Advertisement

The Endogenous Cannabinoid System: A Cadre of Potential Therapeutic Targets

  • Steven G. KinseyEmail author
  • Aron H. Lichtman
Chapter

Abstract

Cannabis and its extracts have been used for its medicinal and recreational properties since antiquity, yet the dependence liability of this drug has only recently gained general acceptance. The systematic study of the biological systems underlying the effects of these drugs has contributed to a tremendous wealth of knowledge in understanding not only the molecular basis of the pharmacological effects of cannabis but also led to the identification of the endogenous cannabinoid system. In this chapter, we introduce this system, including the key cannabinoid receptors, endocannabinoids that bind and activate these receptors, and the biosynthetic and catabolic enzymes that regulate the endogenous ligands. We emphasize pharmacological strategies to target key components of the endogenous cannabinoid system that hold promise for treating cannabis use disorder.

Keywords

2-Arachidonoylglycerol (2-AG) Cannabinoid receptor-1 (CB1) Endogenous cannabinoid (endocannabinoid) system Fatty acid amide hydrolase (FAAH) Monoacylglycerol lipase (MAGL) N-Arachidonoylethanolamine (anandamide) 

References

  1. 1.
    Ahn K, Johnson DS, Mileni M, Beidler D, Long JZ, McKinney MK, et al. Discovery and characterization of a highly selective FAAH inhibitor that reduces inflammatory pain. Chem Biol. 2009;16:411–20.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Alger BE, Kim J. Supply and demand for endocannabinoids. Trends Neurosci. 2011;34:304–15.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    American Psychiatric Association. Diagnostic and statistical manual of mental disorders. Washington, DC: American Psychiatric Association; 2013.CrossRefGoogle Scholar
  4. 4.
    Bauer M, Chicca A, Tamborrini M, Eisen D, Lerner R, Lutz B, et al. Identification and quantification of a new family of peptide endocannabinoids (Pepcans) showing negative allosteric modulation at CB1 receptors. J Biol Chem. 2012;287:36944–67.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Bisogno T, Howell F, Williams G, Minassi A, Cascio MG, Ligresti A, et al. Cloning of the first sn1-DAG lipases points to the spatial and temporal regulation of endocannabinoid signaling in the brain. J Cell Biol. 2003;163:463–8.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Blankman JL, Cravatt BF. Chemical probes of endocannabinoid metabolism. Pharmacol Rev. 2013;65:849–71.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Blankman JL, Simon GM, Cravatt BF. A comprehensive profile of brain enzymes that hydrolyze the endocannabinoid 2-arachidonoylglycerol. Chem Biol. 2007;14:1347–56.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Bouaboula M, Hilairet S, Marchand J, Fajas L, Le Fur G, Casellas P. Anandamide induced PPARgamma transcriptional activation and 3T3-L1 preadipocyte differentiation. Eur J Pharmacol. 2005;517:174–81.PubMedCrossRefGoogle Scholar
  9. 9.
    Brents LK, Reichard EE, Zimmerman SM, Moran JH, Fantegrossi WE, Prather PL. Phase I hydroxylated metabolites of the K2 synthetic cannabinoid JWH-018 retain in vitro and in vivo cannabinoid 1 receptor affinity and activity. PLoS One. 2011;6:1–9.CrossRefGoogle Scholar
  10. 10.
    Cabral GA, Raborn ES, Griffin L, Dennis J, Marciano-Cabral F. CB2 receptors in the brain: role in central immune function. Br J Pharmacol. 2008;153:240–51.PubMedCrossRefGoogle Scholar
  11. 11.
    Carey LM, Slivicki RA, Leishman E, Cornett B, Mackie K, Bradshaw H, et al. A pro-nociceptive phenotype unmasked in mice lacking fatty-acid amide hydrolase. Mol Pain. 2016;12:174480691664919.CrossRefGoogle Scholar
  12. 12.
    Carlini EA, Leite JR, Tannhauser M, Berardi AC. Letter: Cannabidiol and Cannabis sativa extract protect mice and rats against convulsive agents. J Pharm Pharmacol. 1973;25:664–5.PubMedCrossRefGoogle Scholar
  13. 13.
    Carlini EA, Mechoulam R, Lander N. Anticonvulsant activity of four oxygenated cannabidiol derivatives. Res Commun Chem Pathol Pharmacol. 1975;12:1–15.PubMedGoogle Scholar
  14. 14.
    Consroe P, Benedito MA, Leite JR, Carlini EA, Mechoulam R. Effects of cannabidiol on behavioral seizures caused by convulsant drugs or current in mice. Eur J Pharmacol. 1982;83:293–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Consroe P, Wolkin A. Cannabidiol–antiepileptic drug comparisons and interactions in experimentally induced seizures in rats. J Pharmacol Exp Ther. 1977;201:26–32.PubMedGoogle Scholar
  16. 16.
    Cravatt BF, Demarest K, Patricelli MP, Bracey MH, Giang DK, Martin BR, et al. Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase. Proc Natl Acad Sci. 2001;98:9371–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Cravatt BF, Giang DK, Mayfield SP, Boger DL, Lerner RA, Gilula NB. Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature. 1996a;384:83–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Cravatt BF, Giang DK, Mayfield SP, Boger DL, Lerner RA, Gilula NB. Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature. 1996b;384:83–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Cravatt BF, Prospero-Garcia O, Siuzdak G, Gilula NB, Henriksen SJ, Boger DL, et al. Chemical characterization of a family of brain lipids that induce sleep. Science. 1995;268:1506–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Cunha JM, Carlini EA, Pereira AE, Ramos OL, Pimentel C, Gagliardi R, et al. Chronic administration of cannabidiol to healthy volunteers and epileptic patients. Pharmacology. 1980;21:175–85.PubMedCrossRefGoogle Scholar
  21. 21.
    Devane WA, Dysarz FA, Johnson MR, Melvin LS, Howlett AC. Determination and characterization of a cannabinoid receptor in rat brain. Mol Pharmacol. 1988;34:605–13.Google Scholar
  22. 22.
    Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson L a, Griffin G, et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science. 1992;258:1946–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Devinsky O, Cross JH, Laux L, Marsh E, Miller I, Nabbout R, et al. Trial of Cannabidiol for drug-resistant seizures in the Dravet syndrome. N Engl J Med. 2017;376:2011–20.PubMedCrossRefGoogle Scholar
  24. 24.
    Dinh TP, Carpenter D, Leslie FM, Freund TF, Katona I, Sensi SL, et al. Brain monoglyceride lipase participating in endocannabinoid inactivation. Proc Natl Acad Sci U S A. 2002;99:10819–24.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Donvito G, Nass SR, Wilkerson JL, Curry ZA, Schurman LD, Kinsey SG, et al. The endogenous cannabinoid system: a budding source of targets for treating inflammatory and neuropathic pain. Neuropsychopharmacology. 2017;43:52–79.PubMedCrossRefGoogle Scholar
  26. 26.
    ElSohly MA, Radwan MM, Gul W, Chandra S, Galal A. Phytochemistry of Cannabis sativa L. Prog Chem Org Nat Prod. 2017;103:1–36.PubMedCrossRefGoogle Scholar
  27. 27.
    Falenski KW, Thorpe AJ, Schlosburg JE, Cravatt BF, Abdullah RA, Smith TH, et al. FAAH−/− mice display differential tolerance, dependence, and cannabinoid receptor adaptation after Δ9-tetrahydrocannabinol and anandamide administration. Neuropsychopharmacology. 2010;35:1775–87.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Farquhar-Smith WP, Egertová M, Bradbury EJ, McMahon SB, Rice AS, Elphick MR. Cannabinoid CB(1) receptor expression in rat spinal cord. Mol Cell Neurosci. 2000;15:510–21.PubMedCrossRefGoogle Scholar
  29. 29.
    Ford BM, Tai S, Fantegrossi WE, Prather PL. Synthetic pot: not your grandfather’s Marijuana. Trends Pharmacol Sci. 2017;38:257–76.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Gao Y, Vasilyev DV, Goncalves MB, Howell FV, Hobbs C, Reisenberg M, et al. Loss of retrograde endocannabinoid signaling and reduced adult neurogenesis in diacylglycerol lipase knock-out mice. J Neurosci. 2010;30:2017–24.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Gaoni Y, Mechoulam R. Isolation, structure, and partial synthesis of an active constituent of hashish. J Am Chem Soc. 1964;86:1646–7.CrossRefGoogle Scholar
  32. 32.
    García-Gutiérrez MS, Pérez-Ortiz JM, Gutiérrez-Adán A, Manzanares J. Depression-resistant endophenotype in mice overexpressing cannabinoid CB(2) receptors. Br J Pharmacol. 2010;160:1773–84.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Gatley SJ, Gifford AN, Volkow ND, Lan R, Makriyannis A. 123I-labeled AM251: a radioiodinated ligand which binds in vivo to mouse brain cannabinoid CB1 receptors. Eur J Pharmacol. 1996;307:331–8.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Gatta L, Piscitelli F, Giordano C, Boccella S, Lichtman A, Maione S, et al. Discovery of Prostamide F2α and its role in inflammatory pain and dorsal horn nociceptive neuron hyperexcitability. PLoS One. 2012;7:e31111.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Gillespie, N.A., Lichtman, A., and Kendler, K.S. (2013). Chapter 51 –The genetics of Cannabis use and Cannabis use disorders. San Diego: Academic Press.Google Scholar
  36. 36.
    Glass M, Dragunow M, Faull RL. Cannabinoid receptors in the human brain: a detailed anatomical and quantitative autoradiographic study in the fetal, neonatal and adult human brain. Neuroscience. 1997;77:299–318.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Gomes I, Grushko JS, Golebiewska U, Hoogendoorn S, Gupta A, Heimann AS, et al. Novel endogenous peptide agonists of cannabinoid receptors. FASEB J. 2009;23:3020–9.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Greig IR, Baillie GL, Abdelrahman M, Trembleau L, Ross RA. Development of indole sulfonamides as cannabinoid receptor negative allosteric modulators. Bioorg Med Chem Lett. 2016;26:4403–7.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Haney M, Cooper ZD, Bedi G, Vosburg SK, Comer SD, Foltin RW. Nabilone decreases marijuana withdrawal and a laboratory measure of marijuana relapse. Neuropsychopharmacology. 2013;38:1557–65.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Haney M, Hart CL, Vosburg SK, Comer SD, Reed SC, Foltin RW. Effects of THC and lofexidine in a human laboratory model of marijuana withdrawal and relapse. Psychopharmacology. 2008;197:157–68.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Hanus L, Abu-Lafi S, Fride E, Breuer A, Vogel Z, Shalev DE, et al. 2-arachidonyl glyceryl ether, an endogenous agonist of the cannabinoid CB1 receptor. Proc Natl Acad Sci U S A. 2001;98:3662–5.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Hanus L, Breuer A, Tchilibon S, Shiloah S, Goldenberg D, Horowitz M, et al. HU-308: a specific agonist for CB(2), a peripheral cannabinoid receptor. Proc Natl Acad Sci U S A. 1999;96:14228–33.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Herkenham M, Lynn AB, Johnson MR, Melvin LS, de Costa BR, Rice KC. Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci. 1991;11:563–83.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Hermanson DJ, Hartley ND, Gamble-George J, Brown N, Shonesy BC, Kingsley PJ, et al. Substrate-selective COX-2 inhibition decreases anxiety via endocannabinoid activation. Nat Neurosci. 2013;16:1291–8.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Hill MN, McLaughlin RJ, Pan B, Fitzgerald ML, Roberts CJ, Lee TT-Y, et al. Recruitment of prefrontal cortical endocannabinoid signaling by glucocorticoids contributes to termination of the stress response. J Neurosci. 2011;31:10506–15.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Hohmann AG, Herkenham M. Localization of central cannabinoid CB1 receptor messenger RNA in neuronal subpopulations of rat dorsal root ganglia: a double-label in situ hybridization study. Neuroscience. 1999;90:923–31.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Howlett AC, Johnson MR, Melvin LS, Milne GM. Nonclassical cannabinoid analgetics inhibit adenylate cyclase: development of a cannabinoid receptor model. Mol Pharmacol. 1988;33:297–302.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Huang SM, Bisogno T, Trevisani M, Al-Hayani A, De Petrocellis L, Fezza F, et al. An endogenous capsaicin-like substance with high potency at recombinant and native vanilloid VR1 receptors. Proc Natl Acad Sci U S A. 2002;99:8400–5.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Ibrahim MM, Deng H, Zvonok A, Cockayne DA, Kwan J, Mata HP, et al. Activation of CB2 cannabinoid receptors by AM1241 inhibits experimental neuropathic pain: pain inhibition by receptors not present in the CNS. Proc Natl Acad Sci. 2003;100:10529–33.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Ignatowska-Jankowska BM, Baillie GL, Kinsey S, Crowe MS, Ghosh S, Allen Owens R, et al. A cannabinoid CB1 receptor positive allosteric modulator reduces neuropathic pain in the mouse with no psychoactive effects. Neuropsychopharmacology. 2015;40:1–12.CrossRefGoogle Scholar
  51. 51.
    Kaplan JS, Stella N, Catterall WA, Westenbroek RE. Cannabidiol attenuates seizures and social deficits in a mouse model of Dravet syndrome. Proc Natl Acad Sci U S A. 2017;114:11229–34.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Khurana L, Mackie K, Piomelli D, Kendall DA. Modulation of CB1 cannabinoid receptor by allosteric ligands: pharmacology and therapeutic opportunities. Neuropharmacology. 2017;124:3–12.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    King KM, Myers AM, Soroka-Monzo AJ, Tuma RF, Tallarida RJ, Walker EA, et al. Single and combined effects of Δ(9) -tetrahydrocannabinol and cannabidiol in a mouse model of chemotherapy-induced neuropathic pain. Br J Pharmacol. 2017;174:2832–41.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Kinsey SG, Mahadevan A, Zhao B, Sun H, Naidu PS, Razdan RK, et al. The CB2 cannabinoid receptor-selective agonist O-3223 reduces pain and inflammation without apparent cannabinoid behavioral effects. Neuropharmacology. 2011;60:244–51.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Kinsey SGG, Wise LEE, Ramesh D, Abdullah R, Selley DEE, Cravatt BFF, et al. Repeated low-dose administration of the monoacylglycerol lipase Inhibitor JZL184 retains cannabinoid receptor type 1-mediated antinociceptive and gastroprotective effects. J Pharmacol Exp Ther. 2013;345:492–501.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Laprairie RB, Bagher AM, Kelly MEM, Denovan-Wright EM. Cannabidiol is a negative allosteric modulator of the cannabinoid CB 1 receptor. Br J Pharmacol. 2015;172:4790–805.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Laprairie RB, Kulkarni PM, Deschamps JR, Kelly MEM, Janero DR, Cascio MG, et al. Enantiospecific allosteric modulation of cannabinoid 1 receptor. ACS Chem Neurosci. 2017;8:1188–203.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Ledent C, Valverde O, Cossu G, Petitet F, Aubert JF, Beslot F, et al. Unresponsiveness to cannabinoids and reduced addictive effects of opiates in CB1 receptor knockout mice. Science. 1999;283:401–4.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Lee JLC, Bertoglio LJ, Guimarães FS, Stevenson CW. Cannabidiol regulation of emotion and emotional memory processing: relevance for treating anxiety-related and substance abuse disorders. Br J Pharmacol. 2017;174:3242–56.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Lehmann C, Fisher NB, Tugwell B, Szczesniak A, Kelly M, Zhou J. Experimental cannabidiol treatment reduces early pancreatic inflammation in type 1 diabetes. Clin Hemorheol Microcirc. 2016;64:655–62.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Little PJ, Compton DR, Johnson MR, Melvin LS, Martin BR. Pharmacology and stereoselectivity of structurally novel cannabinoids in mice. J Pharmacol Exp Ther. 1988;247:1046–51.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Lodzki M, Godin B, Rakou L, Mechoulam R, Gallily R, Touitou E. Cannabidiol-transdermal delivery and anti-inflammatory effect in a murine model. J Control Release. 2003;93:377–87.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Long JZ, Nomura DK, Vann RE, Walentiny DM, Booker L, Jin X, et al. Dual blockade of FAAH and MAGL identifies behavioral processes regulated by endocannabinoid crosstalk in vivo. Proc Natl Acad Sci. 2009a;106:20270–5.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Long JZJZ, Li W, Booker L, Burston JJJJ, Kinsey SGSG, Schlosburg JEJE, et al. Selective blockade of 2-arachidonoylglycerol hydrolysis produces cannabinoid behavioral effects. Nat Chem Biol. 2009b;5:37–44.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Maldonado R, Berrendero F, Ozaita A, Robledo P. Neurochemical basis of cannabis addiction. Neuroscience. 2011;181:1–17.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Malfait AM, Gallily R, Sumariwalla PF, Malik AS, Andreakos E, Mechoulam R, et al. The nonpsychoactive cannabis constituent cannabidiol is an oral anti-arthritic therapeutic in murine collagen-induced arthritis. Proc Natl Acad Sci U S A. 2000;97:9561–6.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Martin BR, Compton DR, Thomas BF, Prescott WR, Little PJ, Razdan RK, et al. Behavioral, biochemical, amd molecular modeling evaluations of cannabinoid analogs. Pharmacol Biochem Behav. 1991;40:471–8.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Marusich JA, Wiley JL, Lefever TW, Patel PR, Thomas BF. Finding order in chemical chaos – continuing characterization of synthetic cannabinoid receptor agonists. Neuropharmacology. 2017;134:73–81.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Di Marzo V, Melck D, Bisogno T, De Petrocellis L. Endocannabinoids: endogenous cannabinoid receptor ligands with neuromodulatory action. Trends Neurosci. 1998;21:521–8.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature. 1990;436:561–4.CrossRefGoogle Scholar
  71. 71.
    McLaughlin RJ, Hill MN, Dang SS, Wainwright SR, Galea LAM, Hillard CJ, et al. Upregulation of CB1 receptor binding in the ventromedial prefrontal cortex promotes proactive stress-coping strategies following chronic stress exposure. Behav Brain Res. 2013;237:333–7.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Mechoulam R, Ben-Shabat S, Hanus L, Ligumsky M, Kaminski NE, Schatz AR, et al. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol. 1995;50:83–90.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Mechoulam R, Parker LA. The endocannabinoid system and the brain. Annu Rev Psychol. 2013;64:21–47.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Mechoulam R, Shvo Y. Hashish. I. The structure of cannabidiol. Tetrahedron. 1963;19:2073–8.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Munro S, Thomas KL, Abu-Shaar M. Molecular characterization of a peripheral receptor for cannabinoids. Nature. 1993;365:61–5.CrossRefGoogle Scholar
  76. 76.
    Nomura DK, Morrison BE, Blankman JL, Long JZ, Kinsey SG, Marcondes MCG, et al. Endocannabinoid hydrolysis generates brain prostaglandins that promote neuroinflammation. Science (80-.). 2011;334:809–13.CrossRefGoogle Scholar
  77. 77.
    Pamplona FA, Ferreira J, Menezes de Lima O, Duarte FS, Bento AF, Forner S, et al. Anti-inflammatory lipoxin A4 is an endogenous allosteric enhancer of CB1 cannabinoid receptor. Proc Natl Acad Sci U S A. 2012;109:21134–9.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Patel S, Hill MN, Cheer JF, Wotjak CT, Holmes A. The endocannabinoid system as a target for novel anxiolytic drugs. Neurosci Biobehav Rev. 2017;76:56–66.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Patel S, Roelke CT, Rademacher DJ, Hillard CJ. Inhibition of restraint stress-induced neural and behavioural activation by endogenous cannabinoid signalling. Eur J Neurosci. 2005;21:1057–69.CrossRefGoogle Scholar
  80. 80.
    Perez-Reyes M, Wingfield M. Letter: Cannabidiol and electroencephalographic epileptic activity. JAMA. 1974;230:1635.PubMedCrossRefGoogle Scholar
  81. 81.
    Pertwee R, Griffin G, Fernando S, Li X, Hill A, Makriyannis A. AM630, a competitive cannabinoid receptor antagonist. Life Sci. 1995;56:1949–55.PubMedCrossRefGoogle Scholar
  82. 82.
    Piomelli D, Haney M, Budney AJ, Piazza PV. Legal or illegal, Cannabis is still addictive. Cannabis Cannabinoid Res. 2016;1:47–53.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Piomelli D, Hohmann AG, Seybold V, Hammock BD. A lipid gate for the peripheral control of pain. J Neurosci. 2014;34:15184–91.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Porter AC, Sauer J-M, Knierman MD, Becker GW, Berna MJ, Bao J, et al. Characterization of a novel endocannabinoid, virodhamine, with antagonist activity at the CB1 receptor. J Pharmacol Exp Ther. 2002;301:1020–4.PubMedCrossRefGoogle Scholar
  85. 85.
    Price MR, Baillie GL, Thomas A, Stevenson LA, Easson M, Goodwin R, et al. Allosteric modulation of the cannabinoid CB1 receptor. Mol Pharmacol. 2005;68:1484–95.PubMedCrossRefGoogle Scholar
  86. 86.
    Rademacher DJ, Meier SE, Shi L, Ho W-SV, Jarrahian A, Hillard CJ. Effects of acute and repeated restraint stress on endocannabinoid content in the amygdala, ventral striatum, and medial prefrontal cortex in mice. Neuropharmacology. 2008;54:108–16.PubMedCrossRefGoogle Scholar
  87. 87.
    Rinaldi-Carmona M, Barth F, Héaulme M, Shire D, Calandra B, Congy C, et al. SR141716A, a potent and selective antagonist of the brain cannabinoid receptor. FEBS Lett. 1994;350:240–4.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Rinaldi-Carmona M, Barth F, Millan J, Derocq JM, Casellas P, Congy C, et al. SR 144528, the first potent and selective antagonist of the CB2 cannabinoid receptor. J Pharmacol Exp Ther. 1998;284:644–50.PubMedGoogle Scholar
  89. 89.
    Roberts CJ, Stuhr KL, Hutz MJ, Raff H, and Hillard CJ. Endocannabinoid signaling in hypothalamic-pituitary-adrenocortical axis recovery following stress: effects of indirect agonists and comparison of male and female mice. Pharmacol Biochem Behav. 2014;117:17–24.CrossRefGoogle Scholar
  90. 90.
    Robson PJ. Therapeutic potential of cannabinoid medicines. Drug Test Anal. 2014;6:24–30.PubMedCrossRefGoogle Scholar
  91. 91.
    Rodriguez de Fonseca F. Activation of corticotropin-releasing factor in the limbic system during cannabinoid withdrawal. Science (80-.). 1997;276:2050–4.CrossRefGoogle Scholar
  92. 92.
    Schlosburg JE, Carlson BLA, Ramesh D, Abdullah RA, Long JZ, Cravatt BF, et al. Inhibitors of endocannabinoid-metabolizing enzymes reduce precipitated withdrawal responses in THC-dependent mice. AAPS J. 2009;11:342–52.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Schlosburg JE, Blankman JL, Long JZ, Nomura DK, Pan B, Kinsey SG, et al. Chronic monoacylglycerol lipase blockade causes functional antagonism of the endocannabinoid system. Nat Neurosci. 2010;13:1113–9.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Showalter VM, Compton DR, Martin BR, Abood ME. Evaluation of binding in a transfected cell line expressing a peripheral cannabinoid receptor (CB2): identification of cannabinoid receptor subtype selective ligands. J Pharmacol Exp Ther. 1996;278:989–99.PubMedGoogle Scholar
  95. 95.
    Van Sickle MD, Duncan M, Kingsley PJ, Mouihate A, Urbani P, Mackie K, et al. Identification and functional characterization of brainstem cannabinoid CB2 receptors. Science. 2005;310:329–32.PubMedCrossRefGoogle Scholar
  96. 96.
    Slivicki RA, Xu Z, Kulkarni PM, Pertwee RG, Mackie K, Thakur GA, et al. Positive allosteric modulation of cannabinoid receptor type 1 suppresses pathological pain without producing tolerance or dependence. Biol Psychiatry. 2017 (in Press). https://doi.org/10.1016/j.biopsych.2017.06.032.PubMedCrossRefGoogle Scholar
  97. 97.
    Sugiura T, Kondo S, Sukagawa A, Nakane S, Shinoda A, Itoh K, et al. 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem Biophys Res Commun. 1995;215:89–97.PubMedCrossRefGoogle Scholar
  98. 98.
    Tanimura A, Yamazaki M, Hashimotodani Y, Uchigashima M, Kawata S, Abe M, et al. The endocannabinoid 2-arachidonoylglycerol produced by diacylglycerol lipase alpha mediates retrograde suppression of synaptic transmission. Neuron. 2010;65:320–7.PubMedCrossRefGoogle Scholar
  99. 99.
    Thiele EA, Marsh ED, French JA, Mazurkiewicz-Beldzinska M, Benbadis SR, Joshi C, et al. Cannabidiol in patients with seizures associated with Lennox-Gastaut syndrome (GWPCARE4): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet (London, England). 2018;391:1085.CrossRefGoogle Scholar
  100. 100.
    Trigo JM, Lagzdins D, Rehm J, Selby P, Gamaleddin I, Fischer B, et al. Effects of fixed or self-titrated dosages of Sativex on cannabis withdrawal and cravings. Drug Alcohol Depend. 2016a;161:298–306.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Trigo JM, Soliman A, Quilty LC, Fischer B, Rehm J, Selby P, et al. Nabiximols combined with motivational enhancement/cognitive behavioral therapy for the treatment of cannabis dependence: a pilot randomized clinical trial. PLoS One. 2018;13:e0190768.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Trigo JM, Soliman A, Staios G, Quilty L, Fischer B, George TP, et al. Sativex associated with behavioral-relapse prevention strategy as treatment for Cannabis dependence: a case series. J Addict Med. 2016b;10:274–9.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Tsou K, Brown S, Sañudo-Peña MC, Mackie K, Walker JM. Immunohistochemical distribution of cannabinoid CB1 receptors in the rat central nervous system. Neuroscience. 1998;83:393–411.PubMedCrossRefGoogle Scholar
  104. 104.
    Vallée M, Vitiello S, Bellocchio L, Hébert-Chatelain E, Monlezun S, Martin-Garcia E, et al. Pregnenolone can protect the brain from cannabis intoxication. Science. 2014;343:94–8.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Verme JL, Fu J, Astarita G, La Rana G, Russo R, Calignano A, et al. The nuclear receptor peroxisome proliferator-activated receptor-mediates the anti-inflammatory actions of palmitoylethanolamide. Mol Pharmacol. 2005;67:15–9.PubMedCrossRefGoogle Scholar
  106. 106.
    Ward SJ, McAllister SD, Kawamura R, Murase R, Neelakantan H, Walker EA. Cannabidiol inhibits paclitaxel-induced neuropathic pain through 5-HT 1A receptors without diminishing nervous system function or chemotherapy efficacy. Br J Pharmacol. 2014;171:636–45.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Wiley JL, Marusich JA, Thomas BF. Combination chemistry: structure-activity relationships of novel psychoactive cannabinoids. Curr Top Behav Neurosci. 2017;32:231–48.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Wilson DM, Varvel SA, Harloe JP, Martin BR, Lichtman AH. SR 141716 (Rimonabant) precipitates withdrawal in marijuana-dependent mice. Pharmacol Biochem Behav. 2006;85:105–13.PubMedCrossRefGoogle Scholar
  109. 109.
    Wise LE, Varvel SA, Selley DE, Wiebelhaus JM, Long KA, Middleton LS, et al. Delta(9)-tetrahydrocannabinol-dependent mice undergoing withdrawal display impaired spatial memory. Psychopharmacology. 2011;217:485–94.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Woodhams SG, Chapman V, Finn DP, Hohmann AG, Neugebauer V. The cannabinoid system and pain. Neuropharmacology. 2017;124:105–20.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Woodward DF, Liang Y, Krauss AH-P. Prostamides (prostaglandin-ethanolamides) and their pharmacology. Br J Pharmacol. 2008;153:410–9.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Xi Z-X, Peng X-Q, Li X, Song R, Zhang H-Y, Liu Q-R, et al. Brain cannabinoid CB2 receptors modulate cocaine’s actions in mice. Nat Neurosci. 2011;14:1160–6.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Zhang J, Hoffert C, Vu HK, Groblewski T, Ahmad S, O’Donnell D. Induction of CB2 receptor expression in the rat spinal cord of neuropathic but not inflammatory chronic pain models. Eur J Neurosci. 2003;17:2750–4.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Zimmer A, Zimmer AM, Hohmann AG, Herkenham M, Bonner TI. Increased mortality, hypoactivity, and hypoalgesia in cannabinoid CB1 receptor knockout mice. Proc Natl Acad Sci U S A. 1999;96:5780–5.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Zygmunt PM, Petersson J, Andersson DA, Chuang H, Sørgård M, Di Marzo V, et al. Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature. 1999;400:452–7.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of PsychologyWest Virginia UniversityMorgantownUSA
  2. 2.Department of Pharmacology and Toxicology and Department of Medicinal ChemistryVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations