Advertisement

Economical Lactic Acid Production and Optimization Strategies

  • Sheelendra M. Bhatt
Chapter
Part of the Fungal Biology book series (FUNGBIO)

Abstract

The best replacement of plastic is bioplastic. Lactic acid is a promising monomer of polylactide production. Therefore, lowering down lactic acid cost is a challenge. Biochemical production of lactic acid via starch or glucose is not economical. Therefore, the current chapter addresses strategies in economical lactic acid production using fungi, which is still looking for its place in the industry. Lactic acid bacteria (LAB) or fungi have their own merits and demerits. Fungi have several advantages against LAB, such as robust metabolic pathway, suitable for conversion of a diversity of substrates into lactic acid. Therefore, understanding of metabolic pathways and metabolic engineering strategies is crucial in developing a novel strain and increasing the yield of lactic acid. The central role of fungi especially Rhizopus has been discussed in detail. Simultaneous saccharification and fermentation is advantageous, and various factors affecting fermentation have also been discussed in detail. These factors are helpful in optimizing media conditions for reactors.

Keywords

Lactic acid Optimization Metabolic pathway Bioreactor LAB 

Notes

Acknowledgment

The author is expressing a mammoth of thanks to our Vice Chancellor Prof. J. S. Bal for extending his encouragement and support. The author is also thankful to Prof. (Dr.) Vijay Dhir whose extended support was felt everywhere. This work can’t be completed without the support of Dr. Sachin, a leading scientist in SSS-NIRE Kapurthala. No conflict of interest lies in preparation of this manuscript.

References

  1. Abdel-Rahman MA, Sonomoto K (2016) Opportunities to overcome the current limitations and challenges for efficient microbial production of optically pure lactic acid. J Biotechnol 236:176–192CrossRefPubMedGoogle Scholar
  2. Abdel-Rahman MA, Tashiro Y, Zendo T, Shibata K, Sonomoto K (2011) Isolation and characterisation of lactic acid bacterium for effective fermentation of cellobiose into optically pure homo l-(+)-lactic acid. Appl Microbiol Biotechnol 89:1039–1049CrossRefGoogle Scholar
  3. Abdel-Rahman MA, Tashiro Y, Sonomoto K (2013) Recent advances in lactic acid production by microbial fermentation processes. Biotechnol Adv 31:877–902CrossRefGoogle Scholar
  4. Bai D-M, Zhao X-M, Li X-G, Shi-Min X (2004) Strain improvement and metabolic flux analysis in the wild-type and a mutant lactobacillus lactis strain for l (+)-lactic acid production. Biotechnol Bioeng 88(6):681–689CrossRefPubMedGoogle Scholar
  5. Bhatt SM (2013) Developments in Cellulase activity improvements intended towards biofuel production. J Bacteriol Parasitol 4:e120CrossRefGoogle Scholar
  6. Bhatt SM, Srivastava SK (2008) Lactic acid production from cane molasses by lactobacillus delbrueckii NCIM 2025 in submerged condition: optimization of medium component by Taguchi DOE methodology. Food Biotechnol 22(2):115–139CrossRefGoogle Scholar
  7. Bigelis R, Tsai SP (1994) Microorganisms for organic acid productions. Chapter 6. In: Hui YH, Khachatourians GG (eds) Food biotechnology: microorganisms. VCH Publishers, New YorkGoogle Scholar
  8. Chambergo FS, Valencia EY (2016) Fungal biodiversity to biotechnology. Appl Microbiol Biotechnol 100(6):2567–2577CrossRefPubMedGoogle Scholar
  9. da Silva, Sant’Ana A, Teixeira RSS, Moutta R d O, Ferreira-Leitão VS, de Barros R d RO, Ferrara MA, Bon EP d S (2013) Sugarcane and woody biomass pretreatments for ethanol production. In: Sustainable degradation of Lignocellulosic Biomass-techniques, applications and commercialization. InTechGoogle Scholar
  10. Datta R, Henry M (2006) Lactic acid: recent advances in products, processes and technologies – a review. J Chem Technol Biotechnol 81(7):1119–1129CrossRefGoogle Scholar
  11. Datta R, Tsai SP (1997) Lactic acid production and potential uses: a technology and economics assessment. In: Fuels and chemicals from biomass, vol 666, pp 224–236CrossRefGoogle Scholar
  12. de Munanga JC, Bettencourt GL, Grabulos J, Mestres C (2016) Modeling lactic fermentation of Gowé using lactobacillus starter culture. Microorganisms 4(4):pii: E44CrossRefGoogle Scholar
  13. de Vries R (2003) Regulation of Aspergillus genes encoding plant cell wall polysaccharide-degrading enzymes; relevance for industrial production. Appl Microbiol Biotechnol 61(1):10–20CrossRefPubMedGoogle Scholar
  14. Dias MOS, da Cunha MP, Filho RM, Bonomi A, Jesus CDF, Rossell CEV (2011) Simulation of integrated first and second generation bioethanol production from sugarcane: comparison between different biomass pretreatment methods. J Ind Microbiol Biotechnol 38(8):955–966CrossRefPubMedGoogle Scholar
  15. Gad HA, El-Nabarawi MA, El-Hady SSA (2008) Formulation and evaluation of PLA and PLGA in situ implants containing secnidazole and/or doxycycline for treatment of periodontitis. AAPS PharmSciTech 9(3):878CrossRefPubMedPubMedCentralGoogle Scholar
  16. Garvie EI (1980) Bacterial lactate dehydrogenases. Microbiol Rev 44(1):106–139PubMedPubMedCentralGoogle Scholar
  17. Gezae Daful A, Görgens JF (2017) Techno-economic analysis and environmental impact assessment of lignocellulosic lactic acid production. Chem Eng Sci 162:53–65CrossRefGoogle Scholar
  18. Ghosh B, Ray RR (2011) Current commercial perspective of Rhizopus oryzae: a review. J Appl Sci 11(14):2470–2486CrossRefGoogle Scholar
  19. Gunatillake PA, Adhikari R (2003) Biodegradable synthetic polymers for tissue engineering. Eur Cell Mater 5(1):1–16PubMedGoogle Scholar
  20. Guo F, Fang Z, Zhou TJ (2012) Conversion of fructose and glucose into 5-hydroxymethylfurfural with lignin-derived carbonaceous catalyst under microwave irradiation in dimethyl sulfoxide-ionic liquid mixtures. Bioresour Technol 112:313–318CrossRefPubMedGoogle Scholar
  21. Gupta B, Revagade N, Hilborn J (2007) Poly(lactic acid) fiber: an overview. Prog Polym Sci 32(4):455–482. http://linkinghub.elsevier.com/retrieve/pii/S007967000700007X CrossRefGoogle Scholar
  22. Gupta S, Cox S, Abu-Ghannam N (2010) Process optimization for the development of a functional beverage based on lactic acid fermentation of oats. Biochem Eng J 52(2):199–204CrossRefGoogle Scholar
  23. Hamzah F, Idris A, Rashid R, Ming SJ (2009) Lactic acid production from microwave-alkali pre-treated empty fruit bunches fibre using Rhizopus oryzae pellet. J Appl Sci 9(17):3086–3091CrossRefGoogle Scholar
  24. Haylock RA (2016) Life-cycle assessment, techno-economic analysis, and statistical modeling of bio-based materials and processes. Iowa State UniversityGoogle Scholar
  25. Holten CH (1971) Lactic acid. Properties and chemistry of lactic acid and derivatives. Verlag Chemie GmbH, Weinheim, German Federal RepublicGoogle Scholar
  26. Huang LP, Bo J, Lant P, Zhou J (2005) Simultaneous saccharification and fermentation of potato starch wastewater to lactic acid by Rhizopus oryzae and Rhizopus arrhizus. Biochem Eng J 23(3):265–276CrossRefGoogle Scholar
  27. Humbird D, Davis R, Tao L, Kinchin C, Hsu D, Aden A, Schoen P, Lukas J, Olthof B, Worley M, et al (2011) Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol: dilute-acid pretreatment and enzymatic hydrolysis of corn stoverGoogle Scholar
  28. Ilmén M, Koivuranta K, Ruohonen L, Suominen P, Penttilä M (2007) Efficient production of L-lactic acid from xylose by Pichia stipitis. Appl Environ Microbiol 73:117–123. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1797125&tool=pmcentrez&rendertype=abstract CrossRefPubMedGoogle Scholar
  29. Ilmén M, Koivuranta K, Ruohonen L, Rajgarhia V, Suominen P, Penttilä M (2013) Production of L-lactic acid by the yeast Candida sonorensis expressing heterologous bacterial and fungal lactate dehydrogenases. Microb Cell Factories 12(1):53CrossRefGoogle Scholar
  30. Itoh H, Wada M, Honda Y, Kuwahara M, Watanabe T (2003) Bioorganosolve pretreatments for simultaneous saccharification and fermentation of beech wood by ethanolysis and white rot fungi. J Biotechnol 103:273–280CrossRefPubMedGoogle Scholar
  31. Jin T, Zhang H (2008) Biodegradable polylactic acid polymer with nisin for use in antimicrobial food packaging. J Food Sci 73(3):M127CrossRefPubMedGoogle Scholar
  32. Jin B, Li PH, Lant P (2003) Rhizopus arrhizus--a producer for simultaneous saccharification and fermentation of starch waste materials to L(+)-lactic acid. Biotechnol Lett 25(23):1983–1987CrossRefPubMedGoogle Scholar
  33. John RP, Anisha GS, Madhavan Nampoothiri K, Pandey A (2009) Direct lactic acid fermentation: focus on simultaneous saccharification and lactic acid production. Biotechnol Adv 27(2):145–152CrossRefPubMedGoogle Scholar
  34. Juturu V, Wu JC (2016) Microbial production of lactic acid: the latest development. Crit Rev Biotechnol 36(6):967–977CrossRefPubMedGoogle Scholar
  35. Kandler O (1983) Carbohydrate metabolism in lactic acid bacteria. Antonie Van Leeuwenhoek 49(3):209–224CrossRefPubMedGoogle Scholar
  36. Karimi K, Emtiazi G, Taherzadeh MJ (2006) Ethanol production from dilute-acid pretreated rice straw by simultaneous saccharification and fermentation with Mucor indicus, Rhizopus oryzae, and Saccharomyces cerevisiae. Enzym Microb Technol 40(1):138–144CrossRefGoogle Scholar
  37. Komesu A, Maciel MRW, Filho RM (2017) Separation and purification Technologies for Lactic Acid–a Brief Review. Bioresources 12(3):6885–6901CrossRefGoogle Scholar
  38. Kumar R, Shivakumar S (2014) Production of L-lactic acid from starch and food waste by amylolytic Rhizopus oryzae MTCC 8784. Int J ChemTech Res 6(1):527–537Google Scholar
  39. Liang S, McDonald AG, Coats ER (2014) Lactic acid production with undefined mixed culture fermentation of potato peel waste. Waste Manag 34(11):2022–2027CrossRefPubMedGoogle Scholar
  40. Liaud N, Rosso M-N, Fabre N, Crapart S, Herpoël-Gimbert I, Sigoillot J-C, Raouche S, Levasseur A (2015) L-lactic acid production by Aspergillus brasiliensis overexpressing the heterologous ldha gene from Rhizopus oryzae. Microb Cell Factories 14(1):66. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4425913&tool=pmcentrez&rendertype=abstract CrossRefGoogle Scholar
  41. Litchfield JH (1996) Microbiological production of lactic acid. Adv Appl Microbiol 42:45–95CrossRefPubMedGoogle Scholar
  42. Liu Y, Liao W, Chen S-l (2008) Co-production of lactic acid and chitin using a pelletized filamentous fungus Rhizopus oryzae cultured on cull potatoes and glucose. J Appl Microbiol 105(5):1521–1528CrossRefPubMedGoogle Scholar
  43. Maas RHW, Bakker RR, Eggink G, Weusthuis RA (2006) Lactic acid production from xylose by the fungus Rhizopus oryzae. Appl Microbiol Biotechnol 72(5):861–868CrossRefPubMedGoogle Scholar
  44. Mandegari MA, Farzad S, Görgens JF (2017) Recent trends on techno-economic assessment (TEA) of sugarcane biorefineries. Biofuel Res J 4(3):704–712CrossRefGoogle Scholar
  45. Maneeboon T, Vanichsriratana W, Pomchaitaward C, Kitpreechavanich V (2010) Optimization of lactic acid production by pellet-form Rhizopus oryzae in 3-L airlift bioreactor using response surface methodology. Appl Biochem Biotechnol 161(1–8):137–146CrossRefPubMedGoogle Scholar
  46. Mashoko L, Mbohwa C, Thomas VM (2010) LCA of the south African sugar industry. J Environ Plan Manag 53(6):793–807CrossRefGoogle Scholar
  47. Meussen BJ, de Graaff LH, Sanders JPM, Weusthuis RA (2012) Metabolic engineering of Rhizopus oryzae for the production of platform chemicals. Appl Microbiol Biotechnol 94(4):875–886CrossRefPubMedPubMedCentralGoogle Scholar
  48. Mirasol FELIZA (1999) Lactic acid prices falter as competition toughen. Chem Mark Report 255:16Google Scholar
  49. Miura S, Arimura T, Itoda N, Dwiarti L, Feng JB, Bin CH, Okabe M (2004) Production of l-lactic acid from corncob. J Biosci Bioeng 97(3):153–157CrossRefPubMedGoogle Scholar
  50. Oda Y, Saito K, Yamauchi H, Mori M (2002) Lactic acid fermentation of potato pulp by the fungus Rhizopus oryzae. Curr Microbiol 45(1):1–4CrossRefPubMedGoogle Scholar
  51. Okano K, Tanaka T, Ogino C, Fukuda H, Kondo A (2010) Biotechnological production of enantiomeric pure lactic acid from renewable resources: recent achievements, perspectives, and limits. Appl Microbiol Biotechnol 85(3):413–423CrossRefGoogle Scholar
  52. Okino S, Suda M, Fujikura K, Inui M, Yukawa H (2008) Production of D-lactic acid by Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 78(3):449–454CrossRefPubMedGoogle Scholar
  53. Perry’s RH, Chilton CH, Kirkpatrick SD (1999) Chemical engineers handbookGoogle Scholar
  54. Phrueksawan P, Kulpreecha S, Sooksai S, Thongchul N (2012) Direct fermentation of L(+)-lactic acid from cassava pulp by solid state culture of Rhizopus oryzae. Bioprocess Biosyst Eng 35(8):1429–1436CrossRefPubMedGoogle Scholar
  55. Ren J (2011) Lactic acid. In: Ren J (ed) Biodegradable poly (lactic acid): synthesis, modification, processing and applications. Tsinghua University Press, Beijing and Springer-Verlag Berlin Heidelberg, pp 4–14CrossRefGoogle Scholar
  56. Rocha MH, Capaz RS, Lora EES, Nogueira LAH, Leme MMV, Renó MLG, del Olmo OA (2014) Life cycle assessment (LCA) for biofuels in Brazilian conditions: a meta-analysis. Renew Sust Energ Rev 37:435–459CrossRefGoogle Scholar
  57. Romaní A, Yáñez R, Garrote G, Luis Alonso J (2008) SSF production of lactic acid from cellulosic biosludges. Bioresour Technol 99(10):4247–4254CrossRefPubMedGoogle Scholar
  58. Ruengruglikit C, Hang YD (2003) L(+)-lactic acid production from corncobs by Rhizopus oryzae NRRL-395. LWT Food Sci Technol 36(6):573–575CrossRefGoogle Scholar
  59. Saito K, Hasa Y, Abe H (2012) Production of lactic acid from xylose and wheat straw by Rhizopus oryzae. J Biosci Bioeng 114(2):166–169CrossRefPubMedGoogle Scholar
  60. Sarkar D, Datta R (2004) Arsenic fate and bioavailability in two soils contaminated with sodium arsenate pesticide: an incubation study. Bull Environ Contam Toxicol 72(2):240–247CrossRefPubMedGoogle Scholar
  61. Schaechter M (2009) Encyclopedia of microbiology. Academic PressCrossRefGoogle Scholar
  62. Skory CD (2000) Isolation and expression of lactate dehydrogenase genes from Rhizopus oryzae. Appl Environ Microbiol 66(6):2343–2348. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC110528/pdf/am002343.pdf CrossRefPubMedPubMedCentralGoogle Scholar
  63. Skory CD (2003) Lactic acid production by Saccharomyces cerevisiae expressing a Rhizopus oryzae lactate dehydrogenase gene. J Ind Microbiol Biotechnol 30(1):22–27. http://www.ncbi.nlm.nih.gov/pubmed/12545382 CrossRefPubMedGoogle Scholar
  64. Skory CD (2004) Lactic acid production by Rhizopus oryzae transformants with modified lactate dehydrogenase activity. Appl Microbiol Biotechnol 64(2):237–242CrossRefPubMedGoogle Scholar
  65. Takano M, Hoshino K (2016) Lactic acid production from paper sludge by SSF with thermotolerant Rhizopus sp. Bioresour Bioproces 3(1):29CrossRefGoogle Scholar
  66. Taskin M, Esim N, Ortucu S (2012) Efficient production of l-lactic acid from chicken feather protein hydrolysate and sugar beet molasses by the newly isolated Rhizopus oryzae TS-61. Food Bioprod Process 90(4):773–779CrossRefGoogle Scholar
  67. Thitiprasert S, Sooksai S, Thongchul N (2011) In vivo regulation of alcohol dehydrogenase and lactate dehydrogenase in Rhizopus oryzae to improve L-lactic acid fermentation. Appl Biochem Biotechnol 164(8):1305–1322CrossRefPubMedGoogle Scholar
  68. Turner TL, Zhang GC, Kim SR, Subramaniam V, Steffen D, Skory CD, Ji YJ, Byung Jo Y, Jin YS (2015) Lactic acid production from xylose by engineered Saccharomyces cerevisiae without PDC or ADH deletion. Appl Microbiol Biotechnol 99(19):8023–8033CrossRefPubMedGoogle Scholar
  69. Upadhyaya BP, DeVeaux LC, Christopher LP (2014) Metabolic engineering as a tool for enhanced lactic acid production. Trends Biotechnol 32:637–644CrossRefPubMedGoogle Scholar
  70. Varadarajan S, Miller DJ (1999) Catalytic upgrading of fermentation-derived organic acids. Biotechnol Prog 15(5):845–854CrossRefPubMedGoogle Scholar
  71. Vickroy TB (1985) Lactic acidGoogle Scholar
  72. Vodnar DC, Dulf FV, Pop OL, Socaciu C (2013) L (+)-lactic acid production by pellet-form Rhizopus oryzae NRRL 395 on biodiesel crude glycerol. Microb Cell Factories 12(1):92. http://www.microbialcellfactories.com/content/12/1/92 CrossRefGoogle Scholar
  73. Wang Y, Abdel-Rahman MA, Tashiro Y, Xiao Y, Zendo T, Sakai K, Sonomoto K (2014) L-(+)-lactic acid production by co-fermentation of cellobiose and xylose without carbon catabolite repression using enterococcus mundtii QU 25. RSC Adv 4(42):22013–22021. https://doi.org/10.1039/C4RA02764G CrossRefGoogle Scholar
  74. Wang Y, Chen C, Di C, Wang Z, Qin P, Tan T (2016) The optimization of l-lactic acid production from sweet sorghum juice by mixed fermentation of Bacillus coagulans and lactobacillus rhamnosus under unsterile conditions. Bioresour Technol 218:1098–1105CrossRefPubMedGoogle Scholar
  75. Wu X, Jiang S, Mo L, Pan L, Zheng Z, Luo S (2011) Production of L-lactic acid by Rhizopus oryzae using semicontinuous fermentation in bioreactor. J Ind Microbiol Biotechnol 38(4):565–571CrossRefPubMedGoogle Scholar
  76. Yamada R, Wakita K, Mitsui R, Ogino H (2017) Enhanced d-lactic acid production by recombinant Saccharomyces cerevisiae following optimization of the global metabolic pathway. Biotechnol Bioeng 114(9):2075–2084CrossRefPubMedGoogle Scholar
  77. Yang R (2017) Production of ethanol from Sudanese sugar cane molasses and evaluation of its quality. J Food Process Technol 3(7):3–5. http://www.omicsonline.org/2157-7110/2157-7110-3-163.digital/2157-7110-3-163.html CrossRefGoogle Scholar
  78. Yin P, Nishina N, Kosakai Y, Yahiro K, Park Y, Okabe M (1997) Enhanced production of L(+)-lactic acid from corn starch in a culture of Rhizopus oryzae using an air-lift bioreactor. J Ferment Bioeng 84(3):249–253CrossRefGoogle Scholar
  79. Yu MC, Wang RC, Wang CY, Duan KJ, Sheu DC (2007) Enhanced production of L(+)-lactic acid by floc-form culture of Rhizopus oryzae. J Chin Inst Chem Eng 38(3–4):223–228CrossRefGoogle Scholar
  80. Yun JS, Wee YJ, Ryu HW (2003) Production of optically pure L(+)-lactic acid from various carbohydrates by batch fermentation of enterococcus faecalis RKY1. Enzym Microb Technol 33:416–423CrossRefGoogle Scholar
  81. Zhang ZY, Jin B, Kelly JM (2007a) Production of lactic acid from renewable materials by Rhizopus Fungi. Biochem Eng J 35:251–263CrossRefGoogle Scholar
  82. Zhang ZY, Jin B, Kelly JM (2007b) Production of lactic acid and byproducts from waste potato starch by Rhizopus arrhizus: role of nitrogen sources. World J Microbiol Biotechnol 23(2):229–236CrossRefGoogle Scholar
  83. Zhang Y, Han B, Ezeji TC (2012) Biotransformation of furfural and 5-hydroxymethyl furfural (HMF) by Clostridium acetobutylicum ATCC 824 during butanol fermentation. New Biotechnol 29:345–351CrossRefGoogle Scholar
  84. Zhang L, Li X, Yong Q, Yang ST, Ouyang J, Yu S (2015) Simultaneous saccharification and fermentation of xylo-oligosaccharides manufacturing waste residue for l-lactic acid production by Rhizopus oryzae. Biochem Eng J 94:92–99CrossRefGoogle Scholar
  85. Zhang L, Li X, Yong Q, Yang S-T, Ouyang J, Yu S (2016) Impacts of lignocellulose-derived inhibitors on l-lactic acid fermentation by Rhizopus oryzae. Bioresour Technol 203(March):173–180CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Sheelendra M. Bhatt
    • 1
  1. 1.Sant Baba Bhag Singh UniversityJalandharIndia

Personalised recommendations