.org/10.1007/s001220051546CrossRefGoogle Scholar
- 5.Capitani M, Sallese M (2009) The KDEL receptor: new functions for an old protein. FEBS Lett 583:3863–3871. https://doi.org/10.1016/j.febslet.2009.10.053CrossRefPubMedGoogle Scholar
- 6.Cavener DR (1987) Comparison of the consensus sequence flanking translational start sites in Drosophila and vertebrates. Nucleic Acids Res 15:1353–1361. https://doi.org/10.1093/nar/15.4.1353CrossRefPubMedPubMedCentralGoogle Scholar
- 7.Cavener DR, Ray SC (1991) Eukaryotic start and stop translation sites. Nucleic Acids Res 19:3185–3192. https://doi.org/10.1093/nar/19.12.3185CrossRefPubMedPubMedCentralGoogle Scholar
- 8.Coragliotti AT, Beligni MV, Franklin SE, Mayfield SP (2011) Molecular factors affecting the accumulation of recombinant proteins in the Chlamydomonas reinhardtii chloroplast. Mol Biotechnol 48:60–75. https://doi.org/10.1007/s12033-010-9348-4CrossRefPubMedGoogle Scholar
- 9.Doran PM (2006) Foreign protein degradation and instability in plants and plant tissue cultures. Trends Biotechnol 24:426–432. https://doi.org/10.1016/j.tibtech.2006.06.012CrossRefPubMedGoogle Scholar
- 10.Fukuda S, Mikami K, Uji T, Park E-J, Ohba T, Asada K, Kitade Y, Endo H, Kato I, Saga N (2008) Factors influencing efficiency of transient gene expression in the red macrophyte Porphyra yezoensis. Plant Sci 174:329–339. https://doi.org/10.1016/j.plantsci.2007.12.006CrossRefGoogle Scholar
- 11.Geli MI, Torrent M, Ludevid D (1994) Two structural domains mediate two sequential events in [gamma]-zein targeting: protein endoplasmic reticulum retention and protein body formation. Plant Cell 6:1911–1922. https://doi.org/10.1105/tpc.6.12.1911CrossRefPubMedPubMedCentralGoogle Scholar
- 12.Geng L, Chi J, Shu C, Gresshoff PM, Song F, Huang D, Zhang J (2013) A chimeric cry8Ea1 gene flanked by MARs efficiently controls Holotrichia parallela. Plant Cell Rep 32:1211–1218. https://doi.org/10.1007/s00299-013-1417-2CrossRefPubMedGoogle Scholar
- 13.Gomord V, Denmat L-A, Fitchette-Laine A-C, Satiat-Jeunemaitre B, Hawes C, Faye L (1997) The C-terminal HDEL sequence is sufficient for retention of secretory proteins in the endoplasmic reticulum (ER) but promotes vacuolar targeting of proteins that escape the ER. Plant J 11:313–325. https://doi.org/10.1046/j.1365-313X.1997.11020313.xCrossRefPubMedGoogle Scholar
- 14.Gorman C, Arope S, Grandjean M, Girod P, Mermod N (2009) Use of MAR elements to increase the production of recombinant proteins. In: Al-Rubeai M (ed) Cell line development, cell engineering 6. Springer, Netherlands, Dordrecht, pp 1–32Google Scholar
- 15.Grandjean M, Girod P-A, Calabrese D, Kostyrko K, Wicht M, Yerly F, Mazza C, Beckmann JS, Martinet D, Mermod N (2011) High-level transgene expression by homologous recombination-mediated gene transfer. Nucleic Acids Res 39:1–15. https://doi.org/10.1093/nar/gkr436CrossRefGoogle Scholar
- 16.Gustafsson C, Govindarajan S, Minshull J (2004) Codon bias and heterologous protein expression. Trends Biotechnol 22:346–353. https://doi.org/10.1016/j.tibtech.2004.04.006CrossRefPubMedGoogle Scholar
- 17.Hamilton R, Watanabe CK, Deboer HA (1987) Compliation and comparison of the sequence context around the AUG startcodons in Saccharomyces cerevisiae messenger-RNAs. Nucleic Acids Res 15:3581–3593. https://doi.org/10.1093/nar/15.8.3581CrossRefPubMedPubMedCentralGoogle Scholar
- 18.Joshi CP, Zhou H, Huang X, Chiang VL (1997) Context sequences of translation initiation codon in plants. Plant Mol Biol 35:993–1001. https://doi.org/10.1023/A:1005816823636CrossRefPubMedGoogle Scholar
- 19.Kozak M (1987) At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells. J Mol Biol 196:947–950. https://doi.org/10.1016/0022-2836(87)90418-9CrossRefPubMedGoogle Scholar
- 20.Kozak M (1987) An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res 15:8125–8148. https://doi.org/10.1093/nar/15.20.8125CrossRefPubMedPubMedCentralGoogle Scholar
- 21.Lorimer D, Raymond A, Walchli J, Mixon M, Barrow A, Wallace E, Grice R, Burgin A, Stewart L (2009) Gene composer: database software for protein construct design, codon engineering, and gene synthesis. BMC Biotechnol 9:36. https://doi.org/10.1186/1472-6750-9-36CrossRefPubMedPubMedCentralGoogle Scholar
- 22.Lütcke HA, Chow KC, Mickel FS, Moss KA, Kern HF, Scheele GA (1987) Selection of AUG initiation codons differs in plants and animals. EMBO J 6:43–48PubMedPubMedCentralCrossRefGoogle Scholar
- 23.Matsukawa S, Moriyama Y, Hayata T, Sasaki H, Ito Y, Asashima M, Kuroda H (2012) KDEL tagging: a method for generating dominant-negative inhibitors of the secretion of TGF-beta superfamily proteins. Int J Dev Biol 56:351–356. https://doi.org/10.1387/ijdb.123514smCrossRefPubMedGoogle Scholar
- 24.Merrick WC, Hershey JW (1996) The pathway and mechanism of Eukaryotic protein synthesis. In: Translational control of gene expression. Cold Spring Harbor Laboratory Press, New York, pp 31–69Google Scholar
- 25.Mundembe R (2013) Gene targeting and genetic transformation of plants. In: Genetic engineering. InTech, LondonGoogle Scholar
- 26.Muto M, Henry RE, Mayfield SP (2009) Accumulation and processing of a recombinant protein designed as a cleavable fusion to the endogenous Rubisco LSU protein in Chlamydomonas chloroplast. BMC Biotechnol 9:26. https://doi.org/10.1186/1472-6750-9-26CrossRefPubMedPubMedCentralGoogle Scholar
- 27.De Muynck B, Navarre C, Boutry M (2010) Production of antibodies in plants: status after twenty years. Plant Biotechnol J 8:529–563. https://doi.org/10.1111/j.1467-7652.2009.00494.xCrossRefPubMedGoogle Scholar
- 28.Nakamura Y, Gojobori T, Ikemura T (1999) Codon usage tabulated from the international DNA sequence databases; its status 1999. Nucleic Acids Res 27:292. https://doi.org/10.1093/nar/27.1.292CrossRefPubMedPubMedCentralGoogle Scholar
- 29.Nowak W, Gawłowska M, Jarmołowski A, Augustyniak J (2001) Effect of nuclear matrix attachment regions on transgene expression in tobacco plants. Acta Biochim Pol 48:637–646PubMedGoogle Scholar
- 30.Obembe OO, Popoola JO, Leelavathi S, Reddy SV (2011) Advances in plant molecular farming. Biotechnol Adv 29:210–222. https://doi.org/10.1016/j.biotechadv.2010.11.004CrossRefPubMedGoogle Scholar
- 31.Padmaja SS, Lakshmanan J, Gupta R, Banerjee S, Gautam P, Banerjee S (2010) Identification of Scaffold/matrix attachment (S/MAR) like DNA element from the gastrointestinal protozoan parasite Giardia lamblia. BMC Genom 11:386. https://doi.org/10.1186/1471-2164-11-386CrossRefGoogle Scholar
- 32.Rademacher T, Sack M, Arcalis E, Stadlmann J, Balzer S, Altmann F, Quendler H, Stiegler G, Kunert R, Fischer R, Stoger E (2008) Recombinant antibody 2G12 produced in maize endosperm efficiently neutralizes HIV-1 and contains predominantly single-GlcNAc N-glycans. Plant Biotechnol J 6:189–201. https://doi.org/10.1111/j.1467-7652.2007.00306.xCrossRefPubMedGoogle Scholar
- 33.Rogozin IB (2000) Computer prediction of sites associated with various elements of the nuclear matrix. Brief Bioinform 1:33–44. https://doi.org/10.1093/bib/1.1.33CrossRefPubMedGoogle Scholar
- 34.Rybicki EP (2010) Plant-made vaccines for humans and animals. Plant Biotechnol J 8:620–637. https://doi.org/10.1111/j.1467-7652.2010.00507.xCrossRefPubMedGoogle Scholar
- 35.Schillberg S, Zimmermann S, Voss A, Fischer R (1999) Apoplastic and cytosolic expression of full-size antibodies and antibody fragments in Nicotiana tabacum. Transgenic Res 8:255–263. https://doi.org/10.1023/A:1008937011213CrossRefPubMedGoogle Scholar
- 36.Seeber F (1997) Consensus sequence of translational initiation sites from Toxoplasma gondii genes. Parasitol Res 83:309–311. https://doi.org/10.1007/s004360050254CrossRefPubMedGoogle Scholar
- 37.Shaaltiel Y, Bartfeld D, Hashmueli S, Baum G, Brill-Almon E, Galili G, Dym O, Boldin-Adamsky SA, Silman I, Sussman JL, Futerman AH, Aviezer D (2007) Production of glucocerebrosidase with terminal mannose glycans for enzyme replacement therapy of Gaucher’s disease using a plant cell system. Plant Biotechnol J 5:579–590. https://doi.org/10.1111/j.1467-7652.2007.00263.xCrossRefPubMedGoogle Scholar
- 38.Sørensen HP, Mortensen KK (2005) Advanced genetic strategies for recombinant protein expression in Escherichia coli. J Biotechnol 115:113–128. https://doi.org/10.1016/j.jbiotec.2004.08.004CrossRefPubMedGoogle Scholar
- 39.Stoger E, Ma JK-C, Fischer R, Christou P (2005) Sowing the seeds of success: pharmaceutical proteins from plants. Curr Opin Biotechnol 16:167–173. https://doi.org/10.1016/j.copbio.2005.01.005CrossRefPubMedGoogle Scholar
- 40.Streatfield SJ (2007) Approaches to achieve high-level heterologous protein production in plants. Plant Biotechnol J 5:2–15. https://doi.org/10.1111/j.1467-7652.2006.00216.xCrossRefPubMedGoogle Scholar
- 41.Tetko IV, Haberer G, Rudd S, Meyers B, Mewes H, Mayer KFX (2006) Spatiotemporal expression control correlates with intragenic Scaffold Matrix Attachment regions (S/MARs) in Arabidopsis thaliana. PLoS Comput Biol 2:e21. https://doi.org/10.1371/journal.pcbi.0020021CrossRefPubMedPubMedCentralGoogle Scholar
- 42.Vimberg V, Tats A, Remm M, Tenson T (2007) Translation initiation region sequence preferences in Escherichia coli. BMC Mol Biol 8:100. https://doi.org/10.1186/1471-2199-8-100CrossRefPubMedPubMedCentralGoogle Scholar
- 43.Wang A, Ma S (2012) Molecular farming in plants: recent advances and future prospects. Springer, Netherlands, DordrechtCrossRefGoogle Scholar
- 44.Wang F, Wang T-Y, Tang Y-Y, Zhang J-H, Yang X-J (2012) Different matrix attachment regions flanking a transgene effectively enhance gene expression in stably transfected Chinese hamster ovary cells. Gene 500:59–62. https://doi.org/10.1016/j.gene.2012.03.049CrossRefPubMedGoogle Scholar
- 45.Wang T, Xue L, Hou W, Yang B, Chai Y, Ji X, Wang Y (2007) Increased expression of transgene in stably transformed cells of Dunaliella salina by matrix attachment regions. Appl Microbiol Biotechnol 76:651–657. https://doi.org/10.1007/s00253-007-1040-7CrossRefPubMedGoogle Scholar
- 46.Yamauchi K (1991) The sequence flanking translational initiation site in protozoa. Nucleic Acids Res 19:2715–2720. https://doi.org/10.1093/nar/19.10.2715CrossRefPubMedPubMedCentralGoogle Scholar
Copyright information
© The Author(s) 2018