Translation of CUD Therapeutics from Drug Discovery to the Clinic

  • Aidan J. HampsonEmail author
  • Robert L. Walsh


The first part of this chapter will outline the typical designs used in modern drug discovery programs, starting with initial hit discovery and leading up to the point that FDA permits “first-in-human” testing. It is intended that this outline will provide insight into the different skill sets and ways of thinking and working that are needed to bring a new medication to the clinic. The purpose is not only to provide basic scientists with a view from the “other side” but also to convey the complexities involved in drug development projects, as a way of explaining why it takes so long to get from initial discovery to clinical testing. Having covered some of the considerations of the drug development process, the second half of the chapter will discuss experimental approaches used to date to treat cannabis use disorder (CUD) as well as a brief history of cannabinoid pharmacology (and physiology). It is hoped that these factors may clarify where we have come from, why it has taken so long, and the direction forward.


Cannabis use disorder CUD Drug Master File Fatty acid amide hydrolase Good clinical practice (GCP) Good laboratory practice (GLP) Good manufacturing practice (GMP) Investigational new drug Monoacylglycerol lipase Negative allosteric modulator Biased agonist Drugability 


  1. 1.
    Levin FR, et al. Dronabinol for the treatment of cannabis dependence: a randomized, double-blind, placebo-controlled trial. Drug Alcohol Depend. 2011;116(1–3):142–50.CrossRefGoogle Scholar
  2. 2.
    Haney M, et al. Nabilone decreases marijuana withdrawal and a laboratory measure of marijuana relapse. Neuropsychopharmacology. 2013;38(8):1557–65.CrossRefGoogle Scholar
  3. 3.
    Oh DA, et al. Effect of food on the pharmacokinetics of dronabinol oral solution versus dronabinol capsules in healthy volunteers. Clin Pharmacol. 2017;9:9–17.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Tsvetanova NG, von Zastrow M. Spatial encoding of cyclic AMP signaling specificity by GPCR endocytosis. Nat Chem Biol. 2014;10(12):1061–5.CrossRefGoogle Scholar
  5. 5.
    Schuetz DA, de Witte WEA, Wong YC, Knasmueller B, Richter L, Kokh DB, Sadiq SK, Bosma R, Nederpelt I, Heitman LH, Segala E, Amaral M, Guo D, Andres D, Georgi V, Stoddart LA, Hill S, Cooke RM, De Graaf C, Leurs R, Frech M, Wade RC, de Lange ECM, IJzerman AP, Müller-Fahrnow A, Ecker GF. Kinetics for Drug Discovery: an industry-driven effort to target drug residence time. Drug Discov Today. 2017;22(6):896–9.CrossRefGoogle Scholar
  6. 6.
    Kenakin T. Signaling bias in drug discovery. Expert Opin Drug Discov. 2017;12(4):321–33.CrossRefGoogle Scholar
  7. 7.
    Masuho I, Ostrovskaya O, Kramer GM, Jones CD,Xie K, Martemyanov KA. Distinct profiles of functional discrimination among G proteins determine the actions of G protein-coupled receptors. 2015;8(405):ra123.CrossRefGoogle Scholar
  8. 8.
    Carr R, Schilling J, Song J, Carter RL, Du Y, Yoo SM, Traynham CJ, Koch WJ, Cheung JY, Tilley DG, Benovic JL. β-arrestin-biased signaling through the β2-adrenergic receptor promotes cardiomyocyte contraction. Proc Natl Acad Sci U S A. 2016;113(28):E4107–16.CrossRefGoogle Scholar
  9. 9.
    Schmid CL, et al. Bias factor and therapeutic window correlate to predict safer opioid analgesics. Cell. 2017;171(5):1165–1175.e13.CrossRefGoogle Scholar
  10. 10.
    Tseng AH, Craft RM. Sex differences in antinociceptive and motoric effects of cannabinoids. Eur J Pharmacol. 2001;430(1):41–7.CrossRefGoogle Scholar
  11. 11.
    Kleczkowska P, et al. Are alcohol anti-relapsing and alcohol withdrawal drugs useful in cannabinoid users? Neurotox Res. 2016;30(4):698–714.CrossRefGoogle Scholar
  12. 12.
    Haney M, et al. Naltrexone maintenance decreases Cannabis self-administration and subjective effects in daily Cannabis smokers. Neuropsychopharmacology. 2015;40(11):2489–98.CrossRefGoogle Scholar
  13. 13.
    Ramo DE, et al. Alcohol and drug use, pain and psychiatric symptoms among adults seeking outpatient psychiatric treatment: latent class patterns and relationship to health status. J Psychoactive Drugs. 2017:1–11.Google Scholar
  14. 14.
    Allsop DJ, et al. The Cannabis withdrawal scale development: patterns and predictors of cannabis withdrawal and distress. Drug Alcohol Depend. 2011;119(1–2):123–9.CrossRefGoogle Scholar
  15. 15.
    Marshall K, et al. Pharmacotherapies for cannabis dependence. Cochrane Database Syst Rev. 2014;12.
  16. 16.
    Sertuerner. Ueber das Morphium, eine neue salzfähige Grundlage, und dieMekonsäure, als Hauptbestandtheile des Opiums. Ann Phys. 1817;55:56–89.CrossRefGoogle Scholar
  17. 17.
    Hamilton GR, Baskett TF. In the arms of morpheus: the development of morphine for postoperative pain relief. Can J Anesth. 2000;47(4):367–74.CrossRefGoogle Scholar
  18. 18.
    Abel EL. The Hashish Club. In: Marihuana: the first twelve thousand years. Boston: Springer US; 1980. p. 148–70.CrossRefGoogle Scholar
  19. 19.
    Moreau JJ. Du Hachisch Et de L'Aliénation Mentale: Études Psychologiques. 1845: BiblioBazaar.Google Scholar
  20. 20.
    O’Shaughnessy WB. On the preparations of the Indian Hemp, or Gunjah: Cannabis Indica their effects on the animal system in health, and their utility in the treatment of tetanus and other convulsive diseases. Provincial Med J Retrospect Med Sci. 1843;5(123):363–9.Google Scholar
  21. 21.
    Gaoni Y, Mechoulam R. Isolation, structure, and partial synthesis of an active constituent of hashish. J Am Chem Soc. 1964;86(8):1646–7.CrossRefGoogle Scholar
  22. 22.
    Pert CB, Snyder SH. Opiate receptor: demonstration in nervous tissue. Science. 1973;179(4077):1011–4.CrossRefGoogle Scholar
  23. 23.
    Furchgott RF. Pharmacological characterization of receptors: its relation to radioligand-binding studies. Fed Proc. 1978;37(2):115–20.PubMedGoogle Scholar
  24. 24.
    Snyder SH, Pasternak GW. Historical review: opioid receptors. Trends Pharmacol Sci. 2003;24(4):198–205.CrossRefGoogle Scholar
  25. 25.
    Devane WA, et al. Determination and characterization of a cannabinoid receptor in rat brain. Mol Pharmacol. 1988;34(5):605–13.Google Scholar
  26. 26.
    Devane WA, et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science. 1992;258(5090):1946–9.CrossRefGoogle Scholar
  27. 27.
    Mechoulam R, et al. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol. 1995;50(1):83–90.CrossRefGoogle Scholar
  28. 28.
    Deutsch DG, Chin SA. Enzymatic synthesis and degradation of anandamide, a cannabinoid receptor agonist. Biochem Pharmacol. 1993;46(5):791–6.CrossRefGoogle Scholar
  29. 29.
    Rinaldi-Carmona M, et al. SR141716A, a potent and selective antagonist of the brain cannabinoid receptor. FEBS Lett. 1994;350(2–3):240–4.CrossRefGoogle Scholar
  30. 30.
    Tsou K, Patrick SL, Walker JM. Physical withdrawal in rats tolerant to delta 9-tetrahydrocannabinol precipitated by a cannabinoid receptor antagonist. Eur J Pharmacol. 1995;280(3):R13–5.CrossRefGoogle Scholar
  31. 31.
    Tanda G. Preclinical studies on the reinforcing effects of cannabinoids. A tribute to the scientific research of Dr. Steve Goldberg. Psychopharmacology. 2016;233(10):1845–66.CrossRefGoogle Scholar
  32. 32.
    Alger BE, Pitler TA. Retrograde signaling at GABAA-receptor synapses in the mammalian CNS. Trends Neurosci. 1995;18(8):333–40.CrossRefGoogle Scholar
  33. 33.
    Kano M. Control of synaptic function by endocannabinoid-mediated retrograde signaling. Proc Jpn Acad Ser B Phys Biol Sci. 2014;90(7):235–50.CrossRefGoogle Scholar
  34. 34.
    Ohno-Shosaku T, et al. Endocannabinoids and retrograde modulation of synaptic transmission. Neuroscientist. 2012;18(2):119–32.CrossRefGoogle Scholar
  35. 35.
    Castillo PE, et al. Endocannabinoid signaling and synaptic function. Neuron. 2012;76(1):70–81.CrossRefGoogle Scholar
  36. 36.
    Hillard CJ, Beatka M, Sarvaideo J. Endocannabinoid signaling and the hypothalamic-pituitary-adrenal axis. Compr Physiol. 2016;7(1):1–15.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Stern CAJ, et al. Effects of cannabinoid drugs on aversive or rewarding drug-associated memory extinction and reconsolidation. Neuroscience. 2017.Google Scholar
  38. 38.
    Katona I, Freund TF. Multiple functions of endocannabinoid signaling in the brain. Annu Rev Neurosci. 2012;35:529–58.CrossRefGoogle Scholar
  39. 39.
    Vallee M, et al. Pregnenolone can protect the brain from cannabis intoxication. Science. 2014;343(6166):94–8.CrossRefGoogle Scholar
  40. 40.
    Ford BM, et al. Characterization of structurally novel G protein biased CB1 agonists: Implications for drug development. Pharmacol Res. 2017;125(Pt B):161–77.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Division of Therapeutics and Medical ConsequencesNational Institute on Drug AbuseRockvilleUSA

Personalised recommendations