Advertisement

Single Cell Oils (SCOs) of Oleaginous Filamentous Fungi as a Renewable Feedstock: A Biodiesel Biorefinery Approach

  • Mahesh Khot
  • Gouri Katre
  • Smita Zinjarde
  • Ameeta RaviKumar
Chapter
Part of the Fungal Biology book series (FUNGBIO)

Abstract

Single cell oils (SCOs) from oleaginous fungi are fast occupying centre stage as biodiesel feedstock and offer many advantages over plant- and algal-based oils. The biorefinery concept involves the production of SCOs along with other coproducts by these fungi when grown on waste agro-residue biomass. Filamentous fungi, in general, are able to effectively utilize this waste biomass as they have the capacity to produce lignocellulosic enzymes, namely, cellulase, xylanase, etc. The utilization of these wastes as growth substrates would not only solve the problem of waste disposal but also help in reducing the production cost of biodiesel. This chapter deals with production of SCOs from various filamentous fungi as feedstock for biodiesel when grown on lignocellulosic wastes. Two important parameters to be considered for biodiesel production are feedstock selection and fuel properties of biodiesel which are strain and growth substrate specific. Approaches to improve the process efficiency like optimization of fermentation conditions, one-step transesterification and metabolic engineering as well as the physico-chemical properties of biodiesel are also discussed.

Keywords

Single cell oil Filamentous fungi Waste agro-residues, Fatty acid profile, Biodiesel fuel properties 

References

  1. Aggelis G, Sourdis J (1997) Prediction of lipid accumulation-degradation in oleaginous microorganisms growing on vegetable oils. Antonie Van Leeuwenhoek 72:159–165PubMedCrossRefPubMedCentralGoogle Scholar
  2. Aggelis G, Komaitis M, Papanikolaou S, Papadopoulos G (1995) A mathematical model for the study of lipid accumulation in oleaginous microorganisms. I. Lipid accumulation during growth of Mucor circinelloides CBS 172-27 on a vegetable oil. Gracas y Aceites 46:169–173CrossRefGoogle Scholar
  3. Ahmad FB, Zhang Z, Doherty WOS, Hara IMO, Crops T (2016) Evaluation of oil production from oil palm empty fruit bunch by oleaginous micro-organisms. Biofuels Bioprod Biorefin 10:378–392CrossRefGoogle Scholar
  4. Ali TH, El-Gamal MS, El-Ghonemy DH, Awad GE, Tantawy AE (2017) Improvement of lipid production from an oil-producing filamentous fungus, Penicillium brevicompactum NRC 829, through central composite statistical design. Ann Microbiol 67:601–613CrossRefGoogle Scholar
  5. Almeida JRM, Fávaro LC, Quirino BF (2012) Biodiesel biorefinery: opportunities and challenges for microbial production of fuels and chemicals from glycerol waste. Biotechnol Biofuels 5:48–64PubMedPubMedCentralCrossRefGoogle Scholar
  6. André A, Diamantopoulou P, Philippoussis A, Sarris D, Komaitis M, Papanikolaou S (2010) Biotechnological conversions of bio-diesel derived waste glycerol into added-value compounds by higher fungi: production of biomass, single cell oil and oxalic acid. Ind Crop Prod 31:407–416CrossRefGoogle Scholar
  7. Aoki H, Miyamoto N, Furuya Y, Mankura M, Endo Y, Fujimoto K (2002) Incorporation and accumulation of docosahexaenoic acid from the medium by Pichia methanolica HA-32. Biosci Biotechnol Biochem 66:2632–2638PubMedCrossRefPubMedCentralGoogle Scholar
  8. Aransiola EF, Ojumu TV, Oyekola OO, Madzimbamuto TF, Ikhu-Omoregbe DIO (2014) A review of current technology for biodiesel production: state of the art. Biomass Bioenergy 61:276–297CrossRefGoogle Scholar
  9. Asadi SZ, Khosravi-Darani K, Nikoopour H, Bakhoda H (2015) Evaluation of the effect of process variables on the fatty acid profile of single cell oil produced by Mortierella using solid-state fermentation. Crit Rev Biotechnol 35:94–102PubMedCrossRefPubMedCentralGoogle Scholar
  10. Ayadi I, Kamoun O, Trigui-Lahiani H, Hdiji A, Gargouri A, Belghith H, Guerfali M (2016) Single cell oil production from a newly isolated Candida viswanathii Y-E4 and agro-industrial by-products valorization. J Ind Microbiol Biotechnol 43:901–914. https://doi.org/10.1007/s10295-016-1772-4 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Azam MM, Waris A, Nahar NM (2005) Prospects and potential of fatty acid methyl esters of some non-traditional seed oils for use as biodiesel in India. Biomass Bioenergy 29:293–302CrossRefGoogle Scholar
  12. Bellou S, Moustogianni A, Makri A, Aggelis G (2012) Lipids containing polyunsaturated fatty acids synthesized by Zygomycetes grown on glycerol. Appl Biochem Biotechnol 166:146–158PubMedCrossRefPubMedCentralGoogle Scholar
  13. Bellou S, Triantaphyllidou I, Aggeli D, Elazzazy A, Baeshen M, Aggelis G (2016) Microbial oils as food additives: recent approaches for improving microbial oil production and its polyunsaturated fatty acid content. Curr Opin Biotechnol 37:24–35PubMedCrossRefPubMedCentralGoogle Scholar
  14. Beopoulos A, Cescut J, Haddouche R, Uribelarrea J (2009) Progress in lipid research Yarrowia lipolytica as a model for bio-oil production. Prog Lipid Res 48:375–387PubMedCrossRefPubMedCentralGoogle Scholar
  15. Bharathiraja B, Sowmya V, Sridharan S, Yuvaraj D, Jayamuthunagai J, Praveenkumar R (2017) Biodiesel production from microbial oil derived from wood isolate Trichoderma reesei. Bioresour Technol 239:538–541PubMedCrossRefPubMedCentralGoogle Scholar
  16. Canakci M, Sanli H (2008) Biodiesel production from various feedstocks and their effects on the fuel properties. J Ind Microbiol Biotechnol 35:431–441PubMedCrossRefPubMedCentralGoogle Scholar
  17. Cao Y, Yao J, Chen X, Wu J (2010) Breeding of high lipid producing strain of Geotrichum robustum by ion beam implantation. Electron J Biotechnol. https://doi.org/10.2225/vol13-issue6-fulltext-4
  18. Carvalho AKF, Rivaldi JD, Barbosa JC, De Castro HF (2015) Biosynthesis, characterization and enzymatic transesterification of single cell oil of Mucor circinelloides – a sustainable pathway for biofuel production. Bioresour Technol 181:47–53PubMedCrossRefPubMedCentralGoogle Scholar
  19. Certik M, Shimizu S (1999) Biosynthesis and regulation of microbial polyunsaturated fatty acid production. J Biosci Bioeng 87:1–14PubMedCrossRefPubMedCentralGoogle Scholar
  20. Chang Y-H, Chang K-S, Lee C-F, Hsu C-L, Huang C-W, Jang H-D (2015) Microbial lipid production by oleaginous yeast Cryptococcus sp. in the batch cultures using corncob hydrolysate as carbon source. Biomass Bioenergy 72:95–103CrossRefGoogle Scholar
  21. Chatzifragkou A, Fakas S, Galiotou-Panayotou M, Komaitis M, Aggelis G, Papanikolaou S (2010) Commercial sugars as substrates for lipid accumulation in Cunninghamella echinulata and Mortierella isabellina fungi. Eur J Lipid Sci Technol 112:1048–1057CrossRefGoogle Scholar
  22. Chatzifragkou A, Makri A, Belka A, Bellou S, Mavrou M, Mastoridou M, Mystrioti P, Onjaro G, Aggelis G, Papanikolaou S (2011) Biotechnological conversions of biodiesel derived waste glycerol by yeast and fungal species. Energy 36:1097–1108CrossRefGoogle Scholar
  23. Cheirsilp B, Kitcha S (2015) Solid state fermentation by cellulolytic oleaginous fungi for direct conversion of lignocellulosic biomass into lipids: fed-batch and repeated-batch fermentations. Ind Crop Prod 66:73–80CrossRefGoogle Scholar
  24. Chen H, Hao G, Wang L, Wang H, Gu Z, Liu L (2015) Identification of a critical determinant that enables efficient fatty acid synthesis in oleaginous fungi. Sci Rep 5:11247PubMedPubMedCentralCrossRefGoogle Scholar
  25. Cohen Z, Ratledge C (eds) (2005) Single cell oils. AOCS Press, ChampaignGoogle Scholar
  26. Davies R (1988) Yeast oil from cheese whey; process development. In: Moreton R (ed) Single cell oil. Longman, London, pp 99–145Google Scholar
  27. Demirbaş A (1998) Fuel properties and calculation of higher heating values of vegetable oils. Fuel 77:1117–1120CrossRefGoogle Scholar
  28. Demirbas A (2009) Progress and recent trends in biodiesel fuels. Energy Convers Manag 50:14–34CrossRefGoogle Scholar
  29. Dey P, Banerjee J, Maiti MK (2011) Comparative lipid profiling of two endophytic fungal isolates – Colletotrichum sp. and Alternaria sp. having potential utilities as biodiesel feedstock. Bioresour Technol 102:5815–5823PubMedCrossRefPubMedCentralGoogle Scholar
  30. Díaz-Fernández D, Martínez PL, Buey RM, Revuelta JL, Jiménez A (2017) Utilization of xylose by engineered strains of Ashbya gossypii for the production of microbial oils. Biotechnol Biofuels 10:3PubMedPubMedCentralCrossRefGoogle Scholar
  31. Dorado MP, Cruz F, Palomar JM, Lopez FJ (2006) An approach to the economics of two vegetable oil-based biofuels in Spain. Renew Energy 31:1231–1237CrossRefGoogle Scholar
  32. Economou C, Makri A, Aggelis G, Pavlou S, Vayenas DV (2010) Semi-solid state fermentation of sweet sorghum for the biotechnological production of single cell oil. Bioresour Technol 101:1385–1388PubMedCrossRefGoogle Scholar
  33. Economou C, Aggelis G, Pavlou S, Vayenas DV (2011) Modeling of single-cell oil production under nitrogen-limited and substrate inhibition conditions. Biotechnol Bioeng 108:1049–1055PubMedCrossRefPubMedCentralGoogle Scholar
  34. Fakas S, Galiotou-panayotou M, Papanikolaou S, Komaitis M, Aggelis G (2007) Compositional shifts in lipid fractions during lipid turnover in Cunninghamella echinulata. Enzym Microb Technol 40:1321–1327CrossRefGoogle Scholar
  35. Fakas S, Papanikolaou S, Galiotou-Panayotou M, Komaitis M, Aggelis G (2008) Organic nitrogen of tomato waste hydrolysate enhances glucose uptake and lipid accumulation in Cunninghamella echinulata. J Appl Microbiol 105:1062–1070PubMedCrossRefGoogle Scholar
  36. Fakas S, Makri A, Mavromati M, Tselepi M, Aggelis G (2009a) Fatty acid composition in lipid fractions lengthwise the mycelium of Mortierella isabellina and lipid production by solid state fermentation. Bioresour Technol 100:6118–6120PubMedCrossRefGoogle Scholar
  37. Fakas S, Papanikolaou S, Batsos A, Galiotou-panayotou M, Mallouchos A, Aggelis G (2009b) Evaluating renewable carbon sources as substrates for single cell oil production by Cunninghamella echinulata and Mortierella isabellina. Biomass Bioenergy 33:573–580CrossRefGoogle Scholar
  38. Fickers P, Benetti P, Wache Y, Marty A, Mauersberger S, Smit M, Nicaud J (2005) Hydrophobic substrate utilisation by the yeast Yarrowia lipolytica, and its potential applications. FEMS Yeast Res 5:527–543PubMedCrossRefGoogle Scholar
  39. FitzPatrick M, Champagne P, Cunningham MF, Whitney RA (2010) A biorefinery processing perspective: treatment of lignocellulosic materials for the production of value-added products. Bioresour Technol 101:8915–8922PubMedCrossRefPubMedCentralGoogle Scholar
  40. Forfang K, Zimmermann B, Kosa G, Kohler A, Shapaval V (2017) FTIR spectroscopy for evaluation and monitoring of lipid extraction efficiency for oleaginous fungi. PLoS One 12(1):e0170611PubMedPubMedCentralCrossRefGoogle Scholar
  41. GAIN Report (2016) Number IN6088, India biofuels annual, 2016, USDA Foreign Agricultural ServiceGoogle Scholar
  42. GAIN Report (2017) Number IN7075, India biofuels annual, 2017, USDA Foreign Agricultural ServiceGoogle Scholar
  43. Gao D, Zeng J, Yu X, Dong T, Chen S (2014) Improved lipid accumulation by morphology engineering of oleaginous fungus Mortierella Isabellina. Biotechnol Bioeng 111:1758–1766PubMedCrossRefPubMedCentralGoogle Scholar
  44. Gopinath A, Puhan S, Nagarajan G (2009) Theoretical modeling of iodine value and saponification value of biodiesel fuels from their fatty acid composition. Renew Energy 34:1806–1811CrossRefGoogle Scholar
  45. Hao G, Chen H, Wang L, Gu Z, Song Y, Zhang H, Chen W, Chen Q (2014) Role of malic enzyme during fatty acid synthesis in the oleaginous fungus Mortierella alpina. Appl Environ Microbiol 80:2672–2678. https://doi.org/10.1128/AEM.00140-14 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Harde SM, Wang Z, Horne M, Zhu JY, Pan X (2016) Microbial lipid production from SPORL-pretreated Douglas fir by Mortierella isabellina. Fuel 175:64–74CrossRefGoogle Scholar
  47. Hawksworth DL (1991) The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycol Res 95:641–655CrossRefGoogle Scholar
  48. Huang C, Chen X, Xiong L, Ma L, Chen Y (2013) Single cell oil production from low-cost substrates: the possibility and potential of its industrialization. Biotechnol Adv 31:129–139PubMedCrossRefPubMedCentralGoogle Scholar
  49. Huang G, Zhou H, Tang Z, Liu H, Cao Y, Qiao D, Cao Y (2016) Novel fungal lipids for the production of biodiesel resources by Mucor fragilis AFT7-4. Environ Prog Sustain Energy 35:1784–1792CrossRefGoogle Scholar
  50. Kakkad H, Khot M, Zinjarde S, Ravikumar A (2015a) Biodiesel production by direct in situ transesterification of an oleaginous tropical mangrove fungus grown on untreated agro-residues and evaluation of its fuel properties. Bioenergy Res 8:1788–1799CrossRefGoogle Scholar
  51. Kakkad H, Khot M, Zinjarde S, Ravikumar A, Ravi Kumar V, Kulkarni BD (2015b) Conversion of dried Aspergillus candidus mycelia grown on waste whey to biodiesel by in situ acid transesterification. Bioresour Technol 197:502–507PubMedCrossRefPubMedCentralGoogle Scholar
  52. Kamat S, Khot M, Zinjarde S, RaviKumar A, Gade WN (2013) Coupled production of single cell oil as biodiesel feedstock, xylitol and xylanase from sugarcane bagasse in a biorefinery concept using fungi from the tropical mangrove wetlands. Bioresour Technol 135:246–253PubMedCrossRefPubMedCentralGoogle Scholar
  53. Katre G, Joshi C, Khot M, Zinjarde S, RaviKumar A (2012) Evaluation of single cell oil (SCO) from a tropical marine yeast Yarrowia lipolytica NCIM 3589 as a potential feedstock for biodiesel. AMB Express 2:36. https://doi.org/10.1186/2191-0855-2-36 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Katre G, Ajmera N, Zinjarde S, RaviKumar A (2017) Mutants of Yarrowia lipolytica NCIM 3589 grown on waste cooking oil as biofactories for biodiesel production. Microb Cell Factories 16:176Google Scholar
  55. Katre G, Raskar S, Ravi Kumar V, Kulkarni B, Zinjarde S, RaviKumar A (2018) Optimization of the in situ transesterification step for biodiesel production using biomass of Yarrowia lipolytica NCIM 3589 grown on waste cooking oil. Energy 142 944e952CrossRefGoogle Scholar
  56. Khot M, Kamat S, Zinjarde S, Pant A, Chopade B, Ravikumar A (2012) Single cell oil of oleaginous fungi from the tropical mangrove wetlands as a potential feedstock for biodiesel. Microb Cell Factories 11:71CrossRefGoogle Scholar
  57. Khot M, Gupta R, Barve K, Zinjarde S, Govindwar S, RaviKumar A (2015) Fungal production of single cell oil using untreated copra cake and evaluation of its fuel properties for biodiesel. J Microbiol Biotechnol 25:459–463PubMedCrossRefPubMedCentralGoogle Scholar
  58. Kitcha S, Cheirsilp B (2014) Bioconversion of lignocellulosic palm byproducts into enzymes and lipid by newly isolated oleaginous fungi. Biochem Eng J 88:95–100CrossRefGoogle Scholar
  59. Knothe G (2005) Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process Technol 86:1059–1070CrossRefGoogle Scholar
  60. Knothe G (2008) “ Designer ” biodiesel: optimizing fatty Ester composition to improve fuel properties. Energy Fuels 22:1358–1364CrossRefGoogle Scholar
  61. Knothe G (2009) Improving biodiesel fuel properties by modifying fatty ester composition. Energy Environ Sci 2:759–766CrossRefGoogle Scholar
  62. Knothe G, Steidley KR (2011) Kinematic viscosity of fatty acid methyl esters: prediction, calculated viscosity contribution of esters with unavailable data, and carbon – oxygen equivalents. Fuel 90:3217–3224CrossRefGoogle Scholar
  63. Kohlwein SD (2010) Triacylglycerol homeostasis: insights from yeast. J Biol Chem 285:15663–15667. https://doi.org/10.1074/jbc.R110.118356 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Kosa M, Ragauskas AJ (2011) Lipids from heterotrophic microbes: advances in metabolism research FA. Trends Biotechnol 29:53–61PubMedCrossRefPubMedCentralGoogle Scholar
  65. Kosa G, Kohler A, Tafintseva V, Zimmermann B, Forfang K, Afseth NK, Tzimorotas D, Vuoristo KS, Horn SJ, Mounier J, Shapaval V (2017) Microtiter plate cultivation of oleaginous fungi and monitoring of lipogenesis by high – throughput FTIR spectroscopy. Microb Cell Factories 16:101CrossRefGoogle Scholar
  66. Koutb M, Mohamed F (2011) A potent lipid producing isolate of Epicoccum purpurascens AUMC5615 and its promising use for biodiesel production. Biomass Bioenergy 35:3182–3187CrossRefGoogle Scholar
  67. Krawczyk T (1996) Biodiesel. In: International news on fats, oils and related materials. AOCS Press, Champaign, p 801Google Scholar
  68. Kumar AK, Vatsyayan P, Goswami P (2010) Production of lipid and fatty acids during growth of Aspergillus terreus on hydrocarbon substrates, Appl. Biochem.Biotechnol !60: 1293–1300PubMedCrossRefPubMedCentralGoogle Scholar
  69. Lapuerta M, Rodríguez-fernández J, Armas O (2010) Correlation for the estimation of the density of fatty acid esters fuels and its implications. A proposed Biodiesel Cetane Index. Chem Phys Lipids 163:720–727PubMedCrossRefPubMedCentralGoogle Scholar
  70. Leung DYC, Wu X, Leung MKH (2010) A review on biodiesel production using catalyzed transesterification. Appl Energy 87:1083–1095CrossRefGoogle Scholar
  71. Li Q, Du W, Liu D (2008) Perspectives of microbial oils for biodiesel production. Appl Microbiol Biotechnol 80:749–756PubMedCrossRefPubMedCentralGoogle Scholar
  72. Lin H, Cheng W, Ding HT, Chen XJ, Zhou QF, Zhao YH (2010) Direct microbial conversion of wheat straw into lipid by a cellulolytic fungus of Aspergillus oryzae A-4 in solid-state fermentation. Bioresour Technol 101:7556–7562PubMedCrossRefPubMedCentralGoogle Scholar
  73. Lin L, Cunshan Z, Vittayapadung S, Xiangqian S, Mingdong D (2011) Opportunities and challenges for biodiesel fuel. Appl Energy 88:1020–1031CrossRefGoogle Scholar
  74. Liu B, Zhao Z (2007) Biodiesel production by direct methanolysis of oleaginous microbial biomass. J Chem Technol Biotechnol 82:775–780CrossRefGoogle Scholar
  75. Liu S, Abrahamson LP, Scott GM (2012) Biorefinery: ensuring biomass as a sustainable renewable source of chemicals, materials, and energy. Biomass Bioenergy 39:1–4CrossRefGoogle Scholar
  76. Lozano-Martínez P, Buey RM, Ledesma-Amaro R, Jiménez A, Revuelta JL (2017) Engineering Ashbya gossypii strains for de novo lipid production using industrial by-products. Microb Biotechnol 10:425–433PubMedCrossRefPubMedCentralGoogle Scholar
  77. Meeuwse P, Tramper J (2011) Modeling lipid accumulation in oleaginous fungi in chemostat cultures. II: validation of the chemostat model using yeast culture data from literature. Bioprocess Biosyst Eng 34:951–961PubMedPubMedCentralCrossRefGoogle Scholar
  78. Meeuwse P, Tramper J, Rinzema A (2011) Modeling lipid accumulation in oleaginous fungi in chemostat cultures: I. Development and validation of a chemostat model for Umbelopsis isabellina. Bioprocess Biosyst Eng 34:939–949PubMedPubMedCentralCrossRefGoogle Scholar
  79. Meeuwse P, Akbari P, Tramper J, Rinzema A (2012a) Modeling growth, lipid accumulation and lipid turnover in submerged batch cultures of Umbelopsis isabellina. Bioprocess Biosyst Eng 35:591–603PubMedCrossRefPubMedCentralGoogle Scholar
  80. Meeuwse P, Klok AJ, Haemers S, Tramper J, Rinzema A (2012b) Growth and lipid production of Umbelopsis isabellina on a solid substrate — mechanistic modeling and validation. Process Biochem 47:1228–1242CrossRefGoogle Scholar
  81. Meeuwse P, Sanders JPM, Tramper J, Rinzema A (2013) Lipids from yeasts and fungi: tomorrow’s source of biodiesel? Biofuels Bioprod Biorefin 7:521–524CrossRefGoogle Scholar
  82. Moser BR (2009) Biodiesel production, properties, and feedstocks. In vitro cellular and developmental biology. Plants 45:229–266Google Scholar
  83. Moser BR, Vaughn SF (2012) Efficacy of fatty acid profile as a tool for screening feedstocks for biodiesel production. Biomass Bioenergy 37:31–41CrossRefGoogle Scholar
  84. Muniraj IK, Xiao L, Hu Z, Zhan X, Shi J (2013) Microbial lipid production from potato processing wastewater using oleaginous filamentous fungi Aspergillus oryzae. Water Res 47:3477–3483PubMedCrossRefPubMedCentralGoogle Scholar
  85. NREL (2009) Biodiesel Handling and Use Guide 4th edition National Renewable EnergyLaboratory.http://biodiesel.org/docs/using-hotline/nrel-handling-and-use.pdf
  86. Papanikolaou S, Aggelis G (2010) Yarrowia lipolytica: a model microorganism used for the production of tailor-made lipids. Eur J Lipid Sci Technol 112:639–654CrossRefGoogle Scholar
  87. Papanikolaou S, Aggelis G (2011a) Lipids of oleaginous yeasts. Part I: biochemistry of single cell oil production. Eur J Lipid Sci Technol 113:1031–1051CrossRefGoogle Scholar
  88. Papanikolaou S, Aggelis G (2011b) Lipids of oleaginous yeasts. Part II: Technology and potential applications. Eur J Lipid Sci Technol 113:1052–1073CrossRefGoogle Scholar
  89. Papanikolaou S, Chevalot I, Komaitis M, Aggelis G, Marc I (2001) Kinetic profile of the cellular lipid composition in an oleaginous Yarrowia lipolytica capable of producing a cocoa-butter substitute from industrial fats. Antonie Van Leeuwenhoek 80:215–224PubMedCrossRefPubMedCentralGoogle Scholar
  90. Papanikolaou S, Chevalot I, Komaitis M, Marc I, Aggelis G (2002) Single cell oil production by Yarrowia lipolytica growing on an industrial derivative of animal fat in batch cultures. Appl Microbiol Biotechnol 58:308–312PubMedCrossRefPubMedCentralGoogle Scholar
  91. Papanikolaou S, Muniglia L, Chevalot I, Aggelis G, Marc I (2003) Accumulation of a cocoa-butter-like lipid by Yarrowia lipolytica cultivated on agro-industrial residues. Curr Microbiol 46:0124–0130CrossRefGoogle Scholar
  92. Papanikolaou S, Komaitis M, Aggelis G (2004a) Single cell oil (SCO) production by Mortierella isabellina grown on high-sugar content media. Bioresour Technol 95:287–291PubMedCrossRefPubMedCentralGoogle Scholar
  93. Papanikolaou S, Sarantou S, Komaitis M, Aggelis G (2004b) Repression of reserve lipid turnover in Cunninghamella echinulata and Mortierella isabellina cultivated in multiple-limited media. J Appl Microbiol 97:867–875PubMedCrossRefPubMedCentralGoogle Scholar
  94. Papanikolaou S, Galiotou-Panayotou M, Fakas S, Komaitis M, Aggelis G (2007) Lipid production by oleaginous Mucorales cultivated on renewable carbon sources. Eur J Lipid Sci Technol 109:1060–1070CrossRefGoogle Scholar
  95. Papanikolaou S, Diamantopoulou P, Chatzifragkou A, Philippoussis A, Aggelis G (2010) Suitability of low-cost sugars as substrates for lipid production by the fungus Thamnidium elegans. Energy Fuel 24:4078–4086CrossRefGoogle Scholar
  96. Papanikolaou S, Dimou A, Fakas S, Diamantopoulou P, Philippoussis A (2011) Biotechnological conversion of waste cooking olive oil into lipid-rich biomass using Aspergillus and Penicillium strains. J Appl Microbiol 110:1138–1150PubMedCrossRefPubMedCentralGoogle Scholar
  97. Papanikolaou S, Rontou M, Belka A, Athenaki M, Gardeli C, Mallouchos A, Kalantzi O, Koutinas A, Kookos I, Zeng A, Aggelis G (2017) Conversion of biodiesel-derived glycerol into biotechnological products of industrial significance by yeast and fungal strains. Eng Life Sci 17:262–281CrossRefGoogle Scholar
  98. Peng X, Chen H (2007) Microbial oil accumulation and cellulase secretion of the endophytic fungi from oleaginous plants. Ann Microbiol 57:239–242CrossRefGoogle Scholar
  99. Peng X, Chen H (2008) Single cell oil production in solid-state fermentation by Microsphaeropsis sp. from steam-exploded wheat straw mixed with wheat bran. Bioresour Technol 99:3885–3889PubMedCrossRefGoogle Scholar
  100. Pignède G, Wang H, Fudalej F, Seman M, Gaillardin C, Nicaud J (2000) Autocloning and amplification of LIP2 in Yarrowia lipolytica. Appl Environ Microbiol 66:3283–3289PubMedPubMedCentralCrossRefGoogle Scholar
  101. Pinzi S, Leiva-Candia D, López-García I, Redel-Macías MD, Dorado MP (2013) Latest trends in feedstocks for biodiesel production. Biofuels Bioprod Biorefin 8:126–143CrossRefGoogle Scholar
  102. Pratas MJ, Freitas S, Oliveira MB, Monteiro SC, Lima AS, Coutinho JAP (2010) Densities and viscosities of fatty acid methyl and ethyl esters. J Chem Eng Data 55:3983–3990CrossRefGoogle Scholar
  103. Pratas MJ, Freitas SVD, Oliveira MB, Monteiro SC, Lima S, Coutinho JAP (2011) Biodiesel density: experimental measurements and prediction models. Energy Fuel 25:2333–2340CrossRefGoogle Scholar
  104. Ramírez-Verduzco LF, Rodríguez-Rodríguez JE, Jaramillo-Jacob ADR (2012) Predicting cetane number, kinematic viscosity, density and higher heating value of biodiesel from its fatty acid methyl ester composition. Fuel 91:102–111. https://doi.org/10.1016/j.fuel.2011.06.070 CrossRefGoogle Scholar
  105. Ramos MJ, Fernández CM, Casas A, Rodríguez L, Pérez Á (2009) Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour Technol 100:261–268PubMedCrossRefGoogle Scholar
  106. Ratledge C (1989) Biotechnology of oils and fats. In: Ratledge C, Wilkinson S (eds) Microbial Lipids. Academic, London, pp 567–668Google Scholar
  107. Ratledge C (2014) The role of malic enzyme as the provider of NADPH in oleaginous microorganisms: a reappraisal and unsolved problems. Biotechnol Lett 36:1557–1568PubMedCrossRefGoogle Scholar
  108. Ratledge C, Wynn J (2002) The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv Appl Microbiol 51:1–52PubMedCrossRefGoogle Scholar
  109. REN21 – Renewable Energy Policy Network for the 21st century (2016) Renewables 2016 Global Status Report. http://www.ren21.net/status-of-renewables/global-status-report/
  110. REN21 – Renewable Energy Policy Network for the 21st century (2017) Renewables 2017 Global Status Report. http://www.ren21.net/status-of-renewables/global-status-report/
  111. Rodríguez-Frómeta RA, Gutiérrez A, Torres-Martínez S, Garre V (2013) Malic enzyme activity is not the only bottleneck for lipid accumulation in the oleaginous fungus Mucor circinelloides. Appl Microbiol Biotechnol 97:3063–3072PubMedCrossRefPubMedCentralGoogle Scholar
  112. Ruan Z, Zanotti M, Wang X, Ducey C, Liu Y (2012) Evaluation of lipid accumulation from lignocellulosic sugars by Mortierella isabellina for biodiesel production. Bioresour Technol 110:198–205PubMedCrossRefPubMedCentralGoogle Scholar
  113. Ruan Z, Zanotti M, Archer S, Liao W, Liu Y (2014) Oleaginous fungal lipid fermentation on combined acid- and alkali-pretreated corn Stover hydrolysate for advanced biofuel production. Bioresour Technol 163:12–17PubMedCrossRefPubMedCentralGoogle Scholar
  114. Sakamoto T, Sakuradani E, Okuda T, Kikukawa H, Ando A (2017) Metabolic engineering of oleaginous fungus Mortierella alpina for high production of oleic and linoleic acids. Bioresour Technol (in press) https://doi.org/10.1016/j.biortech.2017.06.089
  115. Song Y, Wynn JP, Li Y, Grantham D, Ratledge C (2001) A pre-genetic study of the isoforms of malic enzyme associated with lipid accumulation in Mucor circinelloides. Microbiology 147:1507–1515PubMedCrossRefPubMedCentralGoogle Scholar
  116. Subramaniam R, Dufreche S, Zappi M, Bajpai R (2010) Microbial lipids from renewable resources: production and characterization. J Ind Microbiol Biotechnol 37:1271–1287PubMedCrossRefPubMedCentralGoogle Scholar
  117. Tamano K, Miura A, Koike H, Kamisaka Y, Umemura M (2017) High-efficiency extracellular release of free fatty acids from Aspergillus oryzae using non-ionic surfactants. J Biotechnol 248:9–14PubMedCrossRefPubMedCentralGoogle Scholar
  118. Tang X, Chen H, Chen YQ, Chen W, Garre V, Song Y, Ratledge C (2015) Comparison of biochemical activities between high and low lipid-producing strains of Mucor circinelloides: an explanation for the high oleaginicity of strain WJ11. PLoS One 10(6):e0128396PubMedPubMedCentralCrossRefGoogle Scholar
  119. Tong D, Hu C, Jiang K (2011) Cetane number prediction of biodiesel from the composition of the fatty acid methyl esters. J Am Oil Chem Soc 88:415–423CrossRefGoogle Scholar
  120. Vamvakaki AN, Kandarakis I, Kaminarides S, Komaitis M, Papanikolaou S (2010) Cheese whey as a renewable substrate for microbial lipid and biomass production by Zygomycetes. Eng Life Sci 10:348–360CrossRefGoogle Scholar
  121. Venkata Subhash G, Venkata Mohan S (2011) Biodiesel production from isolated oleaginous fungi Aspergillus sp. using corncob waste liquor as a substrate. Bioresour Technol 102:9286–9290PubMedCrossRefPubMedCentralGoogle Scholar
  122. Venkata Subhash G, Venkata Mohan S (2014) Lipid accumulation for biodiesel production by oleaginous fungus Aspergillus awamori: influence of critical factors. Fuel 116:509–515CrossRefGoogle Scholar
  123. Venkata Subhash G, Venkata Mohan S (2015) Sustainable biodiesel production through bioconversion of lignocellulosic wastewater by oleaginous fungi. Biomass Convers Biorefinery 5:215–226CrossRefGoogle Scholar
  124. Vicente G, Bautista LF, Rodriguez R, Gutiérrez FJ, Sadaba I, Ruiz-Vazquez RM, Torres-Martinez S, Garre V (2009) Biodiesel production from biomass of an oleaginous fungus. Biochem Eng J 48:22–27CrossRefGoogle Scholar
  125. Vicente G, Bautista LF, Gutierrez FJ, Rodríguez R, Martínez V, Rodríguez-Frometa RA, Ruiz-Vazquez RM, Torres-Martínez S, Garre V (2010) Direct transformation of fungal biomass from submerged cultures into biodiesel. Energy Fuels 24:3173–3178CrossRefGoogle Scholar
  126. Wang Y, Lu Z (2005) Optimization of processing parameters for the mycelial growth and extracellular polysaccharide production by Boletus spp. ACCC 50328. Process Biochem 40:1043–1051CrossRefGoogle Scholar
  127. Wei H, Wang W, Yarbrough JM, Baker JO, Laurens L, Van WS, Chen X, Ii LET, Xu Q, Himmel ME, Zhang M (2013) Genomic, proteomic and biochemical analyses of oleaginous mucor circinelloides: evaluating its capability in utilizing cellulolytic substrates for lipid production. PLoS One 8:e71068PubMedPubMedCentralCrossRefGoogle Scholar
  128. Wei Y, Siewers V, Nielsen J (2017) Cocoa butter-like lipid production ability of non-oleaginous and oleaginous yeasts under nitrogen-limited culture conditions. Appl Microbiol Biotechnol (2017) 101:3577–3585CrossRefGoogle Scholar
  129. Wynn JP, Ratledge C (1997) Malic enzyme is a major source of NADPH for lipid accumulation by Aspergillus nidulans. Microbiology 143:253–257CrossRefGoogle Scholar
  130. Wynn JP, Hamidt A, Ratledge C (1999) The role of malic enzyme in the regulation of lipid accumulation in filamentous fungi. Microbiology 145:1911–1917PubMedCrossRefPubMedCentralGoogle Scholar
  131. Wynn JP, Hamid AA, Li Y, Ratledge C (2001) Biochemical events leading to the diversion of carbon into storage lipids in the oleaginous fungi Mucor circinelloides and Mortierella alpina. Microbiology 147:2857–2864PubMedCrossRefPubMedCentralGoogle Scholar
  132. Xing D, Wang H, Pan A, Wang J, Xue D (2012) Assimilation of corn fiber hydrolysates and lipid accumulation by Mortierella isabellina. Biomass Bioenergy 39:494–501CrossRefGoogle Scholar
  133. Yao R, Zhang P, Wang H, Deng S, Zhu H (2012) One-step fermentation of pretreated rice straw producing microbial oil by a novel strain of Mortierella elongata PFY. Bioresour Technol 124:512–515PubMedCrossRefPubMedCentralGoogle Scholar
  134. Yousuf A (2012) Biodiesel from lignocellulosic biomass - prospects and challenges. Waste Manag 32:2061–2067PubMedCrossRefPubMedCentralGoogle Scholar
  135. Zhang J, Hu B (2012) Solid-state fermentation of Mortierella isabellina for lipid production from soybean hull. Appl Biochem Biotechnol 166:1034–1046PubMedCrossRefPubMedCentralGoogle Scholar
  136. Zhang J, Hu B (2014) Microbial lipid production from corn Stover via Mortierella isabellina. Appl Biochem Biotechnol 174:574–586PubMedCrossRefPubMedCentralGoogle Scholar
  137. Zhang Y, Dubé MA, McLean DD, Kates M (2003) Biodiesel production from waste cooking oil: 2. Economic assessment and sensitivity analysis. Bioresour Technol 90:229–240PubMedCrossRefPubMedCentralGoogle Scholar
  138. Zhang Y, Adams IP, Ratledge C (2007) Malic enzyme: the controlling activity for lipid production? Overexpression of malic enzyme in Mucor circinelloides leads to a 2.5-fold increase in lipid accumulation. Microbiology 153:2013–2025PubMedCrossRefPubMedCentralGoogle Scholar
  139. Zhang C, Shen H, Zhang X, Yu X, Wang H, Xiao S et al (2016) Combined mutagenesis of Rhodosporidium toruloides for improved production of carotenoids and lipids. Biotechnol Lett 38:1733–1738PubMedCrossRefGoogle Scholar
  140. Zheng Y, Yu X, Zeng J, Chen S (2012) Feasibility of filamentous fungi for biofuel production using hydrolysate from dilute sulfuric acid pretreatment of wheat straw. Biotechnol Biofuels 5:50PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Mahesh Khot
    • 1
  • Gouri Katre
    • 1
  • Smita Zinjarde
    • 1
  • Ameeta RaviKumar
    • 1
    • 2
  1. 1.Institute of Bioinformatics and BiotechnologyPuneIndia
  2. 2.Department of BiotechnologySavitribai Phule Pune UniversityPuneIndia

Personalised recommendations