The Early History of Weighing Technology from the Perspective of a Theory of Innovation

  • Jochen BüttnerEmail author
  • Jürgen Renn
  • Matthias Schemmel
Part of the Boston Studies in the Philosophy and History of Science book series (BSPS, volume 270)


An extended model of cultural evolution is brought to bear on the development of practical and theoretical knowledge related to early weighing. We argue that this development can be characterized as an iterative process in which the exploration of the inherent potential of external representations of cognitive structures leads to the establishment of new cognitive structures, whereby this exploration is canalized at each step by historically specific contexts that constrain the actors. We argue that this scheme applies to technological innovation processes as well, and, based on the concrete example of the balance with variable arm length, implications are developed. Thus, the first theoretical writings on mechanics in the western tradition were indeed the result of a reflection on the external representations of weighing techniques. This is contrasted to the case of China. Comparing the historical developments of the two major types of balance with variable arm length—the Bismar and the Roman steelyard—we show how earlier developmental stages function as a scaffold for later techniques and, in particular, how the Roman steelyard required a rather elaborate societal and cognitive infrastructure as the basis for its standardized production. Based on an example drawn from Hero, we indicate how the development of weighing techniques and technical knowledge in turn influenced theoretical knowledge. (An earlier version of this chapter was published in 2016 in eTopoi. Journal for Ancient Studies.)


Evolution of knowledge Mechanics Weighing technology Innovation Practical knowledge Unequal-arm balance China Greece Roman Empire Islamicate societies 


  1. Boltz, William G., and Matthias Schemmel. 2016. Theoretical reflections on elementary actions and instrumental practices: The example of the Mohist Canon. In Spatial thinking and external representation: Towards a historical epistemology of space, ed. Matthias Schemmel. Berlin: Edition Open Access.
  2. Brentjes, Sonja, and Jürgen Renn. 2016. The Arabic transmission of knowledge on the balance. In Globalization of knowledge in the postantique Mediterranean, 700–1500, ed. Sonja Brentjes and Jürgen Renn. New York: Routledge.CrossRefGoogle Scholar
  3. Büttner, Jochen. 2008a. Big wheel keep on turning. Galilaeana 5: 33–62.Google Scholar
  4. ———. 2008b. The pendulum as a challenging object in early-modern mechanics. In Mechanics and natural philosophy before the Scientific Revolution, ed. Walter Roy Laird and Sophie Roux, 223–237. Dordrecht: Springer.CrossRefGoogle Scholar
  5. ———. 2013. The lever, the balance and a beautiful proof. In Archimedes: The art and science of invention; Rome, Musei Capitolini, May 31, 2013–January 12, 2014, ed. Giovanni Di Pasquale and Claudio Parisi Presicce, 85–91. Florence: Giunti.Google Scholar
  6. Corti, Carla, and Nicoletta Giordani. 2001. Pondera: pesi e misure nellantichità. Grandezze e misure nella storia. Campogalliano: Museo della bilancia.Google Scholar
  7. Cullen, Christopher. 1990. The science/technology interface in seventeenth-century China: Song Yingxing on qi and the wu xing. Bulletin of the School of Oriental and African Studies 53: 295–318.Google Scholar
  8. Damerow, Peter. 1996. Abstraction and representation: Essays on the cultural evolution of thinking, Boston Studies in the Philosophy of Science. Vol. 175. Dordrecht: Kluwer.CrossRefGoogle Scholar
  9. Damerow, Peter, and Jürgen Renn. 2010. The transformation of ancient mechanics into a mechanistic world view. In Transformationen antiker Wissenschaften, ed. Georg Toepfer and Hartmut Böhme, 243–267. Berlin: de Gruyter.Google Scholar
  10. Damerow, Peter, Jürgen Renn, Simone Rieger, and Paul Weinig. 2002. Mechnical knowledge and Pompeian balances. In Homo Faber: Studies on nature, technology, and science at the time of Pompeii, ed. Jürgen Renn and Giuseppe Castagnetti, 93–108. Rome: L’Erma di Bretschneider.Google Scholar
  11. Di Pasquale, Giovanni, and Claudio Parisi Presicce. 2013. Archimedes: The art and science of invention. Florence: Giunti.Google Scholar
  12. Dikshit, Moreshwar G. 1957. Narji: The one-pan scales in ancient India. Bulletin of the Deccan College Postgraduate and Research Institut 18: 5–7.Google Scholar
  13. ———. 1961. Two Pakrit verses. Indian Historical Quarterly 37: 189–191.Google Scholar
  14. Finley, M.I. 1965. Technical innovation and economic progress in the ancient world. The Economic History Review, New Series 18 (1): 29–45.CrossRefGoogle Scholar
  15. Franken, Norbert. 1993. Zur Typologie antiker Schnellwaagen. Bonner Jahrbücher 193: 69–120.Google Scholar
  16. Geller, Markham, ed. 2014. Melammu: The ancient world in an age of globalization. Berlin: Edition Open Access.
  17. Graham, Angus Charles. 1978. Later Mohist logic, ethics and science. Hong Kong: Chinese University Press.Google Scholar
  18. ———. 1989. Disputers of the Tao: Philosophical argument in ancient China. La Salle, IL: Open Court.Google Scholar
  19. Guo, Zhengzhong. 1993. San zhi shisi shiji zhongguo de quan heng du liang. Beijing: Zhongguo shehui kexue chubanshe.Google Scholar
  20. ———. 1994. The Deng steelyards of the Song Dynasty (960–1279). Cahiers de Métrologie 11–12: 297–306.Google Scholar
  21. Hero. 1900. Herons von Alexandria Mechanik und Katoptrik. Leipzig: B.G. Teubner. Scholar
  22. Jenemann, Hans R. 1989. Zur Geschichte der Waagen mit variablem Armlängenverhältnis im Altertum. Trierer Zeitschrift für Geschichte und Kunst des Trierer Landes und seiner Nachbargebiete 52: 319–352.Google Scholar
  23. ———. 1994. Die Besmer Waage im Altertum. Jahrbuch des Römisch-Germanischen Museums Mainz 41: 199–229.Google Scholar
  24. Kautalya. 1992. The Arthashastra. New Delhi: Penguin Books India.Google Scholar
  25. Kenoyer, Mark J. 2010. Measuring the Harappan world: Insights into the Indus order and cosmology. In The archaeology of measurement: Comprehending heaven, earth and time in ancient societies, ed. Iain Morley and Colin Renfrew, 106–122. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  26. Knorr, W.R. 1982. Ancient sources of the medieval tradition of mechanics: Greek, Arabic, and Latin studies of the balance. Florence: Istituto e museo di storia della scienza.Google Scholar
  27. Laubichler, Manfred D., and Jürgen Renn. 2015. Extended evolution: A conceptual framework for integrating regulatory networks and niche construction. Journal of Experimental Zoology (Molecular and Developmental Evolution) 324B: 565–577. Scholar
  28. Lewis, Michael Jonathan Taunton. 1997. Millstone and hammer: The origins of water power. Hull: University of Hull Press.Google Scholar
  29. Liu, Dongrui. 1979. Tan Zhanguo shiqi de budengbi cheng ‘Wang’ tongheng. Wenwu (Cultural relics) 4: 73–76.Google Scholar
  30. Malkin, Irad. 2011. A small Greek world: Networks in the ancient Mediterranean. Oxford: Oxford University Press.CrossRefGoogle Scholar
  31. Murmann, Johann Peter, and Koen Frenken. 2006. Toward a systematic framework for research on dominant designs: Technological innovations and industrial change. Research Policy 35 (7): 925–952. Scholar
  32. Needham, J. 1962. Science and civilisation in China. Vol. 4: Physics and physical technology, Part 1 (physics). Cambridge: Cambridge University Press.Google Scholar
  33. Nenci, E. 2011. Bernardino Baldi’s in mechanica Aristotelis problemata exercitationes. Berlin: Edition Open Access.
  34. Potts, D.T. 2012. Technological transfer and innovation in ancient Eurasia. In The globalization of knowledge in history, ed. Jürgen Renn, 105–123. Berlin: Edition Open Access. Scholar
  35. Qiu, Guangming. 1992. Zhongguo lidai du liang heng kao. Beijing: Kexue chubanshe.Google Scholar
  36. ———. 2005. A concise history of ancient Chinese measures and weights (Zhongguo gudai jiliang shi tujian). Hefei: Hefei gongye daxue chubanshe.Google Scholar
  37. Qiu, Guangming, Qiu Long, and Ping Yang. 2001. Zhongguo kexue jishu shi: Duliangheng (History of science and technology: Metrology). Beijing: Science Press.Google Scholar
  38. Renn, Jürgen, ed. 2012. The globalization of knowledge in history. Berlin: Edition Open Access. Scholar
  39. Renn, Jürgen, and Matthias Schemmel. 2000. Waagen und Wissen in China: Bericht einer Forschungsreise. Preprint 136. Berlin: Max Planck Institute for the History of Science.
  40. ———. 2006. Mechanics in the Mohist canon and its European counterparts. In Studies on ancient Chinese scientific and technical texts: Proceedings of the 3rd ISACBRST; March 31–April 3, 2003, Tübingen, Germany, ed. Hans Ulrich Vogel, Christine Moll-Murata, and Gao Xuan. Zhengzhou: Elephant Press.Google Scholar
  41. Renn, Jürgen, and Peter Damerow. 2012. The equilibrium controversy: Guidobaldo Del Monte’s critical notes on the mechanics of Jordanus and Benedetti and their historical and conceptual backgrounds. Berlin: Edition Open Access. Scholar
  42. Renn, Jürgen, Peter Damerow, and Simone Rieger. 2001. Hunting the white elephant: When and how did Galileo discover the law of fall? In Galileo in context, ed. Jürgen Renn, 29–149. Cambridge: Cambridge University Press.Google Scholar
  43. Rohmann, Dirk. 2017. Ungleicharmige Waagen im literarischen, epigraphischen und papyrologischen Befund der Antike. Historia 1 (66): 83–110.Google Scholar
  44. Russo, Lucio. 2004. The forgotten revolution: How science was born in 300 BC and why it had to be reborn. New York: Springer.Google Scholar
  45. Schemmel, Matthias. 2012. The transmission of scientific knowledge from Europe to China in the early modern period. In The globalization of knowledge in history, ed. Jürgen Renn, 269–293. Berlin: Edition Open Access. Scholar
  46. ———. 2013. Stevin in Chinese: Aspects of the transformation of early modern European science in its transfer to China. In Translating knowledge in the early modern low countries, ed. Harold J. Cook and Sven Dupré, 369–385. Berlin: LIT.Google Scholar
  47. Schürmann, Astrid. 1991. Griechische Mechanik und antike Gesellschaft: Studien zur staatlichen Förderung einer technischen Wissenschaft. Stuttgart: F. Steiner.Google Scholar
  48. Sommer, Michael. 2013. Wirtschaftsgeschichte der Antike. Munich: C.H.Beck.CrossRefGoogle Scholar
  49. Valleriani, Matteo. 2009. The transformation of Aristotle’s Mechanical questions: A bridge between the Italian renaissance architects and Galileo’s first new science. Annals of Science 66 (2): 183–208.CrossRefGoogle Scholar
  50. ———. 2010. Galileo engineer, Boston Studies in the Philosophy of Science. Vol. 269. Dordrecht: Springer.CrossRefGoogle Scholar
  51. ———. 2012. Galileo’s abandoned project on acoustic instruments at the Medici court. History of Science 50 (1): 1–31.CrossRefGoogle Scholar
  52. ———. 2013. Metallurgy, ballistics, and epistemic instruments: The Nova scientia of Nicolò Tartaglia – a new edition. Berlin: Edition Open Access. Scholar
  53. ———, ed. 2014. Appropriation and transformation of ancient science. Nuncius, 29 (1). Leiden: Brill.Google Scholar
  54. Vitruvius Pollio, Marcus. 1999. Vitruvius: Ten books on architecture. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  55. Werner, Joachim. 1954. Waage und Geld in der Merowingerzeit. Vorgetragen am 5. Februar 1954. In Bayerische Akademie der Wissenschaften München, Philosophisch-Historische Klasse. Sitzungsberichte 1. Munich: Verl. der Bayerischen Akademie der Wissenschaften.Google Scholar
  56. Wilson, Andrew. 2002. Machines, power and the ancient economy. The Journal of Roman Studies 92: 1–32.CrossRefGoogle Scholar
  57. Zhang, Baichun, Miao Tian, Matthias Schemmel, Jürgen Renn, and Peter Damerow. 2008. Chuanbo yu huitong: ‘Qiqi tushuo’ yanjiu yu jiaozhu (Transmission and integration: Qiqi Tushuo (Illustrations and descriptions of extraordinary devices) New research and annotated edition). Nanjing: Jiangsu kexue jishu chubanshe.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jochen Büttner
    • 1
    Email author
  • Jürgen Renn
    • 1
  • Matthias Schemmel
    • 1
  1. 1.Max Planck Institute for the History of ScienceBerlinGermany

Personalised recommendations