Nanopackaging pp 805-822 | Cite as

Characterization of Electronic, Electrical, Optical, and Mechanical Properties of Graphene

  • Wai-Leong Chen
  • Dong-Ming Wu
  • Yinren Chen
  • Yonhua TzengEmail author


Graphene is a two-dimensional material which is composed of a honeycomb lattice made of single atomic layer of carbon atoms arranged in a hexagonal atomic structure. It has many extraordinary properties desirable for real-world applications. Low electrical resistivity, high electromigration resistance, high thermal conductivity, and outstanding mechanical strength make graphene a promising candidate for nano-interconnects. The atomically thin graphene is also optically transparent in a wide spectrum of wavelength and an excellent diffusion barrier. In this chapter, characterization of graphene for electronic, electrical, optical, and mechanical applications is discussed.


Graphene Electronics Optical Mechanical 


  1. 1.
    Wallace PR (1947) The band theory of graphite. Phys Rev 71:622.G/9CrossRefGoogle Scholar
  2. 2.
    Novoselov KS et al (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669CrossRefGoogle Scholar
  3. 3.
    Daniel RC et al (2012) Experimental review of graphene ISRN condensed matter physics. 2012:501686, 56 pagesGoogle Scholar
  4. 4.
    Yang S et al (2012) Efficient synthesis of heteroatom (N or S)-doped graphene based on ultrathin graphene oxide-porous silica sheets for oxygen reduction reactions. Adv Funct Mater 22(17):3634–3640CrossRefGoogle Scholar
  5. 5.
    Poh HL et al (2013) Sulfur-doped graphene via thermal exfoliation of graphite oxide in H2S, SO2, or CS2 gas. ACS Nano 7:5262–5272CrossRefGoogle Scholar
  6. 6.
    Choi CH et al (2013) Doping of chalcogens (sulfur and/or selenium) in nitrogen-doped graphene–CNT self-assembly for enhanced oxygen reduction activity in acid media. RSC Adv 3:12417–12422CrossRefGoogle Scholar
  7. 7.
    Liu Z-W et al (2011) Phosphorus-doped graphite layers with high electrocatalytic activity for the O2 reduction in an alkaline medium. Chem Int Ed 50:3257–3261CrossRefGoogle Scholar
  8. 8.
    Yazyev OV et al (2008) Magnetic correlations at graphene edges: basis for novel spintronics devices. Phys Rev Lett 100:047209CrossRefGoogle Scholar
  9. 9.
    Wu Z-S et al (2009) Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS Nano 3(2):411–417CrossRefGoogle Scholar
  10. 10.
    Liu C-Y et al (2011) Plasmonic coupling of silver nanoparticles covered by hydrogen-terminated graphene for surface-enhanced Raman spectroscopy. Opt Express 19(18):17092–17098CrossRefGoogle Scholar
  11. 11.
    Elias DC et al (2009) Control of graphene’s properties by reversible hydrogenation: evidence for graphane. Science 323:610CrossRefGoogle Scholar
  12. 12.
    Gupta A et al (2006) Raman scattering from high-frequency phonons in supported n-graphene layer films. Nano Lett 6(12):2667–2673CrossRefGoogle Scholar
  13. 13.
    Kompan ME et al (2010) Detecting graphene-graphane reconstruction in hydrogenated nanoporous carbon by raman spectroscopy. Tech Phys Lett 36:1140–1142CrossRefGoogle Scholar
  14. 14.
    Sofo JO et al (2007) Graphane: a two-dimensional hydrocarbon. Phys Rev B 75:153401CrossRefGoogle Scholar
  15. 15.
    Chen W, et al (2011) Low-stress transfer of graphene and its tunable resistance by remote plasma treatments in hydrogen. IEEE Nanotechnology Conference, pp 15–18Google Scholar
  16. 16.
    Shin D-W et al (2016) Phosphorus doped graphene by inductively coupled plasma and triphenylphosphine treatments. Mater Res Bull 82:1–142CrossRefGoogle Scholar
  17. 17.
    Zhang C, Mahmood N et al (2013) Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries. Adv Mater 25:4932–4937CrossRefGoogle Scholar
  18. 18.
    Zhu C, Dong S (2013) Recent progress in graphene-based nanomaterials as advanced electrocatalysts towards oxygen reduction reaction. Nanoscale 5:1753–1767CrossRefGoogle Scholar
  19. 19.
    Gopalakrishnan K et al (2013) Extraordinary supercapacitor performance of heavily nitrogenated graphene oxide obtained by microwave synthesis. J Mater Chem A 1:7563–7565CrossRefGoogle Scholar
  20. 20.
    Ding W et al (2013) Space-confinement- induced synthesis of pyridinic- and pyrrolic-nitrogen-doped graphene for the catalysis of oxygen reduction. Chem Int Ed 52:11755–11759CrossRefGoogle Scholar
  21. 21.
    Wu Z-S et al (2011) Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano 5:5463–5471CrossRefGoogle Scholar
  22. 22.
    Maitra U et al (2013) Highly effective visible-light- induced H2 generation by single-layer 1T- MoS2 and a nanocomposite of few-layer 2H- MoS2 with heavily nitrogenated graphene. Chem Int Ed 52(49):13057–13061CrossRefGoogle Scholar
  23. 23.
    Kim YA et al (2012) Raman spectroscopy of boron-doped single-layer graphene. ACS Nano 6:6293–6300CrossRefGoogle Scholar
  24. 24.
    Panchakarla LS et al (2009) Synthesis, structure and properties of boron and nitrogen doped graphene. Adv Mater 21:4726–4730Google Scholar
  25. 25.
    Wang L et al (2013) Boron-doped graphene: scalable and tunable p-type carrier concentration doping. J Phys Chem C 117:23251–23257CrossRefGoogle Scholar
  26. 26.
    Shan C et al (2009) Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal Chem 81:2378–2382CrossRefGoogle Scholar
  27. 27.
    Jeong HM et al (2011) Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett 11(6):2472–2477CrossRefGoogle Scholar
  28. 28.
    Wang K et al (2014) Nitrogen-doped graphene for supercapacitor with long-term electrochemical stability. Energy 70:612–617CrossRefGoogle Scholar
  29. 29.
    Chen P et al (2016) One-pot hydrothermal synthesis of nitrogen-doped graphene as high-performance anode materials for lithium ion batteries. Sci Rep 6:26146CrossRefGoogle Scholar
  30. 30.
    Lin T et al (2015) Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 18 350(6267):1508–1513Google Scholar
  31. 31.
    Yang L et al (2016) Multifunctional nitrogen-doped graphene nanoribbon aerogels for superior lithium storage and cell culture. Nanoscale 8:2159–2167CrossRefGoogle Scholar
  32. 32.
    Xue Y et al (2015) Nitrogen-doped graphene by ball-milling graphite with melamine for energy conversion and storage. 2D Mater 2(4):044001CrossRefGoogle Scholar
  33. 33.
    Li X et al (2009) Simultaneous nitrogen doping and reduction of graphene oxide. J Am Chem Soc 131:15939–15944CrossRefGoogle Scholar
  34. 34.
    Wei D et al (2009) Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett 9:1752–1758CrossRefGoogle Scholar
  35. 35.
    Jeong HM et al (2011) Nitrogen-doped graphene for high-performance ultra-capacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett 11:2472–2477CrossRefGoogle Scholar
  36. 36.
    Mou Z et al (2011) Forming mechanism of nitrogen doped graphene prepared by thermal solid-state reaction of graphite oxide and urea. Appl Surf Sci 258:1704–1710CrossRefGoogle Scholar
  37. 37.
    Xu D et al (2008) Approaching ballistic transport in suspended graphene. Nat Nanotechnol 3:491–495CrossRefGoogle Scholar
  38. 38.
    Bolotin KI et al (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146(9–10):351–355CrossRefGoogle Scholar
  39. 39.
    Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191CrossRefGoogle Scholar
  40. 40.
    Guo B et al (2010) Controllable N-doping of graphene. Nano Lett 10(12):4975–4980CrossRefGoogle Scholar
  41. 41.
    Wang H et al (2013) Synthesis of boron-doped graphene monolayers using the sole solid feedstock by chemical vapor deposition. Small 9:1316–1320CrossRefGoogle Scholar
  42. 42.
    Wu T et al (2012) Nitrogen and boron doped monolayer graphene by chemical vapor deposition using polystyrene, urea and boric acid. New J Chem 36(6):1385–1391CrossRefGoogle Scholar
  43. 43.
    Li X et al (2012) Boron doping of graphene for graphene–silicon p–n junction solar cells. Adv Energy Mater 2:425–429CrossRefGoogle Scholar
  44. 44.
    Gebhardt J et al (2013) Growth and electronic structure of boron-doped graphene. Phys Rev B Cond Matter Mater Phys 87:155437CrossRefGoogle Scholar
  45. 45.
    Cattelan M et al (2013) Microscopic view on a chemical vapor deposition route to boron-doped graphene nanostructures. Chem Mater 25:1490–1495CrossRefGoogle Scholar
  46. 46.
    Sheng Z-H et al (2012) Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells. J Mater Chem 22:390–395CrossRefGoogle Scholar
  47. 47.
    Pham VH et al (2013) Highly efficient reduction of graphene oxide using ammonia borane. Chem Commun 49:6665–6667CrossRefGoogle Scholar
  48. 48.
    Khai TV et al (2012) Comparison study of structural and optical properties of boron-doped and undoped graphene oxide films. Chem Eng J 211–212:369–377CrossRefGoogle Scholar
  49. 49.
    Ruitao LV et al (2012) Nitrogen-doped graphene: beyond single substitution and enhanced molecular sensing. Sci Rep 2:586CrossRefGoogle Scholar
  50. 50.
    Qu L, Liu Y et al (2010) Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4:1321–1326CrossRefGoogle Scholar
  51. 51.
    Tomo-o T et al (2012) Synthesis of nitrogen-doped graphene by plasma-enhanced chemical vapor deposition. Jpn J Appl Phys 51:055101CrossRefGoogle Scholar
  52. 52.
    Zhang L-S et al (2010) Identification of the nitrogen species on N-doped graphene layers and Pt/NG composite catalyst for direct methanol fuel cell. Phys Chem Chem Phys 12:12055–12059CrossRefGoogle Scholar
  53. 53.
    Jeon IY et al (2012) Edge-carboxylated graphene nanosheets via ball milling. Proc Natl Acad Sci USA 109:5588–5593CrossRefGoogle Scholar
  54. 54.
    Jeon IY et al (2013) Direct nitrogen fixation at the edges of graphene nanoplatelets as efficient electrocatalysts for energy conversion. Sci Rep 3:2260–2265CrossRefGoogle Scholar
  55. 55.
    Tetlow H et al (2014) Growth of epitaxial graphene: theory and experiment. Phys Rep 542(3):195–295CrossRefGoogle Scholar
  56. 56.
    Oznuluer T et al (2011) Synthesis of graphene on gold. Appl Phys Lett 98:183101CrossRefGoogle Scholar
  57. 57.
    Park G et al (2011) Synthesis of graphene-gold nanocomposites via sonochemical reduction. J Nanosci Nanotechnol 11(7):6095–6101CrossRefGoogle Scholar
  58. 58.
    Liu L et al (2012) High-yield chemical vapor deposition growth of high-quality large-area AB-stacked bilayer graphene. ACS Nano 6(9):8241–8824CrossRefGoogle Scholar
  59. 59.
    Schwierz F (2010) Graphene transistors. Nat Nanotechnol 5(7):487–496CrossRefGoogle Scholar
  60. 60.
    Xia F et al (2011) The origins and limits of metal-graphene junction resistance. Nat Nanotechnol 6(3):179–184CrossRefGoogle Scholar
  61. 61.
    Tzeng Y et al (2012) Proceedings of 12th IEEE nanotechnology conference, pp 1–4Google Scholar
  62. 62.
    Wu B et al (2013) Self-organized graphene crystal patterns. NPG Asia Mater 5:e36CrossRefGoogle Scholar
  63. 63.
    Geng D et al (2013) Fractal etching of graphene. J Am Chem Soc 135:6431–6434CrossRefGoogle Scholar
  64. 64.
    Luo B et al (2014) Layer-stacking growth and electrical transport of hierarchical graphene architectures. Adv Mater 26:3218–3224CrossRefGoogle Scholar
  65. 65.
    Liu Y et al (2015) Planar carbon nanotube–graphene hybrid films for high-performance broadband photodetector. Nat Commun 6:8589CrossRefGoogle Scholar
  66. 66.
    Kang P et al (2016) Photodetectors: crumpled graphene photodetector with enhanced, strain-tunable, and wavelength-selective photoresponsivity. Adv Mater 28:4639–4645CrossRefGoogle Scholar
  67. 67.
    Dang VQ et al (2015) Ultrahigh responsivity in graphene–ZnO nanorod hybrid UV photodetector. Small 11(25):3054–3065CrossRefGoogle Scholar
  68. 68.
    Lee Y et al (2015) High-performance perovskite–graphene hybrid photodetector. Adv Mater 27:41–46CrossRefGoogle Scholar
  69. 69.
    Sun Z et al (2016) Plasmonic-enhanced perovskite–graphene hybrid photodetectors. Nanoscale 8:7377CrossRefGoogle Scholar
  70. 70.
    Miao J et al (2015) High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios. Small 11(8):936–942CrossRefGoogle Scholar
  71. 71.
    Liu R et al (2015) Gate modulation of graphene-ZnO nanowire Schottky diode. Sci Rep 5:10125CrossRefGoogle Scholar
  72. 72.
    Haider G et al (2016) Electrical-polarization- induced ultrahigh responsivity photodetectors based on graphene and graphene quantum dots. Adv Funct Mater 26:620–628CrossRefGoogle Scholar
  73. 73.
    Chiang C-W et al (2016) Highly stretchable and sensitive photodetectors based on hybrid graphene and graphene quantum dots. ACS Appl Mater Interfaces 8:466–471CrossRefGoogle Scholar
  74. 74.
    Novoselov K (2007) Graphene: mind the gap. Nat Mater 6:720–721CrossRefGoogle Scholar
  75. 75.
    Chen D et al (2010) Graphene-based materials in electrochemistry. Chem Soc Rev 39:3157–3180CrossRefGoogle Scholar
  76. 76.
    Bae S et al (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5:574–578CrossRefGoogle Scholar
  77. 77.
    Chun S et al (2014) A flexible graphene touch sensor in the general human touch range. Appl Phys Lett 105:041907CrossRefGoogle Scholar
  78. 78.
    Cote LJ et al (2009) Langmuir−Blodgett assembly of graphite oxide single layers. J Am Chem Soc 131:1043CrossRefGoogle Scholar
  79. 79.
    Qiao Z et al (2015) Modulation of the optical transmittance in monolayer graphene oxide by using external electric field. Sci Rep 5:14441CrossRefGoogle Scholar
  80. 80.
    Wu J et al (2008) Organic solar cells with solution-processed graphene transparent electrodes. Appl Phys Lett 92:263302CrossRefGoogle Scholar
  81. 81.
    Wang SY et al (1983) 100 GHz bandwidth planar GaAs Schottky photodiode. Electron Lett 19(14):554–555CrossRefGoogle Scholar
  82. 82.
    Wey YG et al (1991) Ultrafast graded double-heterostructure GaInAs/InP photodiode. Appl Phys Lett 58(19):2156CrossRefGoogle Scholar
  83. 83.
    Hack M et al (1989) Amorphous silicon photoconductive diode. Appl Phys Lett 54:96CrossRefGoogle Scholar
  84. 84.
    Smith GM et al (1999) Substrate effects on GaN photoconductive detector performance. Appl Phys Lett 75:25CrossRefGoogle Scholar
  85. 85.
    Kopytko M et al (2010) High frequency response of near-room temperature LWIR HgCdTe heterostructure photodiodes. Optoelectron Rev 18(3):277–283Google Scholar
  86. 86.
    Nair RR et al (2008) Fine structure constant defines visual transparency of graphene. Science 320:1308CrossRefGoogle Scholar
  87. 87.
    Mak KF et al (2012) Optical spectroscopy of graphene: from the far infrared to the ultraviolet. Solid State Commun 152:1341–1349CrossRefGoogle Scholar
  88. 88.
    Mueller T, Xia FNA, Avouris P (2010) Graphene photodetectors for high-speed optical communications. Nat Photon 4:297–301CrossRefGoogle Scholar
  89. 89.
    Mittendorff M et al (2015) Universal ultrafast detector for short optical pulses based on graphene. Opt Express 23(22):28728–28735CrossRefGoogle Scholar
  90. 90.
    Cheng C-C et al (2016) Self-powered and broadband photodetectors based on graphene/ZnO/silicon triple junctions. Appl Phys Lett 109:053501CrossRefGoogle Scholar
  91. 91.
    Geim AK (2009) Graphene: status and prospects. Science 324:1530–1534CrossRefGoogle Scholar
  92. 92.
    Castro Nero AH et al (2009) The electronic properties of graphene. Rev Mod Phys 81:109CrossRefGoogle Scholar
  93. 93.
    Lee C et al (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385CrossRefGoogle Scholar
  94. 94.
    Park HJ et al (2010) Growth and properties of few-layer graphene prepared by chemical vapor deposition. Carbon 48:1088–1094CrossRefGoogle Scholar
  95. 95.
    Janowska I et al (2012) Mechanical thinning to make few-layer graphene from pencil lead. Carbon 50(8):3106–3110CrossRefGoogle Scholar
  96. 96.
    Griep MH et al (2016) Enhanced graphene mechanical properties through ultrasmooth copper growth substrates. Nano Lett 16(3):1657–1662CrossRefGoogle Scholar
  97. 97.
    Awano Y (2009) Graphene for VLSI: FET and interconnect applications. In: IEDM tech. dig. IEEE International Electron Device Meeting (IEDM), Baltimore pp 1–4. DOI:
  98. 98.
    Fujita M et al (1996) Peculiar localized state at zigzag graphite edge. J Phys Soc Jpn 65(7):1920CrossRefGoogle Scholar
  99. 99.
    Nakada K et al (1996) Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys Rev B 54(24):17954CrossRefGoogle Scholar
  100. 100.
    Sharma V et al (2014) MLGNR interconnects with FinFet driver: optimized delay and power performance for technology beyond 16nm. Int J Res Eng Technol (IJRET) 3(9):117–123CrossRefGoogle Scholar
  101. 101.
    Gorjizadeh N et al (2010) Chemical functionalization of graphene nanoribbons. J Nanomater 2010:513501. 7 pagesCrossRefGoogle Scholar
  102. 102.
    Gorjizadeh N et al (2010) Chemical functionalization of graphene nanoribbons. J Nanomater 2010:513501CrossRefGoogle Scholar
  103. 103.
    Wu Y et al (2011) Conductance of graphene nanoribbon junctions and the tight binding model. Nano Scale Res Lett 6Google Scholar
  104. 104.
    Reddy N, Majumder K et al (2012) Optimized delay and power performances in multilayer graphene nanoribbon interconnects. Asia Pacific conference on postgraduate research in microelectronics and electronics, PRIME ASIA. pp 122–125, 5–7Google Scholar
  105. 105.
    Reddy N et al (2012) Dynamic crosstalk effect in multilayer graphene nanoribbon interconnects. 2012 international conference on communication, devices and intelligent systems (CODIS). pp 472–475, 28–29Google Scholar
  106. 106.
    Cui JP et al (2012) IEEE Trans Electromagn Compat 54(1):126–132CrossRefGoogle Scholar
  107. 107.
    Zhao WS et al. (2012) Signal integrity analysis of graphene nano-ribbon (GNR) interconnects. 2012 I.E. electrical design of advanced packaging and systems symposium, EDAPS. pp 227–230, 9–11Google Scholar
  108. 108.
    Duryat RS et al (2016) Graphene nanoribbons (GNRs) for future interconnect. IOP Conf Ser Mater Sci Eng 131:012018CrossRefGoogle Scholar
  109. 109.
    Otakar F et al (2014) Development of a universal stress sensor for graphene and carbon fibres. Carbon 68:440–451CrossRefGoogle Scholar
  110. 110.
    Nevius MS et al (2015) Semiconducting graphene from highly ordered substrate interactions. PRL 115:136802CrossRefGoogle Scholar
  111. 111.
    Markevich et al (2012) Modification of electronic properties of graphene by interaction with substrates and dopants. University of Exeter, Doctoral ThesesGoogle Scholar
  112. 112.
    Ishigami et al (2007) Atomic structure of graphene on SiO2. Nano Lett 7:1643–1648CrossRefGoogle Scholar
  113. 113.
    Katsnelson et al (2007) Detection of individual gas molecule adsorbed on graphene. Phil Trans Roy Soc A 366:195–204CrossRefGoogle Scholar
  114. 114.
    Fratini S et al (2008) Substrate-limited electron dynamics in graphene. Phys Rev B 77:195415CrossRefGoogle Scholar
  115. 115.
    Meric I et al (2008) Current saturation in zero-bandgap, topgated graphene field-effect transistors. Nat Nanotechnol 3:654–659CrossRefGoogle Scholar
  116. 116.
    Ando T (2006) Fine structure constant defines visual transparency of graphene. J Phys Soc Jpn 75:074716CrossRefGoogle Scholar
  117. 117.
    Nomura K et al (2007) Quantum transport of massless Dirac fermions. Phys Rev Lett 98:076602CrossRefGoogle Scholar
  118. 118.
    Dean CR et al (2010) Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol 5:722–726CrossRefGoogle Scholar
  119. 119.
    Das Sarma S et al (2011) Electronic transport in two-dimensional graphene. Phys Rev B 83:121405 (R)CrossRefGoogle Scholar
  120. 120.
    Young AF et al (2012) Electronic compressibility of layer-polarized bilayer graphene. Phys Rev B 85:235458CrossRefGoogle Scholar
  121. 121.
    Shahriari et al (2016) Interaction of nano-boron nitride/graphene sheets with anode lithium ion battery. J Comput Theor Nanosci 13(5):3070–3082CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Wai-Leong Chen
    • 1
  • Dong-Ming Wu
    • 1
  • Yinren Chen
    • 1
  • Yonhua Tzeng
    • 1
    Email author
  1. 1.Institute of Microelectronics, Department of Electrical EngineeringNational Cheng Kung UniversityTainanTaiwan

Personalised recommendations