Role of Fungi in Biorefinery: A Perspective

  • Kanika Chowdhary
  • Usha Prasad
  • Satyawati Sharma
Part of the Fungal Biology book series (FUNGBIO)


Fossil fuels and petroleum that have driven the industrial development in the modern society for the last two centuries are on the verge of decline. The usage of renewable resources and green technologies will ensure the environmental sustainability in the long run. Biorefinery includes sustainable processing of biomass into a spectrum of marketable products and energy. The main driver for the establishment of biorefineries is the holistic environmental sustainability. Biorefinery integrates upstream, midstream and downstream processing of biomass into a range of value-added products. Industrially scaled up biorefineries are expected to contribute to an increased competitiveness and wealth of the countries by responding to the need for supplying a wide range of bio-based products and energy in an economically, socially and environmentally sustainable manner in future.

Fungi play an important role in addressing major global challenges. The shift from chemical processes to biological processing achieved by using fungal (and bacterial) enzymes in industries such as textiles, leather, paper and pulp has significantly reduced negative impact on the environment. Filamentous fungi (belonging to the ascomycetes, basidiomycetes and zygomycetes classes) are of great interest as biocatalysts in biorefineries as they naturally produce and secrete a variety of different organic acids that can be used as building blocks in the chemical industry. Fungal endophytes are also the storehouse of naturally occurring bioactive compounds which are not only useful to plants but also to humans. The chapter summarises the current status of work done in the area and the role of fungi/fungal endophytes in helping to resolve some of the problems relating to environment and sustainability. In particular, we examine the role of fungi in new microbial bioprocesses for applications in biorefineries.


Lignocellulosic biomass Endophytic fungi Lipids Extracellular enzymes Secondary metabolites 



Kanika Chowdhary would like to acknowledge the financial assistance provided by DST-NPDF scheme (Grant no. PDF/2016/000317) and CRDT, IIT Delhi for providing infrastructural support. Usha Prasad would like to acknowledge the grant of sabbatical leave to her parent institution, Gargi College, University of Delhi.


  1. Alrumman SA (2016) Enzymatic saccharification and fermentation of cellulosic date palm wastes to glucose and lactic acid. Brazilian J Microbiol 47(1):110–119CrossRefGoogle Scholar
  2. Anasontzis GE, Zerva A, Stathopoulou PM, Haralampidis K, Diallinas G, Karagouni AD et al (2011) Homologous overexpression of xylanase in Fusarium oxysporum increases ethanol productivity during consolidated bioprocessing (CBP) of lignocellulosics. J Biotechnol 152:16–23CrossRefPubMedGoogle Scholar
  3. Athalye SK, Garcia RA, Wen ZY (2009) Use of biodiesel-derived crude glycerol for producing Eicosapentaenoic Acid (EPA) by the fungus Pythium irregular. J Agric Food Chem 57:2739–2744CrossRefPubMedGoogle Scholar
  4. Batori V, Ferreira JA, Taherzadeh MJ, Lennartsson PR (2015) Ethanol and protein from ethanol plant by-products using edible fungi Neurospora intermedia and Aspergillus oryzae. Biomed Res Int 2015:10Google Scholar
  5. Bizukojc M, Pecyna (2011) Lovastatin and (+)‐geodin formation by Aspergillus terreus ATCC 20542 in a batch culture with the simultaneous use of lactose and glycerol as carbon sources. Eng Life Sci 11(3):272–282CrossRefGoogle Scholar
  6. Bonturi N, Matsakas L, Nilsson R, Christakopoulos P, Miranda EA, Berglund KA, Rova U (2015) Single cell oil producing yeasts Lipomyces starkeyi and Rhodosporidium toruloides: selection of extraction strategies and biodiesel property prediction. Energies 8(6):5040–5052CrossRefGoogle Scholar
  7. Castoldi R, Bracht A, de Morais GR, Baesso ML, Correa RCG, Peralta RA et al (2014) Biological pretreatment of Eucalyptus grandis sawdust with white-rot fungi: study of degradation patterns and saccharification kinetics. Chemical Engn J 258:240–246CrossRefGoogle Scholar
  8. Cha M, Chung D, Elkins JG, Guss AM, Westpheling J (2013) Metabolic engineering of Caldicellulosiruptor bescii yields increased hydrogen production from lignocellulosic biomass. Biotechnol Biofuels 6(1):85CrossRefPubMedPubMedCentralGoogle Scholar
  9. Christi Y (2003) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26(3):126–131CrossRefGoogle Scholar
  10. Christofoletti CA, Esher JP, Correia JE, Marinho JFU, Fontanetti CS (2013) Sugarcane vinasse: environmental implications of its use. Waste Manang 33:2753–2761Google Scholar
  11. Dias AA, Freitas GS, Marques GS, Sampaio A, Fraga IS, Rodrigues MA, Bezerra RM (2010) Enzymatic saccharification of biologically pre-treated wheat straw with white-rot fungi. Bioresour Technol 101(15):6045–6050CrossRefPubMedGoogle Scholar
  12. Dobson R, Gray V, Rumbold K (2012) Microbial utilization of crude glycerol for the production of value-added products. J Ind Microbiol Biotechnol 39:217–226. CrossRefPubMedGoogle Scholar
  13. Drozdzynska A, Leja K, Czaczyk K (2011) Biotechnological production of 1,3-propanediol from crude glycerol. J Biotechnol Comp Bio Bionanotechnol 92:92–100Google Scholar
  14. Dufosse L, Fouillaud M, Caro Y, Mapari SA, Sutthiwong N (2014) Filamentous fungi are large-scale producers of pigments and colorants for the food industry. Curr opinion biotechnol 26:56–61CrossRefGoogle Scholar
  15. El-Bondkly AM, El-Gendy MM (2012) Cellulase production from agricultural residues by recombinant fusant strain of a fungal endophyte of the marine sponge Latrunculia corticata for production of ethanol. Ant Van Leeu 101(2):331–346CrossRefGoogle Scholar
  16. Ferreira JA, Lennartsson PR, Taherzadeh MJ (2014) Production of ethanol and biomass from thin stillage using food-grade Zygomycetes and Ascomycetes filamentous fungi. Energies 7(6):3872–3885CrossRefGoogle Scholar
  17. Ferreira JA, Lennartsson PR, Taherzadeh MJ (2015) Production of ethanol and biomass from thin stillage by Neurospora intermedia: a pilot study for process diversification. Engn Life Sci 15(8):751–759CrossRefGoogle Scholar
  18. Fillat Ú, Martín-Sampedro R, Macaya-Sanz D, Martín JA, Ibarra D, Martínez MJ, Eugenio ME (2016) Screening of eucalyptus wood endophytes for laccase activity. Process Biochem 51(5):589–598CrossRefGoogle Scholar
  19. Fillat Ú, Martín-Sampedro R, Ibarra D, Macaya D, Martín JA, Eugenio ME (2017) Potential of the new endophytic fungus Hormonema sp. CECT-13092 for improving processes in lignocellulosic biorefineries: biofuel production and cellulosic pulp manufacture. J Chem Technol Biotechnol 92(5):997–1005CrossRefGoogle Scholar
  20. GAIN Report (2016) Number: IN6088- India Biofuels Annual-2016, Global Agricultural Information Network, USDA Foreign Agricultural ServiceGoogle Scholar
  21. Gianoulis TA, Griffin MA, Spakowicz DJ, Dunican BF, Sboner A, Sismour AM, Strobel SA (2012) Genomic analysis of the hydrocarbon-producing, cellulolytic, endophytic fungus Ascocoryne barcodes. Plops Genet 8(3):e1002558CrossRefGoogle Scholar
  22. Government of India. 2008. National Policy on Biofuels, Ministry of New & Renewable Energy. Government of IndiaGoogle Scholar
  23. Huber GW, Corma A (2007) Synergies between bio‐and oil refineries for the production of fuels from biomass. Angew Chem Int Edit 46(38):7184–7201CrossRefPubMedGoogle Scholar
  24. Kazda M, Langer S, Bengelsdorf FR (2014) Fungi open new possibilities for anaerobic fermentation of organic residues. Ener Sustainability Soc 4(1):6CrossRefGoogle Scholar
  25. Kunamneni A, Ballesteros A, Plou FJ, Alcalde M (2007) Fungal laccase – a versatile enzyme for biotechnological applications. In: Méndez-Vilas A (ed) Communicating current research and educational topics and trends in applied microbiology. Badajoz, Spain, pp 233–245Google Scholar
  26. Liu Y, Koh CMJ, Ji L (2011) Bioconversion of crude glycerol to glycolipids in Ustilagomaydis. Bioresour Technol 102:3927–3933CrossRefPubMedGoogle Scholar
  27. Mandels M, Reese ET (1957) Induction of cellulase in Trichoderma viride as influenced by carbon sources and metals. J Bacteriol 73(2):269–278PubMedPubMedCentralGoogle Scholar
  28. Martín-Sampedro R, Fillat Ú, Ibarra D, Eugenio ME (2015) Use of new endophytic fungi as pretreatment to enhance enzymatic saccharification of Eucalyptus globulus. Bioresour Technol l196:383–390CrossRefGoogle Scholar
  29. Mori T, Kako H, Sumiya T, Kawagishi H, Hirai H (2016) Direct lactic acid production from beech wood by transgenic white-rot fungus Phanerochaete sordida YK-624. J Biotechnol 239:83–89CrossRefPubMedGoogle Scholar
  30. Mrudula S, Murugammal R (2011) Production of cellulase by Aspergillus niger under submerged and solid state fermentation using coir waste as a substrate. Brazilian J Microbiol 42(3):1119–1127CrossRefGoogle Scholar
  31. Naik SN, Goud VV, Rout PK, Dalai AK (2010) Production of first and second generation biofuels: a comprehensive review. Renewable Sustainable Ener Rev 14(2):578–597CrossRefGoogle Scholar
  32. Nair RB, Taherzadeh MJ (2016) Valorization of sugar-to-ethanol process waste vinasse: a novel biorefinery approach using edible ascomycetes filamentous fungi. Bioresour Technol 221:469–476CrossRefPubMedGoogle Scholar
  33. Nitayavardhana S, Khanal SK (2010) Innovative biorefinery concept for sugar-based ethanol industries: production of protein-rich fungal biomass on vinasse as an aquaculture feed ingredient. Bioresour Technol 101(23):9078–9085CrossRefPubMedGoogle Scholar
  34. Nitayavardhana S, Khanal SK (2011) Biodiesel-derived crude glycerol bioconversion to animal feed: a sustainable option for a biodiesel refinery. Bioresour Technol 102(10):5808–5814CrossRefPubMedGoogle Scholar
  35. Nitayavardhana S, Issarapayup K, Pavasant P, Khanal SK (2013) Production of protein-rich fungal biomass in an airlift bioreactor using vinasse as substrate. Bioresour Technol 133:301–306CrossRefPubMedGoogle Scholar
  36. Nkemka VN, Gilroyed B, Yanke J, Gruninger R, Vedres D, McAllister T, Hao X (2015) Biooaugmentation with an anaerobic fungus in a two-stage process for biohydrogen and biogas production using corn silage and cattail. Bioresour Technol 185:79–88CrossRefPubMedGoogle Scholar
  37. Okano K, Tanaka T, Ogino C, Fukuda H, Kondo A (2010) Biotechnological production of enantiomeric pure lactic acid from renewable resources: recent achievements, perspectives, and limits. Appl Microbiol Biotechnol 85:413–423. CrossRefPubMedPubMedCentralGoogle Scholar
  38. Oliveira ACD, Fernandez ML, Mariano AB (2014) Production and characterization of an extracellular lipase from Candida guilliermondii. Brazilian J Microbiol 45(4):1503–1511CrossRefGoogle Scholar
  39. Pandey A, Höfer R, Taherzadeh M, Nampoothiri M, Larroche C (2015) Industrial biorefineries and white biotechnology. Elsevier, AmsterdamGoogle Scholar
  40. Papanikolaou S, Fakas S, Fick M, Chevalot I, Galiotou-Panayotou M, Komaitis M, Marc I, Aggelis G (2008) Biotechnological valorisation of raw glycerol discharged after bio-diesel (fatty acid methyl esters) manufacturing process: production of 1, 3-propanediol, citric acid and single cell oil. Biomass Bioenergy 32:60–71CrossRefGoogle Scholar
  41. Puranen T, Alapuranen M, Vehmaanperä J (2014) Trichoderma enzymes for textile industries. In: Gupta VK, Schmoll M, Herrera-Estrella A et al (eds) Biotechnology and biology of Trichoderma. Elsevier, Waltham, pp 351–362CrossRefGoogle Scholar
  42. Rossi M, Amaretti A, Raimondi S, Leonardi A (2011) Getting lipids for biodiesel production from oleaginous fungi. Biodiesel-Feedstocks Processing Technol 1:72–74Google Scholar
  43. Rymowicz W, Rywińska A, Marcinkiewicz M High-yield production of erythritol from raw glycerol in fed-batch cultures of Yarrowia lipolytica. Biotechnol Lett 2009, 2009(31):377–380CrossRefPubMedGoogle Scholar
  44. Saenge C, Cheirsilp B, Suksaroge TT, Bourtoom T (2011) Potential use of oleaginous red yeast Rhodotorula glutini for the bioconversion of crude glycerol from biodiesel plant to lipids and carotenoids. Process Biochem 46:210–218CrossRefGoogle Scholar
  45. Santos BSLD, Gomes AFS, Franciscon EG, Oliveira JMD, Baffi MA (2015) Thermotolerant and mesophylic fungi from sugarcane bagasse and their prospection for biomass-degrading enzyme production. Brazilian J Microbiol 46(3):903–910CrossRefGoogle Scholar
  46. Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–687CrossRefPubMedGoogle Scholar
  47. Schulz B, Römmert AK, Dammann U, Aust HJ, Strack D (1999) The endophyte host interactions: a balanced antagonism? Mycological Res 103:1275–1283CrossRefGoogle Scholar
  48. Shin SK, Hyeon JE, Kim YI, Kang DH, Kim SW, Park C, Han SO (2015) Enhanced hydrolysis of lignocellulosic biomass: Bi-functional enzyme complexes expressed in Pichia pastoris improve bioethanol production from Miscanthus sinensis. Biotechnol J10(12):1912–1919Google Scholar
  49. Silitonga AS, Masjuki HH, Mahlia TMI, Ong HC, Chong WT, Boosroh MH (2013) Overview properties of biodiesel diesel blends from edible and non-edible feedstock. Renew Sust Energ Rev 22:346–360CrossRefGoogle Scholar
  50. Silva da SS, Chandel AK, Wickramasinghe SR, Domínguez JM (2012) Fermentative production of value-added products from lignocellulosic biomass. BioMed Res Intern 826162:1–2Google Scholar
  51. Singh N, Mathur AS, Tuli DK, Gupta RP, Barrow CJ, Puri M (2017) Cellulosic ethanol production via consolidated bioprocessing by a novel thermophilic anaerobic bacterium isolated from a Himalayan hot spring. Biotechnol Biofuels 10(1):73CrossRefPubMedPubMedCentralGoogle Scholar
  52. Stajić M, Vukojević J, Milovanović I, Ćilerdžić J, Knežević A (2016) Role of mushroom Mn-oxidizing peroxidases in biomass conversion. In: Microbial enzymes in bioconversions of biomass. Springer International Publishing, Cham, pp 251–269Google Scholar
  53. Subhan M, Faryal R, Macreadie I (2016) Exploitation of Aspergillus terreus for the production of natural statins. J Fungi 2(2):13CrossRefGoogle Scholar
  54. Subhash GV, Mohan SV (2011) Biodiesel production from isolated oleaginous fungi Aspergillus sp. using corncob waste liquor as a substrate. Bioresour Technol 102(19):9286–9290CrossRefGoogle Scholar
  55. Tudorache M, Protesescu L, Coman S, Parvulescu VI (2012) Efficient bio-conversion of glycerol to glycerol carbonate catalyzed by lipase extracted from Aspergillus niger. Green Chem 14(2):478–482CrossRefGoogle Scholar
  56. Várnai A, Tang C, Bengtsson O, Atterton A, Mathiesen G, Eijsink VG (2014) Expression of endoglucanases in Pichia pastoris under control of the GAP promoter. Microb Cell Factories 13(1):57CrossRefGoogle Scholar
  57. Vasudevan P, Sharma S, Sharma VP and Verma M Editors: (2015) Women, technology and development. published by Narosa Publishers, Daryaganj, New DelhiGoogle Scholar
  58. Vodnar DC, Dulf FV, Pop OL, Socaciu C (2013) L (+)-lactic acid production by pellet-form Rhizopus oryzae NRRL 395 on biodiesel crude glycerol. Microb Cell Factories 12(1):92CrossRefGoogle Scholar
  59. Wang JW, Wu JH, Huang WY, Tan RX (2006) Laccase production by Monotospora sp., an endophytic fungus in Cynodon dactylon. Bioresour Technol 97(5):786–789CrossRefPubMedGoogle Scholar
  60. Wymelenberg AV, Minges P, Sabat G, Martinez D, Aerts A, Salamov A, Dosoretz C (2006) Computational analysis of the Phanerochaete chrysosporium v2. 0 genome database and mass spectrometry identification of peptides in ligninolytic cultures reveal complex mixtures of secreted proteins. Fungal Genetics Biol 43(5):343–356CrossRefGoogle Scholar
  61. Xu Q, Singh A, Himmel ME (2009) Perspectives and new directions for the production of bioethanol using consolidated bioprocessing of lignocellulose. Curr Opin Biotechnol 20:364–371CrossRefPubMedGoogle Scholar
  62. Yang F, Hanna MA, Sun R (2012) Value-added uses for crude glycerol-a byproduct of biodiesel production. Biotechnol Biofuels 5:13. CrossRefPubMedPubMedCentralGoogle Scholar
  63. Young R, Akhtar M (1997) Environmentally friendly Technologies for the Pulp and Paper Industry. Wiley, Hoboken, p 592Google Scholar
  64. Zamani A (2010) Superabsorbent polymers from the cell wall of zygomycetes fungi. Doctoral dissertation, Chalmers University of TechnologyGoogle Scholar
  65. Zeng W, Chen HZ (2009) Air pressure pulsation solid state fermentation of feruloyl esterase by Aspergillus niger. Bioresour Technol 100:1371–1375CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Kanika Chowdhary
    • 1
  • Usha Prasad
    • 2
  • Satyawati Sharma
    • 1
  1. 1.Centre for Rural Development and Technology, IIT-DelhiDelhiIndia
  2. 2.Gargi College, University of DelhiDelhiIndia

Personalised recommendations