Exploiting Innate and Imported Fungal Capacity for Xylitol Production

  • Shaik JakeerEmail author
Part of the Fungal Biology book series (FUNGBIO)


Xylitol, a pentahydroxy chiral polyol, is a natural noncaloric sweetener with a wide spectrum of applications in food, confectionary, and pharmaceutical industries because of its advantageous properties. Industrial-scale production of xylitol from D-xylose derived from hemicellulosic hydrolysates is usually done by a chemical process by catalytic hydrogenation under high pressure and temperature. However, the sustainability issue boosted the biotechnological process. Much of the research is being focused on engineering metabolic pathways to improve the biological production of xylitol in both native xylitol-producing and nonproducing-fungal strains. This chapter provides a limelight on native fungal strains and the advances made in fungal metabolic engineering to increase the production of xylitol.


Fungi Xylitol Xylose Recombinant Yeast Cofactor Regeneration 


  1. Ahmad I, Shim WY, Jeon WY et al (2012) Enhancement of xylitol production in Candida tropicalis by co-expression of two genes involved in pentose phosphate pathway. Bioprocess Biosyst Eng 35:199–204CrossRefPubMedGoogle Scholar
  2. Alexander MA, Chapman TW, Jeffries TW (1988) Xylose metabolism by Candida shehatae in continuous culture. Appl Microbiol Biotechnol 28:478–486CrossRefGoogle Scholar
  3. de Arruda PV, Rodrigues Rde C, da Silva DD et al (2011) Evaluation of hexose and pentose in pre-cultivation of Candida guilliermondii on the key enzymes for xylitol production in sugarcane hemicellulosic hydrolysate. Biodegradation 22:815–822CrossRefPubMedGoogle Scholar
  4. Bae SM, Park YC, Lee TH et al (2004) Production of xylitol by recombinant Saccharomyces cerevisiae containing xylose reductase gene in repeated fed-batch and cell-recycle fermentations. Enzym Microb Technol 35:545–549CrossRefGoogle Scholar
  5. Barbosa MFS, Medeiros MB, Mancilha IM et al (1988) Screening of yeasts for production of xylitol from d-xylose and some factors which affect xylitol yield in Candida guilliermondii. J Ind Microbiol 3:241–251CrossRefGoogle Scholar
  6. Bruinenberg PM, de Bot PHM, Van dijken JP et al (1984) NADH-linked aldose reductase: the key to anaerobic alcoholic fermentation of xylose by yeasts. Appl Microbiol Biotechnol 19:256–260CrossRefGoogle Scholar
  7. Carvalheiro F, Duarte LC, Medeiros R et al (2007) Xylitol production by Debaryomyces hansenii in brewery spent grain dilute-acid hydrolysate: effect of supplementation. Biotechnol Lett 29:1887–1891CrossRefPubMedGoogle Scholar
  8. Cheng KK, Zhang JA, Ling HZ et al (2009) Optimization of pH and acetic acid concentration for bioconversion of hemicellulose from corncobs to xylitol by Candida tropicalis. Biochem Eng J 43:203–207CrossRefGoogle Scholar
  9. Cheng H, Lv J, Wang H et al (2014) Genetically engineered Pichia pastoris yeast for conversion of glucose to xylitol by a single-fermentation process. Appl Microbiol Biotechnol 98:3539–3552CrossRefPubMedGoogle Scholar
  10. Chung YS, Kim MD, Lee WJ et al (2002) Stable expression of xylose reductase gene enhances xylitol production in recombinant Saccharomyces cerevisiae. Enzym Microb Technol 30:809–816CrossRefGoogle Scholar
  11. Dashtban M, Kepka G, Seiboth B et al (2013) Xylitol production by genetically engineered Trichoderma reesei strains using barley straw as feedstock. Appl Biochem Biotechnol 169:554–569CrossRefPubMedGoogle Scholar
  12. Debus D, Methner H, Schulze D et al (1983) Fermentation of xylose with the yeast Pachysolen tannophilus. Eur J Appl Microbiol Biotechnol 17:287–291CrossRefGoogle Scholar
  13. Dubey R, Jakeer S, Gaur NA (2016) Screening of natural yeast isolates under the effects of stresses associated with second-generation biofuel production. J Biosci Bioeng 121:509–516CrossRefPubMedGoogle Scholar
  14. Fuente-hernandez A, Corcos PO, Beauchet R et al (2013) Biofuels and co-products out of hemicelluloses. Intech publishing, CroatiaCrossRefGoogle Scholar
  15. García martín JF, Sánchez S, Bravo V et al (2011) Xylitol production from olive-pruning debris by sulphuric acid hydrolysis and fermentation with Candida tropicalis. Holzforschung 65:59–65CrossRefGoogle Scholar
  16. Garcia-dieguez C, Salgado JM, Roca E et al (2011) Kinetic modelling of the sequential production of lactic acid and xylitol from vine trimming wastes. Bioprocess Biosyst Eng 34:869–878CrossRefPubMedGoogle Scholar
  17. Granstrom TB, Izumori K, Leisola M (2007) A rare sugar xylitol. Part II: biotechnological production and future applications of xylitol. Appl Microbiol Biotechnol 74:273–276CrossRefPubMedGoogle Scholar
  18. Hahn-Hagerdal B, Karhumaa K, Fonseca C et al (2007) Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 74:937–953CrossRefPubMedGoogle Scholar
  19. Hallborn J, Walfridsson M, Airaksinen U et al (1991) Xylitol production by recombinant Saccharomyces cerevisiae. Biotechnology (N Y) 9:1090–1095CrossRefGoogle Scholar
  20. Hallborn J, Gorwa MF, Meinander N et al (1994) The influence of cosubstrate and aeration on xylitol formation by recombinant Saccharomyces cerevisiae expressing the XYL1 gene. Appl Microbiol Biotechnol 42:326–333PubMedGoogle Scholar
  21. Huang CF, Jiang YF, Guo GL et al (2011) Development of a yeast strain for xylitol production without hydrolysate detoxification as part of the integration of co-product generation within the lignocellulosic ethanol process. Bioresour Technol 102:3322–3329CrossRefPubMedGoogle Scholar
  22. Jeon WY, Yoon BH, Ko BS et al (2012) Xylitol production is increased by expression of codon-optimized Neurospora crassa xylose reductase gene in Candida tropicalis. Bioprocess Biosyst Eng 35:191–198CrossRefPubMedGoogle Scholar
  23. Jeun YS, Kim MD, Park YC et al (2003) Expression of Azotobacter vinelandii soluble transhydrogenase perturbs xylose reductase-mediated conversion of xylose to xylitol by recombinant Saccharomyces cerevisiae. J Mol Catal B Enzym 26:251–256CrossRefGoogle Scholar
  24. Jin YS, Cruz J, Jeffries TW (2005) Xylitol production by a Pichia stipitis D-xylulokinase mutant. Appl Microbiol Biotechnol 68:42–45CrossRefPubMedGoogle Scholar
  25. Ko BS, Kim J, Kim JH (2006) Production of xylitol from D-xylose by a xylitol dehydrogenase gene-disrupted mutant of Candida tropicalis. Appl Environ Microbiol 72:4207–4213CrossRefPubMedPubMedCentralGoogle Scholar
  26. Ko CH, Chiang PN, Chiu PC et al (2008) Integrated xylitol production by fermentation of hardwood wastes. J Chem Technol Biotechnol 83:534–540CrossRefGoogle Scholar
  27. Ko BS, Kim DM, Yoon BH et al (2011) Enhancement of xylitol production by attenuation of intracellular xylitol dehydrogenase activity in Candida tropicalis. Biotechnol Lett 33:1209–1213CrossRefPubMedGoogle Scholar
  28. Kotter P, Ciriacy M (1993) Xylose fermentation by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 38:776–783CrossRefGoogle Scholar
  29. Kumar J, Reddy MS, Rao LV (2010) Strain improvement of Candida tropicalis OVC5 for xylitol production by random mutagenesis. IIOABJ 1:24–28Google Scholar
  30. Kwon DH, Kim MD, Lee TH et al (2006a) Elevation of glucose 6-phosphate dehydrogenase activity increases xylitol production in recombinant Saccharomyces cerevisiae. J Mol Catal B Enzym 43:86–89CrossRefGoogle Scholar
  31. Kwon SG, Park SW, Oh DK (2006b) Increase of xylitol productivity by cell-recycle fermentation of Candida tropicalis using submerged membrane bioreactor. J Biosci Bioeng 101:13–18CrossRefPubMedGoogle Scholar
  32. Lee WJ, Ryu YW, Seo JH (2000) Characterization of two-substrate fermentation processes for xylitol production using recombinant Saccharomyces cerevisiae containing xylose reductase gene. Process Biochem 35:1199–1203CrossRefGoogle Scholar
  33. Lee JK, Koo BS, Kim SY (2003) Cloning and characterization of the xyl1 gene, encoding an NADH-preferring xylose reductase from Candida parapsilosis, and its functional expression in Candida tropicalis. Appl Environ Microbiol 69:6179–6188CrossRefPubMedPubMedCentralGoogle Scholar
  34. Li M, Meng X, Diao E et al (2012) Xylitol production by Candida tropicalis from corn cob hemicellulose hydrolysate in a two-stage fed-batch fermentation process. J Chem Technol Biotechnol 87:387–392CrossRefGoogle Scholar
  35. Ligthelm ME, Prior BA, du Preez JC (1988) The oxygen requirements of yeasts for the fermentation of d-xylose and d-glucose to ethanol. Appl Microbiol Biotechnol 28:63–68CrossRefGoogle Scholar
  36. Ling H, Cheng K, Ge J et al (2011) Statistical optimization of xylitol production from corncob hemicellulose hydrolysate by Candida tropicalis HDY-02. New Biotechnol 28:673–678CrossRefGoogle Scholar
  37. Mahmud A, Hattori K, Hongwen C et al (2013) Xylitol production by NAD(+)-dependent xylitol dehydrogenase (xdhA)- and l-arabitol-4-dehydrogenase (ladA)-disrupted mutants of aspergillus oryzae. J Biosci Bioeng 115:353–359CrossRefPubMedGoogle Scholar
  38. Martínez ML, Sánchez S, Bravo V (2012) Production of xylitol and ethanol by Hansenula polymorpha from hydrolysates of sunflower stalks with phosphoric acid. Ind Crop Prod 40:160–166CrossRefGoogle Scholar
  39. Meinander NQ, Hahn-Hägerdal B (1997) Fed-batch xylitol production with two recombinant Saccharomyces cerevisiae strains expressing XYL1 at different levels, using glucose as a cosubstrate: a comparison of production parameters and strain stability. Biotechnol Bioeng 54:391–399CrossRefPubMedGoogle Scholar
  40. Min-Soo K (2000) Enhancement of xylitol yield by xylitol dehydrogenase defective mutant of Pichia stipitis. Korean J Biotechnol Bioeng 15:113–119Google Scholar
  41. Miura M, Watanabe I, Shimotori Y et al (2012) Microbial conversion of bamboo hemicellulose hydrolysate to xylitol. Wood Sci Technol 47:515–522CrossRefGoogle Scholar
  42. Moyses DN, Reis VC, de Almeida JR et al (2016) Xylose fermentation by Saccharomyces cerevisiae: challenges and prospects. Int J Mol Sci 17:207CrossRefPubMedPubMedCentralGoogle Scholar
  43. Mussatto SI, Roberto IC (2003) Xylitol production from high xylose concentration: evaluation of the fermentation in bioreactor under different stirring rates. J Appl Microbiol 95:331–337CrossRefPubMedGoogle Scholar
  44. Oh YJ, Lee TH, Lee SH et al (2007) Dual modulation of glucose 6-phosphate metabolism to increase NADPH-dependent xylitol production in recombinant Saccharomyces cerevisiae. J Mol Catal B Enzym 47:37–42CrossRefGoogle Scholar
  45. Oh EJ, Bae YH, Kim KH et al (2012) Effects of overexpression of acetaldehyde dehydrogenase 6 and acetyl-CoA synthetase 1 on xylitol production in recombinant Saccharomyces cerevisiae. Biocatal Agric Biotechnol 1:15–19Google Scholar
  46. Pal S, Choudhary V, Kumar A et al (2013) Studies on xylitol production by metabolic pathway engineered Debaryomyces hansenii. Bioresour Technol 147:449–455CrossRefPubMedGoogle Scholar
  47. Pal S, Mondal AK, Sahoo DK (2016) Molecular strategies for enhancing microbial production of xylitol. Process Biochem 51:809–819CrossRefGoogle Scholar
  48. Park YC, Kim SK, Seo JH (2014) Recent advances for microbial production of xylitol. Wiley, Chichester, pp 497–518Google Scholar
  49. Ping Y, Ling HZ, Song G et al (2013) Xylitol production from non-detoxified corncob hemicellulose acid hydrolysate by Candida tropicalis. Biochem Eng J 75:86–91CrossRefGoogle Scholar
  50. Prakash G, Varma AJ, Prabhune A et al (2011) Microbial production of xylitol from D-xylose and sugarcane bagasse hemicellulose using newly isolated thermotolerant yeast Debaryomyces hansenii. Bioresour Technol 102:3304–3308CrossRefPubMedGoogle Scholar
  51. Prakasham RS, RS R, PJ H (2009) Current trends in biotechnological production of xylitol and future prospects. Curr Trends Biotechnol 3:8–36Google Scholar
  52. Rao RS, Jyothi CP, Prakasham RS et al (2006) Strain improvement of Candida tropicalis for the production of xylitol: biochemical and physiological characterization of wild-type and mutant strain CT-OMV5. J Microbiol 44:113–120PubMedGoogle Scholar
  53. Rizzi M, Erlemann P, Bui-thanh NA et al (1988) Xylose fermentation by yeasts. Appl Microbiol Biotechnol 29:148–154CrossRefGoogle Scholar
  54. Rocha MV, Rodrigues TH, Melo VM et al (2011) Cashew apple bagasse as a source of sugars for ethanol production by Kluyveromyces marxianus CE025. J Ind Microbiol Biotechnol 38:1099–1107CrossRefPubMedGoogle Scholar
  55. Rocha MVP, Rodrigues THS, Albuquerque d et al (2014) Evaluation of dilute acid pretreatment on cashew apple bagasse for ethanol and xylitol production. Chem Eng J 243:234–243CrossRefGoogle Scholar
  56. Rodrigues RC, Kenealy WR, Jeffries TW (2011) Xylitol production from DEO hydrolysate of corn Stover by Pichia stipitis YS-30. J Ind Microbiol Biotechnol 38:1649–1655CrossRefPubMedGoogle Scholar
  57. Roseiro JC, Peito MA, Gírio FM et al (1991) The effects of the oxygen transfer coefficient and substrate concentration on the xylose fermentation by Debaryomyces hansenii. Arch Microbiol 156:484–490Google Scholar
  58. Sampaio FC, Silveira WBD, Chaves-alves VM et al (2003) Screening of filamentous fungi for production of xylitol from D-xylose. Braz J Microbiol 34:321–324CrossRefGoogle Scholar
  59. Sampaio FC, Torre P, Passos FM et al (2004) Xylose metabolism in Debaryomyces hansenii UFV-170. Effect of the specific oxygen uptake rate. Biotechnol Prog 20:1641–1650CrossRefPubMedGoogle Scholar
  60. Skim MD, Jeun YS, Kim SG et al (2002) Comparison of xylitol production in recombinant Saccharomyces cerevisiae strains harboring XYL1 gene of Pichia stipitis and GRE3 gene of S. cerevisiae. Enzym Microb Technol 31:862–866CrossRefGoogle Scholar
  61. Smiley KL, Bolen PL (1982) Demonstration of D-xylose reductase and D-xylitol dehydrogenase in Pachysolen tannophilus. Biotechnol Lett 4:607–610CrossRefGoogle Scholar
  62. Sonderegger M, Jeppsson M, Hahn-Hagerdal B et al (2004) Molecular basis for anaerobic growth of Saccharomyces cerevisiae on xylose, investigated by global gene expression and metabolic flux analysis. Appl Environ Microbiol 70:2307–2317CrossRefPubMedPubMedCentralGoogle Scholar
  63. Walfridsson M, Anderlund M, Bao X et al (1997) Expression of different levels of enzymes from the Pichia stipitis XYL1 and XYL2 genes in Saccharomyces cerevisiae and its effects on product formation during xylose utilisation. Appl Microbiol Biotechnol 48:218–224CrossRefPubMedGoogle Scholar
  64. Wang TH, Zhong YH, Huang W et al (2005) Antisense inhibition of xylitol dehydrogenase gene, xdh1 from Trichoderma reesei. Lett Appl Microbiol 40:424–429CrossRefPubMedGoogle Scholar
  65. Winkelhausen E, Kuzmanova S (1998) Microbial conversion of d-xylose to xylitol. J Ferment Bioeng 86:1–14CrossRefGoogle Scholar
  66. Yadav M, Mishra DK, Hwang JS (2012) Catalytic hydrogenation of xylose to xylitol using ruthenium catalyst on NiO modified TiO2 support. Appl Catal A Gen 425–-426:110–116CrossRefGoogle Scholar
  67. Zhang J, Geng A, Yao C et al (2012) Xylitol production from D-xylose and horticultural waste hemicellulosic hydrolysate by a new isolate of Candida athensensis SB18. Bioresour Technol 105:134–141CrossRefPubMedGoogle Scholar
  68. Zhang B, Li L, Zhang J et al (2013) Improving ethanol and xylitol fermentation at elevated temperature through substitution of xylose reductase in Kluyveromyces marxianus. J Ind Microbiol Biotechnol 40:305–316CrossRefPubMedGoogle Scholar
  69. Zhang J, Zhang B, Wang D et al (2014) Xylitol production at high temperature by engineered Kluyveromyces marxianus. Bioresour Technol 152:192–201CrossRefPubMedGoogle Scholar
  70. Zhang C, Zong H, Zhuge B et al (2015) Production of xylitol from D-xylose by overexpression of xylose reductase in osmotolerant yeast Candida glycerinogenes WL2002-5. Appl Biochem Biotechnol 176:1511–1527CrossRefPubMedGoogle Scholar
  71. Zikou E, Chatzifragkou A, Koutinas AA et al (2013) Evaluating glucose and xylose as cosubstrates for lipid accumulation and gamma-linolenic acid biosynthesis of Thamnidium elegans. J Appl Microbiol 114:1020–1032CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali MargNew DelhiIndia
  2. 2.Shraga Segal Department of Microbiology, Immunology, and GeneticsBen-Gurion University of the NegevBeer-ShevaIsrael

Personalised recommendations