Jesuit Conceptions of Impetus After Galileo: Honoré Fabri, Paolo Casati, and Francesco Eschinardi

  • Michael ElazarEmail author
  • Rivka Feldhay
Part of the Boston Studies in the Philosophy and History of Science book series (BSPS, volume 270)


The fourteenth-century concept of impetus denotes an impressed force and was used to explain the continuation of the motion of projectiles and the acceleration of falling bodies. This chapter deals with the use of this concept in the period between Galileo’s death (1642) and the publication of Newton’s Philosophiæ naturalis principia mathematica (1687). Focusing on three major figures among contemporary Jesuit thinkers, the French Honoré Fabri (1608–1688) and the Italians Paolo Casati (1617–1707) and Francesco Eschinardi (1623–1703), this chapter shows how these Jesuits employed the concept of impetus in their own versions of preclassical mechanics.


Impetus Jesuit science Galilean science Aristotle’s physics Honoré Fabri Paolo Casati Francesco Eschinardi 


  1. Aristotle. 1908. Metaphysics (trans: Ross, W.D.). In The works of Aristotle, vol. 8, ed. W.D. Ross and J.A. Smith. Oxford: Oxford University Press.Google Scholar
  2. ———. 1930. Physics (trans: Hardie, R.P. and Gaye, R.K.). In The works of Aristotle, vol. 2, ed. W.D. Ross and J.A. Smith. Oxford: Oxford University Press.Google Scholar
  3. ———. 1953. On the Heavens (trans: Guthrie, W.K.C.). London: William Heinemann.Google Scholar
  4. Baldini, Ugo. 1999. The development of Jesuit ‘physics’ in Italy, 1550–1700: Structural approach. In Philosophy in the sixteenth and seventeenth centuries: Conversations with Aristotle, ed. Constance Blackwell, 248–279. Aldershot: Ashgate.Google Scholar
  5. ———. 2004. Ontology and mechanics in Jesuit scholasticism: The case of Gabriel Vasquez. In Scientiae et artes: Die Vermittlung alten und neuen Wissens in Literatur, Kunst und Musik, ed. Barbara Mahlmann-Bauer, 99–142. Wiesbaden: Harrassowitz Verlag.Google Scholar
  6. Casati, R.P. Pauli. 1649. Vacuum proscriptum: disputatio physica authore Paulo Casato Placentino Societatis Iesu, in qua nullum esse in rerum natura vacuum ostenditur; & potissimum examinatur, an ab argento vivo descendente in fistula superne clausa vacuum relinquatur, huiusque experimenti symptomata exlpicantur. Genua: Peri.Google Scholar
  7. ———. 1684. Mechanicorum libri octo, in quibus uno eodemque principio vectis vires physice explicantur & geometrice demonstrantur, atque Machinarum omnis generis componendarum methodus proponitur. Lugdunum: Apud Anissonios. Joan. Posuel & Claudium Rigaud.Google Scholar
  8. Clagett, Marshall. 1959. Science of mechanics in the Middle Ages. Madison: University of Wisconsin Press.Google Scholar
  9. Damerow, Peter, Gideon Freudenthal, Peter Maclaughlin, and Jürgen Renn. 2004. Exploring the limits of preclassical mechanics: A study of conceptual development in early modern science. Free fall and compounded motion in the work of Descartes, Galileo, and Beeckman. Second ed. New York: Springer.CrossRefGoogle Scholar
  10. Descartes, René. 1985. The philosophical writings of Descartes. Vol. 1. Principles of philosophy. Trans. John Cottingham, Robert Stoothoff and Dugald Murdoch. Cambridge: Cambridge University PressGoogle Scholar
  11. Des Chene, Dennis. 1996. Physiologia: Natural philosophy in late Aristotelian and Cartesian thought. Ithaca: Cornell University Press.Google Scholar
  12. Dollo, C. 1989. Archimede: Mito, tradizione, scienza, a cura di C Dollo. Olschki: Firenze.Google Scholar
  13. Drake, Stillman. 1974. Impetus theory and quanta of speed before and after Galileo. Physis 16: 47–75.Google Scholar
  14. ———. 1975. Impetus theory reappraised. Journal of the History of Ideas 36 (1): 27–46.CrossRefGoogle Scholar
  15. Duhem, Pierre M.M. 1991. Origins of static: The sources of physical theory. Dordrecht: Kluwer.CrossRefGoogle Scholar
  16. Elazar, Michael. 2008. Honoré Fabri and the Trojan horse of inertia. Science in Context 21 (1): 1–38.CrossRefGoogle Scholar
  17. ———. 2011. Honoré Fabri and the concept of impetus: A bridge between conceptual frameworks. New York: Springer-Verlag.CrossRefGoogle Scholar
  18. Eschinardi, Francesco. 1684. De impetu tractatus duplex: primus de impetu in communi, de motu locali et de machinis, secundus de fluidis in communi, de comparatione fluidorum cum solidis et de mensura aquarum currentium : additur in fine quamplurimum problematum seu quaesitorum solutio ex doctrinis praecedentibus. Rome: Ex typographia Angeli Bernabo.Google Scholar
  19. Fabri, Honoré. 1646. Tractatus Physicus De Motu Locali: In Quo Effectus Omnes, Qui Ad Impetum, Motum naturalem, violentum, & mixtum pertinent, explicantur, & ex principiis Physicis demonstrantur. Lugdunum: Ioannis Champion.Google Scholar
  20. ———. 1648. Metaphysica demonstrativa: Sive Scientia rationum universalium. Lugdunum: Ioannis Champion.Google Scholar
  21. Feldhay, Rivka. 1998. The use and abuse of mathematical entities: Galileo and the Jesuits revisited. In The Cambridge companion to Galileo, ed. Peter Machamer, 80–145. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  22. ———. 2006. On wonderful machines: The transmission of mechanical knowledge by Jesuits. Science & Education 15: 151–172.CrossRefGoogle Scholar
  23. Feldhay, Rivka, and Michael Heyd. 1989. The discourse of pious science. Science in Context 3: 109–142.Google Scholar
  24. Franco, Abel B. 2003. Avempace, projectile motion, and impetus theory. Journal of the History of Ideas 64 (4): 521–546.CrossRefGoogle Scholar
  25. Gabbey, Alan. 1980. Force and inertia in the seventeenth century: Descartes and Newton. In Descartes: Philosophy, mathematics and physics, ed. Stephen Gaukroger, 230–320. Brighton: Harvester Press.Google Scholar
  26. Galileo. 1989. Two new sciences: Including centers of gravity and force of percussion. Trans. Stillman Drake. Toronto: Wall & Emerson.Google Scholar
  27. Galluzzi, Paolo. 2001. Gassendi and l’affaire Galilée of the laws of motion. In Galileo in context, ed. Jürgen Renn, 239–275. Cambridge: Cambridge University Press.Google Scholar
  28. Gassendi, Pierre. 1642. De motu impresso a motore translato: epistolae duae: in qvibus aliqvot praecipuae tum de motu universè, tum speciatim de motu terrae attributo difficultates explicantur. Parisiis: Hevqueville.Google Scholar
  29. Gavagna, Veronica. 1997. Imagini di Galileo nel ‘Terra machinis mota’, di Paolo Casati. Bollettino di storia delle scienze matematiche 17 (1): 105–148.Google Scholar
  30. Grant, Edward. 1973. Medieval explanations and interpretations of the dictum that ‘nature abhors a vacuum’. Traditio 29: 327–355.CrossRefGoogle Scholar
  31. Heilbron, John. 2010. Galileo. Oxford: Oxford University Press.Google Scholar
  32. Jammer, Max. 1957. Concepts of force: A study in the foundations of dynamics. Cambridge, MA: Harvard University Press.Google Scholar
  33. Laird, W.R. 1986. The scope of renaissance mechanics. Osiris 2: 43–68.CrossRefGoogle Scholar
  34. Laird, W.R., and S. Roux. 2001. Mechanics and natural philosophy before the Scientific Revolution. Dordrecht: Springer.Google Scholar
  35. Lukens, David C. 1979. An Aristotelian response to Galileo: Honoré Fabri, S.J. (1608–1688) on the casual analysis of motion. PhD diss. Toronto University of Toronto.Google Scholar
  36. Maier, Annaliese. 1982. On the threshold of exact science: Selected writings of Anneliese Maier on late medieval natural philosophy, edited and translated by Steven D Sargent. Philadelphia: University of Pennsylvania Press.CrossRefGoogle Scholar
  37. Mancosu, Paolo. 1996. Philosophy of mathematics & mathematical practice in the seventeenth century. New York: Oxford University Press.Google Scholar
  38. Meli, Domenico Bertoloni. 2006. Thinking with objects: The transformation of mechanics in the seventeenth century. Baltimore: Johns Hopkins University Press.Google Scholar
  39. Middleton, W. E. Knowles. 1964. The history of the barometer. Baltimore: John Hopkins Press.Google Scholar
  40. ———. 1975. Science in Rome, 1675–1700, and the Accademia Fisicomatematica of Giovanni Giustino Ciampini. The British Journal for the History of Science 8 (29): 138–154.CrossRefGoogle Scholar
  41. Palmerino, Carla Rita. 1999. Infinite degrees of speed: Marine Mersenne and the debate over Galileo’s law of free fall. Early Science and Medicine 4 (4): 269–328.CrossRefGoogle Scholar
  42. ———. 2004. Galileo’s theories of free fall and projectile motion as interpreted by Pierre Gassendi. In The reception of the Galilean science of motion in seventeenth-century Europe, ed. C.R. Palmerino and J.M.M.H. Thijssen, 137–164. Dordrecht: Kluwer.CrossRefGoogle Scholar
  43. Renn, Jürgen. 2001. Editor’s introduction. An engineer-scientist, artist, and courtier at the origins of classical science. In Galileo in context, ed. Jürgen Renn, 1–8. Cambridge: Cambridge University Press.Google Scholar
  44. Schemmel, Matthias. 2008. The English Galileo: Thomas Harriot’s work on motion as an example of preclassical mechanics. Dordrecht: Springer.CrossRefGoogle Scholar
  45. Shapiro, Alan E. 2008. Images: Real and virtual, projected and perceived, from Kepler to Dechales. Early Science and Medicine 13: 270–312.CrossRefGoogle Scholar
  46. Wallace, William A. 1972–1974. Causality and scientific explanation. Vol. 1: Medieval and early classical science. Ann Arbor: University of Michigan Press.Google Scholar
  47. ———. 1978. Causes and forces in sixteenth-century physics. Isis 69 (3): 400–412.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Minerva Humanities CenterTel-Aviv UniversityTel-AvivIsrael
  2. 2.Cohn Institute for the History and Philosophy of Science and Ideas & Minerva Humanities CenterUniversity of Tel AvivTel Aviv-YafoIsrael

Personalised recommendations