Advertisement

The Molecular Basis of Cannabinoid Activity: Application to Therapeutics Design and Discovery for Cannabis Use Disorders

  • David R. Janero
  • V. Kiran Vemuri
  • Alexandros MakriyannisEmail author
Chapter

Abstract

The endocannabinoid signaling system is a ubiquitous means of (sub) cellular information transduction. Investigation of the system’s molecular components and the biochemical processes they participate in was stimulated some 25 years ago by seminal evidence that Δ9-tetrahydrocannabinol (Δ9-THC), the principal psychoactive component of Cannabis sp., exerts its psychotropic effects mainly through engaging and activating a class-A (rhodopsin-like) G protein-coupled receptor (GPCR), cannabinoid receptor 1 (CB1R), in the central nervous system. Subsequent investigations have explored the mechanisms of action of other phytocannabinoids (e.g., cannabidiol) and the principal endogenous cannabinoid lipid transmitters in humans and other mammals [the endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG)], leading to the identification of an additional cannabinoid receptor [cannabinoid receptor 2 (CB2R)] and insight into the key physiological roles of the enzymes monoacylglycerol lipase (MGL) and fatty acid amide hydrolase (FAAH) in terminating, respectively, 2-AG and AEA signaling functions. The importance of the endocannabinoid system in regulating many biological processes has stimulated the design and synthesis of structurally diverse small molecules as candidate therapeutics targeted to CB1R, CB2R, MGL, or FAAH. Given the increasing prevalence of legalized social and medicinal cannabis use and the emergence of ultra-potent, synthetic cannabinoids as illicit “street drugs,” current medicinal chemistry efforts aim to address the public health problems presented by cannabis use disorders (CUDs), both acute (e.g., cannabis overdose) and chronic (i.e., addiction). Within this context, this review discusses various therapeutic modalities targeted to CB1R, CB2R, MGL, and FAAH and highlights their potential to yield CUD therapies. Intrinsic pharmacological properties of CB1R neutral antagonists and MGL and FAAH inhibitors are regarded as key to potentially safe and efficacious medications for treating acute cannabis toxicity and/or CUDs.

Keywords

Anandamide 2-Arachidonoylglycerol Cannabinoid receptor Monoacylglycerol lipase Fatty acid amide hydrolase 

Notes

Acknowledgment

We would like to thank the funding agencies, National Institute of Dugs Abuse, National Institute of Health, for supporting this work.

References

  1. 1.
    Makriyannis A. Trekking the cannabinoid road: a personal perspective. J Med Chem. 2014;57:3891–911.  https://doi.org/10.1021/jm500220s.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Janero DR, Vadivel SK, Makriyannis A. Pharmacotherapeutic modulation of the endocannabinoid signalling system in psychiatric disorders: drug-discovery strategies. Int Rev Psychiatry. 2009;21:122–33.  https://doi.org/10.1080/09540260902782778.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Ligresti A, De Petrocellis L, Di Marzo V. From phytocannabinoids to cannabinoid receptors and endocannabinoids: pleiotropic physiological and pathological roles through complex pharmacology. Physiol Rev. 2016;96:1593–15659.  https://doi.org/10.1152/physrev.00002.2016.CrossRefPubMedGoogle Scholar
  4. 4.
    Maccarrone M, Bab I, Bíró T, Cabral GA, Dey SK, Di Marzo V, Konje JC, Kunos G, Mechoulam R, Pacher P, Sharkey KA, Zimmer A. Endocannabinoid signaling at the periphery: 50 years after THC. Trends Pharmacol Sci. 2015;36:277–96.  https://doi.org/10.1016/j.tips.2015.02.008.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Mechoulam R, Hanuš LO, Pertwee R, Howlett AC. Early phytocannabinoid chemistry to endocannabinoids and beyond. Nat Rev Neurosci. 2014;15:757–64.  https://doi.org/10.1038/nrn3811.CrossRefPubMedGoogle Scholar
  6. 6.
    Devane WA, Dysarz FA, Johnson MR, Melvin LS, Howlett AC. Determination and characterization of a cannabinoid receptor in rat brain. Mol Pharmacol. 1988;34:605–13.Google Scholar
  7. 7.
    Pertwee RG, Howlett AC, Abood ME, Alexander SP, Di Marzo V, Elphick MR, Greasley PJ, Hansen HS, Kunos G, Mackie K, Mechoulam R, Ross RA. International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB1 and CB2. Pharmacol Rev. 2010;62:588–631.  https://doi.org/10.1124/pr.110.003004.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Volkow ND, Swanson JM, Evins AE, DeLisi LE, Meier MH, Gonzalez R, Bloomfield MA, Curran HV, Baler R. Effects of cannabis use on human behavior, including cognition, motivation, and psychosis: a review. JAMA Psychiat. 2016;73:292–7.  https://doi.org/10.1001/jamapsychiatry.2015.3278.CrossRefGoogle Scholar
  9. 9.
    Palermo G, Rothlisberger U, Cavalli A, De Vivo M. Computational insights into function and inhibition of fatty acid amide hydrolase. Eur J Med Chem. 2015;91:15–26.  https://doi.org/10.1016/j.ejmech.2014.09.037.CrossRefPubMedGoogle Scholar
  10. 10.
    Scalvini L, Piomelli D, Mor M. Monoglyceride lipase: structure and inhibitors. Chem Phys Lipids. 2016;197:13–24.  https://doi.org/10.1016/j.chemphyslip.2015.07.011.CrossRefPubMedGoogle Scholar
  11. 11.
    Janero DR, Makriyannis A. Terpenes and lipids of the endocannabinoid and transient-receptor-potential-channel biosignaling systems. ACS Chem Neurosci. 2014;5:1097–106.  https://doi.org/10.1021/cn5000875.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Wood JT, Williams JS, Pandarinathan L, Courville A, Keplinger MR, Janero DR, Vouros P, Makriyannis A, Lammi-Keefe CJ. Comprehensive profiling of the human circulating endocannabinoid metabolome: clinical sampling and sample storage parameters. Clin Chem Lab Med. 2008;46:1289–95.  https://doi.org/10.1515/CCLM.2008.242.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Wood JT, Williams JS, Pandarinathan L, Janero DR, Lammi-Keefe CJ, Makriyannis A. Dietary docosahexaenoic acid supplementation alters select physiological endocannabinoid-system metabolites in brain and plasma. J Lipid Res. 2010;51:1416–23.  https://doi.org/10.1194/jlr.M002436.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Leonard MZ, Alapafuja SO, Ji L, Shukla VG, Liu Y, Nikas SP, Makriyannis A, Bergman J, Kangas BD. Cannabinoid CB1 discrimination: effects of endocannabinoids and catabolic enzyme inhibitors. J Pharmacol Exp Ther. 2017;363:314–23.  https://doi.org/10.1124/jpet.117.244392.CrossRefPubMedGoogle Scholar
  15. 15.
    Savinainen JR, Saario SM, Laitinen JT. The serine hydrolases MAGL, ABHD6 and ABHD12 as guardians of 2-arachidonoylglycerol signalling through cannabinoid receptors. Acta Physiol. 2012;204:267–76.  https://doi.org/10.1111/j.1748-1716.2011.02280.x.CrossRefGoogle Scholar
  16. 16.
    Araque A, Castillo PE, Manzoni OJ, Tonini R. Synaptic functions of endocannabinoid signaling in health and disease. Neuropharmacology. 2017;124:13–24.  https://doi.org/10.1016/j.neuropharm.2017.06.017.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Lu Y, Anderson HD. Cannabinoid signaling in health and disease. Can J Physiol Pharmacol. 2017;95:311–27.  https://doi.org/10.1139/cjpp-2016-0346.CrossRefPubMedGoogle Scholar
  18. 18.
    Lau BK, Cota D, Cristino L, Borgland SL. Endocannabinoid modulation of homeostatic and non-homeostatic feeding circuits. Neuropharmacology. 2017;124:38–51.  https://doi.org/10.1016/j.neuropharm.2017.05.033.CrossRefPubMedGoogle Scholar
  19. 19.
    Lewis SE, Maccarrone M. Endocannabinoids, sperm biology and human fertility. Pharmacol Res. 2009;60:126–31.  https://doi.org/10.1016/j.phrs.2009.02.009.CrossRefPubMedGoogle Scholar
  20. 20.
    Dalton GD, Bass CE, Van Horn CG, Howlett AC. Signal transduction via cannabinoid receptors. CNS Neurol Disord Drug Targets. 2009;8:422–31.CrossRefGoogle Scholar
  21. 21.
    Blankman JL, Cravatt BF. Chemical probes of endocannabinoid metabolism. Pharmacol Rev. 2013;65:849–71.  https://doi.org/10.1124/pr.112.006387.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Fowler CJ. The potential of inhibitors of endocannabinoid metabolism for drug development: a critical review. Handb Exp Pharmacol. 2015;231:95–128.  https://doi.org/10.1007/978-3-319-20825-1_4.CrossRefPubMedGoogle Scholar
  23. 23.
    Hwang J, Adamson C, Butler D, Janero DR, Makriyannis A, Bahr BA. Enhancement of endocannabinoid signaling by fatty acid amide hydrolase inhibition: a neuroprotective therapeutic modality. Life Sci. 2010;86:615–23.  https://doi.org/10.1016/j.lfs.2009.06.003.CrossRefPubMedGoogle Scholar
  24. 24.
    Janero DR, Yaddanapudi S, Zvonok N, Subramanian KV, Shukla VG, Stahl E, Zhou L, Hurst D, Wager-Miller J, Bohn LM, Reggio PH, Mackie K, Makriyannis A. Molecular-interaction and signaling profiles of AM3677, a novel covalent agonist selective for the cannabinoid 1 receptor. ACS Chem Neurosci. 2015;19:1400–10.  https://doi.org/10.1021/acschemneuro.5b00090.CrossRefGoogle Scholar
  25. 25.
    Tuo W, Leleu-Chavain N, Spencer J, Sansook S, Millet R, Chavatte P. Therapeutic potential of fatty acid amide hydrolase, monoacylglycerol lipase, and N-acylethanolamine acid amidase inhibitors. J Med Chem. 2017;60:4–46.  https://doi.org/10.1021/acs.jmedchem.6b00538.CrossRefPubMedGoogle Scholar
  26. 26.
    Turner SE, Williams CM, Iversen L, Whalley BJ. Molecular pharmacology of phytocannabinoids. Prog Chem Org Nat Prod. 2017;103:61–101.  https://doi.org/10.1007/978-3-319-45541-9_3.CrossRefPubMedGoogle Scholar
  27. 27.
    Pertwee RG. The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: delta9-tetrahydrocannabinol, cannabidiol and delta9-tetrahydrocannabivarin. Br J Pharmacol. 2008;153:199–215.  https://doi.org/10.1038/sj.bjp.0707442.CrossRefPubMedGoogle Scholar
  28. 28.
    Vemuri VK, Makriyannis A. Medicinal chemistry of cannabinoids. Clin Pharmacol Ther. 2015;97:553–8.  https://doi.org/10.1002/cpt.115.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Pergolizzi JV Jr, Taylor R, LeQuang JA, Zampogna G, Raffa RB. Concise review of the management of iatrogenic emesis using cannabinoids: emphasis on nabilone for chemotherapy-induced nausea and vomiting. Cancer Chemother Pharmacol. 2017;79:467–77.  https://doi.org/10.1007/s00280-017-3257-1.CrossRefPubMedGoogle Scholar
  30. 30.
    Badowski ME, Perez SE. Clinical utility of dronabinol in the treatment of weight loss associated with HIV and AIDS. HIV AIDS. 2016;8:37–45.  https://doi.org/10.2147/HIV.S81420.CrossRefGoogle Scholar
  31. 31.
    Keating GM. Delta-9-tetrahydrocannabinol/cannabidiol oromucosal spray (Sativex®): a review in multiple sclerosis-related spasticity. Drugs. 2017;77:563–74.  https://doi.org/10.1007/s40265-017-0720-6.CrossRefPubMedGoogle Scholar
  32. 32.
    O’Connell BK, Gloss D, Devinsky O. Cannabinoids in treatment-resistant epilepsy: a review. Epilepsy Behav. 2017;70:341–8.  https://doi.org/10.1016/j.yebeh.2016.11.012.CrossRefGoogle Scholar
  33. 33.
    Krcevski-Skvarc N, Wells C, Häuser W. Availability and approval of cannabis-based medicines for chronic pain management and palliative/supportive care in Europe: a survey of the status in the chapters of the European pain federation. Eur J Pain. 2017;22:440.  https://doi.org/10.1002/ejp.1147.CrossRefPubMedGoogle Scholar
  34. 34.
    Brents LK, Zimmerman SM, Saffell AR, Prather PL, Fantegrossi WE. Differential drug–drug interactions of the synthetic cannabinoids JWH-018 and JWH-073: implications for drug abuse liability and pain therapy. J Pharmacol Exp Ther. 2013;346:350–61.  https://doi.org/10.1124/jpet.113.206003.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Mills B, Yepes A, Nugent K. Synthetic cannabinoids. Am J Med Sci. 2015;350:59–62.  https://doi.org/10.1097/MAJ.0000000000000466.CrossRefPubMedGoogle Scholar
  36. 36.
    Van Amsterdam J, Brunt T, Van den Brink W. The adverse health effects of synthetic cannabinoids with emphasis on psychosis-like effects. J Psychopharmacol. 2015;29:254–63.  https://doi.org/10.1177/0269881114565142.CrossRefPubMedGoogle Scholar
  37. 37.
    Weinstein AM, Rosca P, Fattore L, London ED. Synthetic cathinone and cannabinoid designer drugs pose a major risk for public health. Front Psych. 2017;8:156.  https://doi.org/10.3389/fpsyt.2017.00156.CrossRefGoogle Scholar
  38. 38.
    Han S, Thatte J, Buzard DJ, Jones RM. Therapeutic utility of cannabinoid receptor type 2 (CB(2)) selective agonists. J Med Chem. 2013;56:8224–856.  https://doi.org/10.1021/jm4005626.CrossRefPubMedGoogle Scholar
  39. 39.
    Ibrahim MM, Deng H, Zvonok A, Cockayne DA, Kwan J, Mata HP, Vanderah TW, Lai J, Porreca F, Makriyannis A, Malan TP Jr. Activation of CB2 cannabinoid receptors by AM1241 inhibits experimental neuropathic pain: pain inhibition by receptors not present in the CNS. Proc Natl Acad Sci U S A. 2003;100:10529–33.  https://doi.org/10.1073/pnas.1834309100.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Wilkerson JL, Gentry KR, Dengler EC, Wallace JA, Kerwin AA, Armijo LM, Kuhn MN, Thakur GA, Makriyannis A, Milligan ED. Intrathecal cannabilactone CB(2)R agonist, AM1710, controls pathological pain and restores basal cytokine levels. Pain. 2012;153:1091–106.  https://doi.org/10.1016/j.pain.2012.02.015.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Dhopeshwarkar A, Murataeva N, Makriyannis A, Straiker A, Mackie K. Two Janus cannabinoids that are both CB2 agonists and CB1 antagonists. J Pharmacol Exp Ther. 2017;360:300–11.  https://doi.org/10.1124/jpet.116.236539.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Ostenfeld T, Price J, Albanese M, Bullman J, Guillard F, Meyer I, Leeson R, Costantin C, Ziviani L, Nocini PF, Milleri S. A randomized, controlled study to investigate the analgesic efficacy of single doses of the cannabinoid receptor-2 agonist GW842166, ibuprofen or placebo in patients with acute pain following third molar tooth extraction. Clin J Pain. 2011;27:668–76.  https://doi.org/10.1097/AJP.0b013e318219799a.CrossRefPubMedGoogle Scholar
  43. 43.
    Spinelli F, Mu L, Ametamey SM. Radioligands for positron emission tomography imaging of cannabinoid type 2 receptor. J Label Compd Radiopharm. 2017;61:299.  https://doi.org/10.1002/jlcr.3579.CrossRefGoogle Scholar
  44. 44.
    Xie S, Furjanic MA, Ferrara JJ, McAndrew NR, Ardino EL, Ngondara A, Bernstein Y, Thomas KJ, Kim E, Walker JM, Nagar S, Ward SJ, Raffa RB. The endocannabinoid system and rimonabant: a new drug with a novel mechanism of action involving cannabinoid CB1 receptor antagonism--or inverse agonism--as potential obesity treatment and other therapeutic use. J Clin Pharm Ther. 2007;32:209–31.  https://doi.org/10.1111/j.1365-2710.2007.00817.x.CrossRefPubMedGoogle Scholar
  45. 45.
    Janero DR, Makriyannis A. Cannabinoid receptor antagonists: pharmacological opportunities, clinical experience, and translational prognosis. Expert Opin Emerg Drugs. 2009;14:43–65.  https://doi.org/10.1517/14728210902736568.CrossRefPubMedGoogle Scholar
  46. 46.
    Gatley SJ, Lan R, Volkow ND, Pappas N, King P, Wong CT, Gifford AN, Pyatt B, Dewey SL, Makriyannis A. Imaging the brain marijuana receptor: development of a radioligand that binds to cannabinoid CB1 receptors in vivo. J Neurochem. 1998;70:417–23.CrossRefGoogle Scholar
  47. 47.
    Janero DR. Cannabinoid-1 receptor (CB1R) blockers as medicines: beyond obesity and cardiometabolic disorders to substance abuse/drug addiction with CB1R neutral antagonists. Expert Opin Emerg Drugs. 2012;17:17–29.  https://doi.org/10.1517/14728214.2012.660916.CrossRefPubMedGoogle Scholar
  48. 48.
    Sink KS, Segovia KN, Collins LE, Markus EJ, Vemuri VK, Makriyannis A, Salamone JD. The CB1 inverse agonist AM251, but not the CB1 antagonist AM4113, enhances retention of contextual fear conditioning in rats. Pharmacol Biochem Behav. 2010;95:479–84.  https://doi.org/10.1016/j.pbb.2010.03.011.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Janero DR, Lindsley L, Vemuri VK, Makriyannis A. Cannabinoid 1 G protein-coupled receptor (periphero-)neutral antagonists: emerging therapeutics for treating obesity-driven metabolic disease and reducing cardiovascular risk. Expert Opin Drug Discov. 2011;6(10):995–1025.  https://doi.org/10.1517/17460441.2011.608063.CrossRefPubMedGoogle Scholar
  50. 50.
    Kunos G, Tam J. The case for peripheral CB1 receptor blockade in the treatment of visceral obesity and its cardiometabolic complications. Br J Pharmacol. 2011;163:1423–31.  https://doi.org/10.1111/j.1476-5381.2011.01352.x.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Tam J, Vemuri VK, Liu J, Bátkai S, Mukhopadhyay B, Godlewski G, Osei-Hyiaman D, Ohnuma S, Ambudkar SV, Pickel J, Makriyannis A, Kunos G. Peripheral CB1 cannabinoid receptor blockade improves cardiometabolic risk in mouse models of obesity. J Clin Investig. 2010;120:2953–66.  https://doi.org/10.1172/JCI42551.CrossRefPubMedGoogle Scholar
  52. 52.
    Chambers AP, Vemuri VK, Peng Y, Wood JT, Olszewska T, Pittman QJ, Makriyannis A, Sharkey KA. A neutral CB1 receptor antagonist reduces weight gain in rat. Am J Physiol Regul Integr Comp Physiol. 2007;293:R2185–93.  https://doi.org/10.1152/ajpregu.00663.2007.CrossRefPubMedGoogle Scholar
  53. 53.
    Cabral GA, Raborn ES, Griffin L, Dennis J, Marciano-Cabral F. CB2 receptors in the brain: role in central immune function. Br J Pharmacol. 2008;153:240–51.CrossRefGoogle Scholar
  54. 54.
    Lunn CA, Fine J, Rojas-Triana A, Jackson JV, Lavey B, Kozlowski JA, Hipkin RW, Lundell DJ, Bober L. Cannabinoid CB(2)-selective inverse agonist protects against antigen-induced bone loss. Immunopharmacol Immunotoxicol. 2007;29:387–401.CrossRefGoogle Scholar
  55. 55.
    Mallipeddi S, Kreimer S, Zvonok N, Vemuri K, Karger BL, Ivanov AR, Makriyannis A. Binding site characterization of AM1336, a novel covalent inverse agonist at human cannabinoid 2 receptor, using mass spectrometric analysis. J Proteome Res. 2017;16:2419–28.  https://doi.org/10.1021/acs.jproteome.7b00023.CrossRefPubMedGoogle Scholar
  56. 56.
    Ligresti A, Cascio MG, Pryce G, Kulasegram S, Beletskaya I, De Petrocellis L, Saha B, Mahadevan A, Visintin C, Wiley JL, Baker D, Martin BR, Razdan RK, Di Marzo V. New potent and selective inhibitors of anandamide reuptake with antispastic activity in a mouse model of multiple sclerosis. Br J Pharmacol. 2006;147:83–91.  https://doi.org/10.1038/sj.bjp.0706418.CrossRefPubMedGoogle Scholar
  57. 57.
    Alapafuja SO, Nikas SP, Bharathan IT, Shukla VG, Nasr ML, Bowman AL, Zvonok N, Li J, Shi X, Engen JR, Makriyannis A. Sulfonyl fluoride inhibitors of fatty acid amide hydrolase. J Med Chem. 2012;55:10074–89.  https://doi.org/10.1021/jm301205j.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Fegley D, Gaetani S, Duranti A, Tontini A, Mor M, Tarzia G, Piomelli D. Characterization of the fatty acid amide hydrolase inhibitor cyclohexyl carbamic acid 3′-carbamoyl-biphenyl-3-yl ester (URB597): effects on anandamide and oleoylethanolamide deactivation. J Pharmacol Exp Ther. 2005;313:352–8.  https://doi.org/10.1124/jpet.104.078980.CrossRefPubMedGoogle Scholar
  59. 59.
    Bashashati M, Storr MA, Nikas SP, Wood JT, Godlewski G, Liu J, Ho W, Keenan CM, Zhang H, Alapafuja SO, Cravatt BF, Lutz B, Mackie K, Kunos G, Patel KD, Makriyannis A, Davison JS, Sharkey KA. Inhibiting fatty acid amide hydrolase normalizes endotoxin-induced enhanced gastrointestinal motility in mice. Br J Pharmacol. 2012;165:1556–71.  https://doi.org/10.1111/j.1476-5381.2011.01644.x.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Huggins JP, Smart TS, Langman S, Taylor L, Young T. An efficient randomised, placebo-controlled clinical trial with the irreversible fatty acid amide hydrolase-1 inhibitor PF-04457845, which modulates endocannabinoids but fails to induce effective analgesia in patients with pain due to osteoarthritis of the knee. Pain. 2012;153:1837–46.  https://doi.org/10.1016/j.pain.2012.04.020.CrossRefPubMedGoogle Scholar
  61. 61.
    Owens RA, Mustafa MA, Ignatowska-Jankowska BM, Damaj MI, Beardsley PM, Wiley JL, Niphakis MJ, Cravatt BF, Lichtman AH. Inhibition of the endocannabinoid-regulating enzyme monoacylglycerol lipase elicits a CB1 receptor-mediated discriminative stimulus in mice. Neuropharmacology. 2017;125:80–6.  https://doi.org/10.1016/j.neuropharm.2017.06.032.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Panlilio LV, Thorndike EB, Nikas SP, Alapafuja SO, Bandiera T, Cravatt BF, Makriyannis A, Piomelli D, Goldberg SR, Justinova Z. Effects of fatty acid amide hydrolase (FAAH) inhibitors on working memory in rats. Psychopharmacology. 2016b;233:1879–88.  https://doi.org/10.1007/s00213-015-4140-6.CrossRefPubMedGoogle Scholar
  63. 63.
    Schlosburg JE, Kinsey SG, Ignatowska-Jankowska B, Ramesh D, Abdullah RA, Tao Q, Booker L, Long JZ, Selley DE, Cravatt BF, Lichtman AH. Prolonged monoacylglycerol lipase blockade causes equivalent cannabinoid receptor type 1 receptor-mediated adaptations in fatty acid amide hydrolase wild-type and knockout mice. J Pharmacol Exp Ther. 2014;350:196–204.  https://doi.org/10.1124/jpet.114.212753.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Karageorgos I, Zvonok N, Janero DR, Vemuri VK, Shukla V, Wales TE, Engen JR, Makriyannis A. Endocannabinoid enzyme engineering: soluble human thio-monoacylglycerol lipase (sol-S-hMGL). ACS Chem Neurosci. 2012;3:393–9.  https://doi.org/10.1021/cn3000263.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Beltramo M, Stella N, Calignano A, Lin SY, Makriyannis A, Piomelli D. Functional role of high-affinity anandamide transport, as revealed by selective inhibition. Science. 1997;277:1094–7.CrossRefGoogle Scholar
  66. 66.
    Muramatsu S, Shiraishi S, Miyano K, Sudo Y, Toda A, Mogi M, Hara M, Yokoyama A, Kawasaki Y, Taniguchi M, Uezono Y. Metabolism of AM404 from acetaminophen at human therapeutic dosages in the rat brain. Anesth Pain Med. 2016;6:e32873.  https://doi.org/10.5812/aapm.32873.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Scherma M, Justinová Z, Zanettini C, Panlilio LV, Mascia P, Fadda P, Fratta W, Makriyannis A, Vadivel SK, Gamaleddin I, Le Foll B, Goldberg SR. The anandamide transport inhibitor AM404 reduces the rewarding effects of nicotine and nicotine-induced dopamine elevations in the nucleus accumbens shell in rats. Br J Pharmacol. 2012;165:2539–48.  https://doi.org/10.1111/j.1476-5381.2011.01467.x.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Balter RE, Cooper ZD, Haney M. Novel pharmacological approaches to treating cannabis use disorder. Curr Addict Rep. 2014;1:137–43.  https://doi.org/10.1007/s-40429-014-0011-1.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Brezing CA, Levin FR. The current state of pharmacological treatments for cannabis use disorder and withdrawal. Neuropsychopharmacology. 2017;43:173.  https://doi.org/10.1038/npp.2017.212.CrossRefPubMedGoogle Scholar
  70. 70.
    Panlilio LV, Goldberg SR, Justinova Z. Cannabinoid abuse and addiction: clinical and preclinical findings. Clin Pharmacol Ther. 2015;97:616–27.  https://doi.org/10.1002/cpt.118.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Panlilio LV, Justinova Z. Preclinical studies of cannabinoid reward, treatments for cannabis use disorder, and addiction-related effects of cannabinoid exposure. Neuropsychopharmacology. 2017;43:116.  https://doi.org/10.1038/npp.2017.193.CrossRefPubMedGoogle Scholar
  72. 72.
    Panlilio LV, Justinova Z, Trigo JM, Le Foll B. Screening medications for the treatment of cannabis use disorder. Int Rev Neurobiol. 2016a;126:87–120.  https://doi.org/10.1016/bs.irn.2016.02.005.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Buu A, Hu YH, Pampati S, Arterberry BJ, Lin HC. Predictive validity of cannabis consumption measures: results from a national longitudinal study. Addict Behav. 2017;73:36–40.  https://doi.org/10.1016/j.addbeh.2017.04.014.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Moss HB, Chen CM, Yi HY. Measures of substance consumption among substance users, DSM-IV abusers, and those with DSM-IV dependence disorders in a nationally representative sample. J Stud Alcohol Drugs. 2012;73:820–8.CrossRefGoogle Scholar
  75. 75.
    Sloan ME, Gowin JL, Ramchandani VA, Hurd YL, Le Foll B. The endocannabinoid system as a target for addiction treatment: trials and tribulations. Neuropharmacology. 2017;124:73–83.  https://doi.org/10.1016/j.neuropharm.2017.05.031.CrossRefPubMedGoogle Scholar
  76. 76.
    Borodovsky JT, Budney AJ. Legal cannabis laws, home cultivation, and use of edible cannabis products: a growing relationship? Int J Drug Policy. 2017;50:102–10.  https://doi.org/10.1016/j.drugpo.2017.09.014.CrossRefPubMedGoogle Scholar
  77. 77.
    Compton WM, Volkow ND, Lopez MF. Medical marijuana laws and cannabis use: intersections of health and policy. JAMA Psychiat. 2017;74:559–60.  https://doi.org/10.1001/jamapsychiatry.2017.0723.CrossRefGoogle Scholar
  78. 78.
    Levine A, Clemenza K, Rynn M, Lieberman J. Evidence for the risks and consequences of adolescent cannabis exposure. J Am Acad Child Adolesc Psychiatry. 2017;56:214–25.  https://doi.org/10.1016/j.jaac.CrossRefPubMedGoogle Scholar
  79. 79.
    Potera C. Kids and marijuana edibles: worrisome trend emerges. Am J Nurs. 2015;115:15.  https://doi.org/10.1097/01.NAJ.0000471234.77585.9e.CrossRefPubMedGoogle Scholar
  80. 80.
    Richards JR, Smith NE, Moulin AK. Unintentional cannabis ingestion in children: a systematic review. J Pediatr. 2017;190:142–52.  https://doi.org/10.1016/j.jpeds.2017.07.005.CrossRefPubMedGoogle Scholar
  81. 81.
    Simpson AK, Magid V. Cannabis use disorder in adolescence. Child Adolesc Psychiatr Clin N Am. 2016;25:431–43.  https://doi.org/10.1016/j.chc.2016.03.003.CrossRefPubMedGoogle Scholar
  82. 82.
    Cao D, Srisuma S, Bronstein AC, Hoyte CO. Characterization of edible marijuana product exposures reported to United States poison centers. Clin Toxicol. 2016;54:840–6.  https://doi.org/10.1080/15563650.2016.1209761.CrossRefGoogle Scholar
  83. 83.
    Lavi E, Rekhtman D, Berkun Y, Wexler I. Sudden onset unexplained encephalopathy in infants: think of cannabis intoxication. Eur J Pediatr. 2016;175:417–20.  https://doi.org/10.1007/s00431-015-2639-9.CrossRefPubMedGoogle Scholar
  84. 84.
    Volkow ND, Baler RD, Compton WM, Weiss SR. Adverse health effects of marijuana use. N Engl J Med. 2014;370:2219–27.  https://doi.org/10.1056/NEJMra1402309.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Wolff V, Jouanjus E. Strokes are possible complications of cannabinoids use. Epilepsy Behav. 2017;70:355–63.  https://doi.org/10.1016/j.yebeh.2017.01.031.CrossRefPubMedGoogle Scholar
  86. 86.
    ElSohly MA, Mehmedic Z, Foster S, Gon C, Chandra S, Church JC. Changes in cannabis potency over the last 2 decades (1995-2014): analysis of current data in the United States. Biol Psychiatry. 2016;79:613–9.  https://doi.org/10.1016/j.biopsych.2016.01.004.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Hall W, Lynskey M. Evaluating the public health impacts of legalizing recreational cannabis use in the United States. Addiction. 2016;111:1764–73.  https://doi.org/10.1111/add.13428.CrossRefPubMedGoogle Scholar
  88. 88.
    Pryce G, Baker D. Antidote to cannabinoid intoxication: the CB1 receptor inverse agonist, AM251, reverses hypothermic effects of the CB1 receptor agonist, CB-13, in mice. Br J Pharmacol. 2017;174:3790–4.  https://doi.org/10.1111/bph.13973.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Brusberg M, Arvidsson S, Kang D, Larsson H, Lindström E, Martinez V. CB1 receptors mediate the analgesic effects of cannabinoids on colorectal distension-induced visceral pain in rodents. 2009;29(5):1554–64.  https://doi.org/10.1523/JNEUROSCI.5166-08.2009.CrossRefGoogle Scholar
  90. 90.
    Davidson C, Opacka-Juffry J, Arevalo-Martin A, Garcia-Ovejero D, Molina-Holgado E, Molina-Holgado F. Spicing up pharmacology: a review of synthetic cannabinoids from structure to adverse events. Adv Pharmacol. 2017;80:135–68.  https://doi.org/10.1016/bs.apha.2017.05.001.CrossRefPubMedGoogle Scholar
  91. 91.
    Gueye AB, Pryslawsky Y, Trigo JM, Poulia N, Delis F, Antoniou K, Loureiro M, Laviolette SR, Vemuri K, Makriyannis A, Le Foll B. The CB1 neutral antagonist AM4113 retains the therapeutic efficacy of the inverse agonist rimonabant for nicotine dependence and weight loss with better psychiatric tolerability. Int J Neuropsychopharmacol. 2016;19:pii: pyw068.  https://doi.org/10.1093/ijnp/pyw068.CrossRefGoogle Scholar
  92. 92.
    Volkow ND, Morales M. The brain on drugs: from reward to addiction. Cell. 2015;162:712–25.  https://doi.org/10.1016/j.cell.2015.07.046.CrossRefPubMedGoogle Scholar
  93. 93.
    Klein JW. Pharmacotherapy for substance use disorders. Med Clin N Am. 2016;100:891–910.  https://doi.org/10.1016/j.mcna.2016.03.011.CrossRefPubMedGoogle Scholar
  94. 94.
    Hill KP, Palastro MD, Gruber SA, Fitzmaurice GM, Greenfield SF, Lukas SE, Weiss RD. Nabilone pharmacotherapy for cannabis dependence: a randomized, controlled pilot study. Am J Addict. 2017;26:795.  https://doi.org/10.1111/ajad.12622.CrossRefPubMedGoogle Scholar
  95. 95.
    Haney M, Hart CL, Vosburg SK, Nasser J, Bennett A, Zubaran C, Foltin RW. Marijuana withdrawal in humans: effects of oral THC or divalproex. Neuropsychopharmacology. 2004;29:158–70.  https://doi.org/10.1038/sj.npp.1300310.CrossRefPubMedGoogle Scholar
  96. 96.
    Levin FR, Mariani JJ, Brooks DJ, Pavlicova M, Cheng W, Nunes EV. Dronabinol for the treatment of cannabis dependence: a randomized, double-blind, placebo-controlled trial. Drug Alcohol Depend. 2011;116:142–50.  https://doi.org/10.1016/j.drugalcdep.2010.12.010.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Gorelick DA, Goodwin RS, Schwilke E, Schwope DM, Darwin WD, Kelly DL, RP MM, Liu F, Ortemann-Renon C, Bonnet D, Huestis MA. Antagonist-elicited cannabis withdrawal in humans. J Clin Psychopharmacol. 2011;31:603–12.  https://doi.org/10.1097/JCP.0b013e31822befc1.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Justinova Z, Munzar P, Panlilio LV, Yasar S, Redhi GH, Tanda G, Goldberg SR. Blockade of THC-seeking behavior and relapse in monkeys by the cannabinoid CB(1)-receptor antagonist rimonabant. Neuropsychopharmacology. 2008;33:2870–7.  https://doi.org/10.1038/npp.2008.21.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    McDonald R, Campbell ND, Strang J. Twenty years of take-home naloxone for the prevention of overdose deaths from heroin and other opioids-- conception and maturation. Drug Alcohol Depend. 2017;178:176–87.  https://doi.org/10.1016/j.drugalcdep.2017.05.001.CrossRefPubMedGoogle Scholar
  100. 100.
    Sharma MK, Murumkar PR, Barmade MA, Giridhar R, Yadav MR. A comprehensive patents review on cannabinoid 1 receptor antagonists as antiobesity agents. Expert Opin Ther Pat. 2015;25:1093–116.  https://doi.org/10.1517/13543776.2015.1064898.CrossRefPubMedGoogle Scholar
  101. 101.
    Cahill K, Stevens S, Perera R, Lancaster T. Pharmacological interventions for smoking cessation: an overview and network meta-analysis. Cochrane Database Syst Rev. 2013;5:CD009329.  https://doi.org/10.1002/14651858.CD009329.pub2.CrossRefGoogle Scholar
  102. 102.
    Gamaleddin IH, Trigo JM, Gueye AB, Zvonok A, Makriyannis A, Goldberg SR, Le Foll B. Role of the endogenous cannabinoid system in nicotine addiction: novel insights. Front Psych. 2015;6:41.  https://doi.org/10.3389/fpsyt.2015.00041.CrossRefGoogle Scholar
  103. 103.
    Huestis MA, Boyd SJ, Heishman SJ, Preston KL, Bonnet D, Le Fur G, Gorelick DA. Single and multiple doses of rimonabant antagonize acute effects of smoked cannabis in male cannabis users. Psychopharmacology. 2007;194:505–15.  https://doi.org/10.1007/s00213-007-0861-5.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Huestis MA, Gorelick DA, Heishman SJ, Preston KL, Nelson RA, Moolchan ET, Frank RA. Blockade of effects of smoked marijuana by the CB1-selective cannabinoid receptor antagonist SR141716. Arch Gen Psychiatry. 2001;58:322–8.CrossRefGoogle Scholar
  105. 105.
    Haney M, Bedi G, Cooper ZD, Glass A, Vosburg SK, Comer SD, Foltin RW. Predictors of marijuana relapse in the human laboratory: robust impact of tobacco cigarette smoking status. Biol Psychiatry. 2013;73:242–8.  https://doi.org/10.1016/j.biopsych.2012.07.028.CrossRefPubMedGoogle Scholar
  106. 106.
    Schindler CW, Redhi GH, Vemuri K, Makriyannis A, Le Foll B, Bergman J, Goldberg SR, Justinova Z. Blockade of nicotine and cannabinoid reinforcement and relapse by a cannabinoid CB1-receptor neutral antagonist AM4113 and inverse agonist rimonabant in squirrel monkeys. Neuropsychopharmacology. 2016;41:2283–93.  https://doi.org/10.1038/npp.2016.27.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • David R. Janero
    • 1
  • V. Kiran Vemuri
    • 1
  • Alexandros Makriyannis
    • 1
    Email author
  1. 1.Center for Drug Discovery and Departments of Pharmaceutical Sciences and Chemistry and Chemical Biology, Northeastern UniversityBostonUSA

Personalised recommendations