Genomic Roadmaps for Augmenting Salinity Stress Tolerance in Crop Plants

  • P. Suprasanna
  • S. A. Ghuge
  • V. Y. Patade
  • S. J. Mirajkar
  • G. C. Nikalje


Serious antagonistic impacts of saline environment on plant growth, development, and yield are well established. In this regard, researchers and breeders have been utilizing many conventional as well as modern approaches to aid the process of developing salt-tolerant crops. Biotechnological tools have made the task of engineering salinity tolerance in plants easier. Currently, two major annexes are effectively employed to develop salt-tolerant crops, first, investigation of genetic variation via marker-assisted selection (MAS) and second the transgenic technology. Sustenance of plants under dynamically growth-limiting saline environment depends on alterations and/or switching between multiple biochemical pathways involved in response. A number of key regulatory genes have been successfully identified and characterized in this context which can be explored to serve the purpose of alleviation in salt-tolerant nature of plants. Several genomics-abetted approaches have been reported aiming toward improvement in growth and yield of crops under saline environment. Present chapter focuses on genomic roadmaps for augmentation of crop salt tolerance by various methods including MAS, transgenic breeding, manipulations in small non-coding RNAs, and genome editing. These approaches utilize key players involved in salinity-mediated plant defense mechanisms, such as ion transporters, osmolytes, antioxidants, transcription factors, signaling proteins, and microRNA. The chapter attempts to summarize the effective targets and exploration of these key entities to raise salt-tolerant plants through various genomics-related tools.


Marker assisted selection Ion transporters Osmolytes Antioxidants Transcription factors microRNA Transgenics 



Amplified fragment length polymorphisms


Alternate oxidase


Ascorbate peroxidase


Na+/H+ antiporter






Calcineurin B-like proteins


Calcium-dependent protein kinases


CaM-related proteins


Glutathione peroxidase


Introgression lines


Marker-assisted selection




Mannitol-1-phosphate dehydrogenase


delta1-pyrroline-5-carboxylate synthetase


Quantitative trait loci


Random amplified polymorphic DNA


Restriction fragment length polymorphisms


RNA interference


Single nucleotide polymorphisms


Superoxide dismutase


Salt overly sensitive


Simple sequence repeats


Sequence-tagged microsatellite site


Transcription factors


Trehalose-6-phosphate synthase/phosphatase


  1. Abebe T, Guenzi AC, Martin B, Cushman JC (2003) Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiol 131:1748–1755PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ahmad P, Ahanger MA, Alyemeni MN, Wijaya L, Alam P, Ashraf M (2018) Mitigation of sodium chloride toxicity in Solanum lycopersicum L. by supplementation of jasmonic acid and nitric oxide. J Plant Inter 13(1):64–72Google Scholar
  3. Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by over expression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285:1256–1258PubMedPubMedCentralCrossRefGoogle Scholar
  4. Augustine SM, Ashwin Narayan J, Syamaladevi DP, Appunu C, Chakravarthi M, Ravichandran V, Tuteja N, Subramonian N (2015) Overexpression of EaDREB2 and pyramiding of EaDREB2 with the pea DNA helicase gene (PDH45) enhance drought and salinity tolerance in sugarcane (Saccharum spp. hybrid). Plant Cell Rep 34:247–263PubMedPubMedCentralCrossRefGoogle Scholar
  5. Babu NN, Krishnan SG, Vinod KK, Krishnamurthy SL, Singh VK, Singh MP, Singh R, Ellur RK, Rai V, Bollinedi H, Bhowmick PK, Yadav AK, Nagarajan M, Singh NK, Prabhu KV, Singh AK (2017a) Marker Aided Incorporation of Saltol, a Major QTL Associated with Seedling Stage Salt Tolerance, into Oryza sativa ‘Pusa Basmati 1121’. Front Plant Sci 8:41PubMedPubMedCentralCrossRefGoogle Scholar
  6. Babu NN, Vinod KK, Krishnamurthy SL, Gopala Krishnan S, Yadav A, Bhowmick PK, Nagarajan M, Singh NK, Prabhu KV, Singh AK (2017b) Microsatellite based linkage disequilibrium analyses reveal Saltol haplotype fragmentation and identify novel QTLs for seedling stage salinity tolerance in rice (Oryza sativa L.). J Plant Biochem Biotechnol 26(3):310–320CrossRefGoogle Scholar
  7. Badawi GH, Kawano N, Yamauchi Y, Shimada E, Sasaki R, Kubo A, Tanaka K (2004) Over-expression of ascorbate peroxidase in tobacco chloroplasts enhances the tolerance to salt stress and water deficit. Physiol Plant 121:231–238PubMedCrossRefPubMedCentralGoogle Scholar
  8. Banerjee A, Roychoudhury A (2015) WRKY proteins: signaling and regulation of expression during abiotic stress responses. Sci World J 2015:807560CrossRefGoogle Scholar
  9. Bertrand A, Dhont C, Bipfubusa M, Chalifour FP, Drouin P, Beauchamp CJ (2015) Improving salt stress responses of the symbiosis in alfalfa using salt-tolerant cultivar and rhizobial strain. Appl Soil Eco 87:108–117CrossRefGoogle Scholar
  10. Binzel ML, Hess FD, Bressan RA, Hasegawa PM (1998) Intracellular compartmentation of ions in salt adapted tobacco cells. Plant Physiol 86:607–614CrossRefGoogle Scholar
  11. Bizimana JB, Luzi-Kihupi A, Murori RW, Singh RK (2017) Identification of quantitative trait loci for salinity tolerance in rice (Oryza sativa L.) using R29/Hasawi mapping population. J Genet 96(4):571–582PubMedCrossRefPubMedCentralGoogle Scholar
  12. Boriboonkaset T, Theerawitaya C, Yamada N, Pichakum A, Supaibulwatana K, Cha-Um S, Takabe T, Kirdmanee C (2013) Regulation of some carbohydrate metabolism-related genes, starch and soluble sugar contents, photosynthetic activities and yield attributes of two contrasting rice genotypes subjected to salt stress. Protoplasma 250:1157–1167PubMedCrossRefPubMedCentralGoogle Scholar
  13. Bose J, Rodrigo-Moreno A, Lai D, Xie Y, Shen W, Shabala S (2015) Rapid regulation of the plasma membrane H+-ATPase activity is essential to salinity tolerance in two halophyte species, Atriplex lentiformis and Chenopodium quinoa. Annals of Botany 115(3):481–494PubMedCrossRefPubMedCentralGoogle Scholar
  14. Bouaziz D, Pirrello J, Charfeddine M, Hammami A, Jbir R, Dhieb A, Bouzayen M, Gargouri-Bouzid R (2013) Overexpression of StDREB1 transcription factor increases tolerance to salt in transgenic potato plants. Mol Biotechnol 54:803–817PubMedCrossRefPubMedCentralGoogle Scholar
  15. Bouché N, Yellin A, Snedden WA, Fromm H (2005) Plant-specific calmodulin-binding proteins. Annu Rev Plant Biol 56:435–466PubMedCrossRefPubMedCentralGoogle Scholar
  16. Brini F, Hanin M, Mezghani I, Berkowitz GA, Masmoudi K (2007a) Overexpression of wheat Na+/H+ antiporter TNHX1 and H+-pyrophosphatase TVP1 improve salt-and drought stress tolerance in Arabidopsis thaliana plants. J Exp Bot 58:301–308PubMedCrossRefPubMedCentralGoogle Scholar
  17. Brini F, Hanin M, Lumbreras V, Amara I, Khoudi H, Hassairi A, Pagès M, Masmoudi K (2007b) Overexpression of wheat dehydrin DHN-5 enhances tolerance to salt and osmotic stress in Arabidopsis thaliana. Plant Cell Rep 26:2017–2026PubMedCrossRefPubMedCentralGoogle Scholar
  18. Cai R, Zhao Y, Wang Y, Lin Y, Peng X, Li Q, Chang Y, Jiang H, Xiang Y, Cheng B (2014) Overexpression of a maize WRKY58 gene enhances drought and salt tolerance in transgenic rice. Plant Cell Tissue Organ Cult 119:565–577CrossRefGoogle Scholar
  19. Campbell MT, Knecht AC, Berger B, Brien CJ, Wang D, Walia H (2015) Integrating image-based phenomics and association analysis to dissect the genetic architecture of temporal salinity responses in rice. Plant Physiol 168(4):1476–1489PubMedPubMedCentralCrossRefGoogle Scholar
  20. Campo S, Baldrich P, Messeguer J, Lalanne E, Coca M, Segundo BS (2014) Overexpression of a calcium-dependent protein kinase confers salt and drought tolerance in Rice by preventing membrane lipid peroxidation. Plant Physiol 165(2):688–704PubMedPubMedCentralCrossRefGoogle Scholar
  21. Checker VG, Chhibbar AK, Khurana P (2012) Stress-inducible expression of barley Hva1 gene in transgenic mulberry displays enhanced tolerance against drought, salinity and cold stress. Transgenic Res 21:939–957PubMedCrossRefPubMedCentralGoogle Scholar
  22. Chen M, Wang QY, Cheng XG, Xu ZS, Li LC, Ye XG, Xia LQ, Ma YZ (2007) GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high salt tolerance in transgenic plants. Biochem Biophys Res Commun 353:299–305PubMedCrossRefPubMedCentralGoogle Scholar
  23. Chen JB, Yang JW, Zhang ZY, Feng XF, Wang SM (2013) Two P5CS genes from common bean exhibiting different tolerance to salt stress in transgenic Arabidopsis. J Genet 92(3):461–469PubMedCrossRefPubMedCentralGoogle Scholar
  24. Chen X, Wang Y, Lv B, Li J, Luo L, Lu S, Zhang X, Ma H, Ming F (2014) The NAC family transcription factor OsNAP confers abiotic stress response through the ABA pathway. Plant Cell Physiol 55:604–619PubMedCrossRefPubMedCentralGoogle Scholar
  25. Cheng L, Li S, Hussain J, Xu X, Yin J, Zhang Y, Chen X, Li L (2013) Isolation and functional characterization of a salt responsive transcriptional factor, LrbZIP from lotus root (Nelumbo nucifera Gaertn). Mol Biol Rep 40:4033–4045PubMedCrossRefPubMedCentralGoogle Scholar
  26. Choi JY, Seo YS, Kim SJ, Kim WT, Shin JS (2011) Constitutive expression of CaXTH3, a hot pepper xyloglucan endotransglucosylase/hydrolase, enhanced tolerance to salt and drought stresses without phenotypic defects in tomato plants (Solanum lycopersicum cv. Dotaerang). Plant Cell Rep 30(5):867–877PubMedCrossRefPubMedCentralGoogle Scholar
  27. Cominelli E, Conti L, Tonelli C, Galbiati M (2013) Challenges and perspectives to improve crop drought and salinity tolerance. Nat Biotechnol 30:355–361Google Scholar
  28. De Leon TB, Linscombe S, Subudhi PK (2017) Identification and validation of QTLs for seedling salinity tolerance in introgression lines of a salt tolerant rice landrace ‘Pokkali’. PLoS One 12(4):e0175361PubMedPubMedCentralCrossRefGoogle Scholar
  29. Dietz KJ, Tavakoli N, Kluge C, Mimura T, Sharma SS, Harris GC, Chardonnens AN, Golldack D (2001) Significance of the V type ATPase for the adaptation to stressful growth conditions and its regulation on the molecular and biochemical level. J Exp Bot 52(363):1969–1980PubMedCrossRefPubMedCentralGoogle Scholar
  30. Do TD, Chen H, Vu HTT, Hamwieh A, Yamada T, Sato T, Yan Y, Cong H, Shono M, Suenaga K, Xu D (2016) Ncl synchronously regulates Na+, K+, andCl-in soybean greatly increases the grain yield in saline field conditions. Sci Rep 6:19147PubMedPubMedCentralCrossRefGoogle Scholar
  31. Ellur RK, Khanna A, Yadav A, Pathania S, Rajashekara H, Singh VK et al (2016) Improvement of Basmati rice varieties for resistance to blast and bacterial blight diseases using marker assisted backcross breeding. Plant Sci 242:330–341PubMedCrossRefPubMedCentralGoogle Scholar
  32. Faize M, Burgo SL, Faize L, Piqueras A, Nicolas E, Barba-Espin G, Clemente-Moreno MJ, Alcobendas R, Artlip T, Hernandez JA (2011) Involvement of cytosolic ascorbate peroxidase and Cu/Zn-superoxide dismutase for improved tolerance against drought stress. J Exp Bot 62:2599–2613PubMedCrossRefPubMedCentralGoogle Scholar
  33. Flowers TJ, Yeo AR (1997) Breeding for salt resistance in plants. In: Jaiwal PK, Singh PR, Gulaati A (eds) Strategies for improving salt tolerance in higher plants. Science Publishers Inc, Enfield, pp 247–264Google Scholar
  34. Flowers TJ, Troke PF, Yeo AR (1977) The mechanism of salt tolerance in halophytes. Ann Rev Plant Physiol 28:89–121CrossRefGoogle Scholar
  35. Gao P, Bai X, Yang L, Lv D, Pan X, Li Y (2011a) Osa-MIR393: a salinity and alkaline stress-related microRNA gene. Mol Biol Rep 38:237–242PubMedCrossRefPubMedCentralGoogle Scholar
  36. Gao SQ, Chen M, Xu ZS, Zhao CP, Li L, Xu HJ, Tang YM, Zhao X, Ma YZ (2011b) The soybean GmbZIP1 transcription factor enhances multiple abiotic stress tolerances in transgenic plants. Plant Mol Biol 75:537–553PubMedCrossRefGoogle Scholar
  37. Garg AK, Kim J-K, Owens TG, Ranwala AP, Choi YD, Kochian LV, Wu R (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci U S A 99:15898–15903PubMedPubMedCentralCrossRefGoogle Scholar
  38. Goel D, Singh AK, Yadav V, Babbar SB, Bansal KC (2010) Overexpression of osmotin gene confers tolerance to salt and drought stresses in transgenic tomato (Solanum lycopersicum L.). Protoplasma 245:133–141PubMedCrossRefPubMedCentralGoogle Scholar
  39. Golldack D, Luking I, Yang O (2011) Plant tolerance to drought and salinity: stress regulating transcription factors and their functional significance in the cellular transcriptional network. Plant Cell Rep 30:1383–1391PubMedCrossRefPubMedCentralGoogle Scholar
  40. Golldack D, Li C, Mohan H, Probst N (2014) Tolerance to drought and salt stress in plants: unraveling the signaling networks. Front Plant Sci 5:151PubMedPubMedCentralCrossRefGoogle Scholar
  41. Gouiaa S, Khoudi H (2015) Co-expression of vacuolar Na+/H+ antiporter and H+-pyrophosphatase with an IRES-mediated dicistronic vector improves salinity tolerance and enhances potassium biofortification of tomato. Phytochemistry 117:537–546PubMedCrossRefPubMedCentralGoogle Scholar
  42. Gouiaa S, Khoudi H, Leidi EO, Pardo JM, Masmoudi K (2012) Expression of wheat Na(+)/H(+) antiporter TNHXS1 and H(+)- pyrophosphatase TVP1 genes in tobacco from a bicistronic transcriptional unit improves salt tolerance. Plant Mol Biol 79:137–155PubMedCrossRefPubMedCentralGoogle Scholar
  43. Groppa MD, Benavides MP (2008) Polyamines and abiotic stress: recent advances. Amino Acids 34(1):35–45PubMedCrossRefPubMedCentralGoogle Scholar
  44. Guo Q, Zhang J, Gao Q, Xing S, Li F, Wang W (2008) Drought tolerance through overexpression of monoubiquitin in transgenic tobacco. J Plant Physiol 165(16):1745–1755PubMedCrossRefPubMedCentralGoogle Scholar
  45. Gupta KJ, Stoimenova M, Kaiser WM (2005) In higher plants, only root mitochondria, but not leaf mitochondria reduce nitrite to NO, in vitro and in situ. J Exp Bot 56(420):2601–2609PubMedCrossRefPubMedCentralGoogle Scholar
  46. Gupta K, Dey A, Gupta B (2013) Polyamines and their role in plant osmotic stress tolerance. In: Tuteja N, Gill SS (eds) Climate change and plant abiotic stress tolerance. Wiley-VCH, Weinheim, pp 1053–1072CrossRefGoogle Scholar
  47. Halford NG, Hey SJ (2009) Snf1-related protein kinases (SnRKs) act with in an intricate network that links metabolic and stress signaling in plants. Biochem J 419:247–259PubMedCrossRefGoogle Scholar
  48. Hanin M, Brini F, Ebel C, Toda Y, Takeda S, Masmoudi K (2011) Plant dehydrins and stress tolerance: versatile proteins for complex mechanisms. Plant Signal Behav 6:1503–1509PubMedPubMedCentralCrossRefGoogle Scholar
  49. Hanin M, Ebel C, Ngom M, Laplaze L, Masmoudi K (2016) New insights on plant salt tolerance mechanisms and their potential use for breeding. Front Plant Sci 7Google Scholar
  50. Hasegawa PM (2013) Sodium (Na+) homeostasis and salt tolerance of plants. Environ Exp Bot 92:19–31CrossRefGoogle Scholar
  51. Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Ann Rev Plant Biol 51:463–499CrossRefGoogle Scholar
  52. He CX, Yan JQ, Shen GX, Fu LH, Holaday AS, Auld D, Blumwald E, Zhang H (2005) Expression of an Arabidopsis vacuolar sodium/proton antiporter gene in cotton improves photosynthetic performance under salt conditions and increases fiber yield in the field. Plant Cell Physiol 46:1848–1854PubMedCrossRefPubMedCentralGoogle Scholar
  53. Hong Z, Lakkineni K, Zhang Z, Verma DPS (2000) Removal of feedback inhibition of 1 pyrroline-5-carboxylase synthetase (P5CS) results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 122:1129–1136PubMedPubMedCentralCrossRefGoogle Scholar
  54. Hong Y, Zhang H, Huang L, Li D, Song F (2016) Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice. Front Plant Sci 7:4PubMedPubMedCentralCrossRefGoogle Scholar
  55. Hoque ABMZ, Haque MA, Sarker MRA, Rahman MA (2015) Marker-assisted introgression of saltol locus into genetic background of BRRI Dhan-49. Int J Biosci 6:71–80Google Scholar
  56. Horie T, Hauser F, Schroeder JI (2009) HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants. Trends Plant Sci 14:660–668PubMedPubMedCentralCrossRefGoogle Scholar
  57. Hu H, You J, Fang Y, Zhu X, Qi Z, Xiong L (2008) Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol Biol 67:169–181PubMedCrossRefPubMedCentralGoogle Scholar
  58. Hu L, Zhang P, Jiang Y, Fu J (2015) Metabolomic analysis revealed differential adaptation to salinity and alkalinity stress in Kentucky bluegrass (Poa pratensis). Plant Mol Bio Report 33:56–68CrossRefGoogle Scholar
  59. Ishitani M, Liu J, Halfter U, Kim CS, Shi W, Zhu JK (2000) SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding. Plant Cell 12(9):1667–1677PubMedPubMedCentralCrossRefGoogle Scholar
  60. Jain M (2015) Function genomics of abiotic stress tolerance in plants: a CRISPR approach. Front Plant Sci 6Google Scholar
  61. Jakoby M, Weisshaar B, Dröge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F (2002) bZIP transcription factors in Arabidopsis. Trends Plant Sci 7(3):106–111PubMedCrossRefPubMedCentralGoogle Scholar
  62. Jamoussi RJ, Elabbassi MM, Jouira HB, Hanana M, Zoghlami N, Ghorbel A, Mliki A (2014) Physiological responses of transgenic tobacco plants expressing the dehydration responsive RD22 gene of Vitis vinifera to salt stress. Turk J Bot 38:268–280CrossRefGoogle Scholar
  63. Kere GM, Chen C, Guo Q, Chen J (2017) Genetics of salt tolerance in cucumber (Cucumis sativus L.) revealed by quantitative traits loci analysis. Sci Lett 5(1):22–30Google Scholar
  64. Kishor PBK, Hong Z, Miao GH, Hu CAA, Verma DPS (1995) Overexpression of Δ-pyrroline-5-carboxilase synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108:1387–1394PubMedPubMedCentralCrossRefGoogle Scholar
  65. Kong X, Pan J, Zhang M, Xing X, Zhou Y, Liu Y, Li D, Li D (2011) ZmMKK4, a novel group C mitogen-activated protein kinase kinase in maize (Zea mays), confers salt and cold tolerance in transgenic Arabidopsis. Plant Cell Environ 34(8):1291–1303PubMedCrossRefPubMedCentralGoogle Scholar
  66. Kumar K, Sinha AK (2013) Overexpression of constitutively active mitogen activated protein kinase kinase 6 enhances tolerance to salt stress in rice. Rice 6:25PubMedPubMedCentralCrossRefGoogle Scholar
  67. Kumar G, Purty RS, Sharma MP, Singla-Pareek SL, Pareek A (2009) Physiological responses among Brassica species under salinity stress show strong correlation with transcript abundance for SOS pathway-related genes. J Plant Physiol 166:507–520PubMedCrossRefPubMedCentralGoogle Scholar
  68. Lee SK, Kim BG, Kwon TR, Jeong MJ, Park SR, Lee JW, Byun MO, Kwon HB, Matthews BF, Hong CB, Park SC (2011) Overexpression of the mitogen-activated protein kinase gene OsMAPK33 enhances sensitivity to salt stress in rice (Oryza sativa L.). J Biosci 36(1):139–151PubMedCrossRefPubMedCentralGoogle Scholar
  69. Li HW, Zang BS, Deng XW, Xi-Ping W (2011) Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice. Planta 234:1007PubMedCrossRefPubMedCentralGoogle Scholar
  70. Li H, Gao Y, Xu H, Dai Y, Deng D, Chen J (2013) ZmWRKY33, a WRKY maize transcription factor conferring enhanced salt stress tolerances in Arabidopsis. Plant Growth Regul 70:207–216CrossRefGoogle Scholar
  71. Linh LH, Khanh TD, Luanl NV, Cuc DTK, Duc LD, Linh TH, Ismail AM, Ham LH (2012) Application of marker assisted backcrossing to pyramid salinity tolerance (Saltol) into Rice Cultivar- Bac Thom 7. VNU J Sci Nat Sci Technol 28:87–99Google Scholar
  72. Liu J, Ishitani M, Halfter U, Kim CS, Zhu JK (2000) The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc Natl Acad Sci U S A 97(7):3730–3734PubMedPubMedCentralCrossRefGoogle Scholar
  73. Liu H, Zhou X, Dong N, Liu X, Zhang H, Zhang Z (2011) Expression of a wheat MYB gene in transgenic tobacco enhances resistance to Ralstonia solanacearum, and to drought and salt stresses. Funct Integr Genomics 11:431–443PubMedCrossRefPubMedCentralGoogle Scholar
  74. Liu C, Mao B, Ou S, Wang W, Liu L, Wu Y, Chu C, Wang X (2014) OsbZIP71, abZIP transcription factor, confers salinity and drought tolerance in rice. Plant Mol Biol 84:19–36PubMedCrossRefPubMedCentralGoogle Scholar
  75. Liu L, Zhang Z, Dong J, Wang T (2016) Overexpression of MtWRKY76 increases both salt and drought tolerance in Medicago truncatula. Environ Exp Bot 123:50–58CrossRefGoogle Scholar
  76. Luo M, Zhao Y, Zhang R, Xing J, Duan M, Li J, Wang N, Wang W, Zhang S, Chen Z, Zhang H, Shi Z, Song W, Zhao J (2017) Mapping of a major QTL for salt tolerance of mature field-grown maize plants based on SNP markers. BMC Plant Biol 17:140PubMedPubMedCentralCrossRefGoogle Scholar
  77. Lyzenga WJ, Stone SL (2012) Abiotic stress tolerance mediated by protein ubiquitination. J Exp Bot 63(2):599–616PubMedCrossRefPubMedCentralGoogle Scholar
  78. Ma X, Qian Q, Zhu D (2005) Expression of a calcineurin gene improves salt stress tolerance in transgenic rice. Plant Mol Bio 58:483–495CrossRefGoogle Scholar
  79. Ma C, Burd S, Lers A (2015) miR408 is involved in abiotic stress responses in Arabidopsis. Plant J Cell Mol Biol 84:169–187CrossRefGoogle Scholar
  80. Mallikarjuna G, Mallikarjuna K, Reddy MK, Kaul T (2011) Expression of OsDREB2A transcription factor confers enhanced dehydration and salt stress tolerance in rice (Oryza sativa L.). Biotechnol Lett 33:1689–1697PubMedCrossRefPubMedCentralGoogle Scholar
  81. Mantri N., Patade V., Pang E. (2014) Recent Advances in Rapid and Sensitive Screening For Abiotic Stress Tolerance. In: Tran LP (ed) Improvement of Crops in the Era of Climate Changes, vol 2 (trans: Ahmad P, Wani MR, Azooz MM). Springer, New York. ISBN 978-1-4614-8823-1Google Scholar
  82. Mickelbart MV, Hasegawa PM, Bailey-Serres J (2015) Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat Rev Genet 16:237–251PubMedCrossRefPubMedCentralGoogle Scholar
  83. Miller G, Shulaev V, Mittler R (2008) Reactive oxygen signaling and abiotic stress. Physiol Plant 133:481–489PubMedCrossRefPubMedCentralGoogle Scholar
  84. Mittler R, Blumwald E (2010) Genetic engineering for modern agriculture: challenges and perspectives. Ann Rev Plant Biol 61:443–462CrossRefGoogle Scholar
  85. Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) AP2/ERF family transcription factors in plant abiotic stress responses. Biochim Biophys Acta 1819(2):86–96PubMedCrossRefPubMedCentralGoogle Scholar
  86. Moller IS, Gilliham M, Jha D, Mayo GM, Roy SJ, Coates JC, Haseloff J, Tester M (2009) Shoot Na+ exclusion and increased salinity tolerance engineered by cell type-specific alteration of Na+ transport in Arabidopsis. Plant Cell 21(7):2163–2178PubMedPubMedCentralCrossRefGoogle Scholar
  87. Munir S, Liu H, Xing Y, Hussain S, Ouyang B, Zhang Y, Li H, Ye Z (2016) Overexpression of calmodulin-like (ShCML44) stress-responsive gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses. Sci Rep 6:31772PubMedPubMedCentralCrossRefGoogle Scholar
  88. Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250CrossRefPubMedGoogle Scholar
  89. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Ann Rev Plant Biol 59:651–681CrossRefGoogle Scholar
  90. Nakashima K, Takasaki H, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) NAC transcription factors in plant abiotic stress responses. Biochim Biophys Acta 1819:97–103PubMedCrossRefPubMedCentralGoogle Scholar
  91. Nikalje GC, Nikam TD, Suprasanna P (2017) Looking at halophytic adaptation to high salinity through genomics landscape. Curr Genom 18(6).
  92. Nongpiur RC, Singla-Pareek SL, Pareek A (2016) Genomics approaches for improving salinity stress tolerance in crop plants. Curr Genomics 17(4):343–357PubMedPubMedCentralCrossRefGoogle Scholar
  93. Ohta M, Hayashi Y, Nakashima A, Hamada A, Tanaka A, Nakamura T, Hayakawa T (2002) Introduction of a Na /H antiporter gene from confers salt tolerance to rice. FEBS Letts 532(3):279–282CrossRefGoogle Scholar
  94. Orellana S, Yañez M, Espinoza A, Verdugo I, González E, Ruiz-Lara S, Casaretto JA (2010) The transcription factor SlAREB1 confers drought, salt stress tolerance and regulates biotic and abiotic stress-related genes in tomato. Plant Cell Environ 33:2191–2208PubMedCrossRefPubMedCentralGoogle Scholar
  95. Osakabe Y, Watanabe T, Sugano SS, Ueta R, Ishihara R, Shinozaki K, Osakabe K (2016) Optimization of CRISPR/Cas9 genome editing to modify abiotic stress responses in plants. Sci Rep 6(1)Google Scholar
  96. Otoch MLO, Sobreira ACM, Aragão MEF, Orellano EG, Lima MGS, Melo DF (2001) Salt modulation of vacuolar H+-ATPase and H+-Pyrophosphatase activities in Vigna unguiculata. J Plant Physiol 158:545–551CrossRefGoogle Scholar
  97. Ouyang SQ, Liu YF, Liu P, Lei G, He SJ, Ma B, Zhang WK, Zhang JS, Chen SY (2010) Receptor-like kinase OsSIK1 improves drought and salt stress tolerance in rice (Oryza sativa) plants. Plant J 62:316–329PubMedCrossRefPubMedCentralGoogle Scholar
  98. Park HY, Seok HY, Park BK, Kim SH, Goh CH, Lee BH, Lee CH, Moon YH (2008) Overexpression of Arabidopsis ZEP enhances tolerance to osmotic stress. Biochem Biophys Res Commun 375:80–85PubMedCrossRefPubMedCentralGoogle Scholar
  99. Pasapula V, Shen G, Kuppu S, Paez-Valencia J, Mendoza M, Hou P, Chen J, Qiu X, Zhu L, Zhang X, Auld D, Blumwald E, Zhang H, Gaxiola R, Payton P (2011) Expression of an Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) in cotton improves drought-and salt tolerance and increases fibre yield in the field conditions. Plant Biotechnol J 9:88–99PubMedCrossRefPubMedCentralGoogle Scholar
  100. Patel P, Yadav K, Ganapathi TR and Suprasanna Penna (2018) Plant miRNAome: cross talk in abiotic stressful times. In: Rajpal VR, Sehgal D, Raina SN (eds) Genomics-assisted breeding for crop improvement: abiotic stress tolerance. Springer (In Press)Google Scholar
  101. Penna S (2003) Building stress tolerance through over-producing trehalose in transgenic plants. Trends Plant Sci 8(8):355–357PubMedCrossRefPubMedCentralGoogle Scholar
  102. Prashanth SR, Sadhasivam V, Parida A (2008) Overexpression of cytosolic copper/zinc superoxide dismutase from a mangrove plant Avicennia marina in indica rice var Pusa Basmati-1 confers abiotic stress tolerance. Transgenic Res 17:281–291PubMedCrossRefPubMedCentralGoogle Scholar
  103. Qi L, Yang J, Yuan Y, Huang L, Chen P (2015) Overexpression of twoR2R3-MYB genes from Scutellaria baicalensis induces phenylpropanoid accumulation and enhances oxidative stress resistance in transgenic tobacco. Plant Physiol Biochem 94:235–243PubMedCrossRefPubMedCentralGoogle Scholar
  104. Qiu QS, Guo Y, Dietrich MA, Schumaker KS, Zhu J-K (2002) Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc Natl Acad Sci U S A 99:8436–8441PubMedPubMedCentralCrossRefGoogle Scholar
  105. Quan R, Wang J, Hui J, Bai H, Lyu X, Zhu Y, Zhang H, Zhang Z, Li S, Huang R (2018) Improvement of salt tolerance using wild rice genes. Front Plant Sci 8:2269PubMedPubMedCentralCrossRefGoogle Scholar
  106. Ravikiran KT, Krishnamurthy SL, Warraich AS, Sharma PC (2017) Diversity and haplotypes of rice genotypes for seedling stage salinity tolerance analyzed through morpho-physiological and SSR markers. Field Crops Res. Online published.
  107. Reddy PS, Jogeswar G, Rasineni GK, Maheswari M, Reddy AR, Varshney RK, Kishor PBK (2015) Proline over-accumulation alleviates salt stress and protects photosynthetic and antioxidant enzyme activities in transgenic sorghum [Sorghum bicolor (L.) Moench]. Plant Physiol Biochem 94:104–113PubMedCrossRefGoogle Scholar
  108. Rong W, Qi L, Wang A, Ye X, Du L, Liang H, Xin Z, Zhang Z (2014) The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat. Plant Biotechnol J 12:468–479PubMedCrossRefGoogle Scholar
  109. Roxas VP, Smith RK Jr, Allen ER, Allen RD (1997) Overexpression of glutathione S-transferase/glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress. Nat Biotechnol 15:988–991CrossRefPubMedGoogle Scholar
  110. Roy M, Wu R (2002) Overexpression of S-adenosyl methionine decarboxylase gene in rice increases polyamine level and enhances sodium chloride-stress tolerance. Plant Sci 163(5):987–992CrossRefGoogle Scholar
  111. Roy SJ, Negrão S, Tester M (2014) Salt resistant crop plants. Curr Opin Biotechnol 26:115–124PubMedPubMedCentralCrossRefGoogle Scholar
  112. Rubio F, Gassmann W, Schroeder JI (1995) Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science 270:1660–1663PubMedPubMedCentralCrossRefGoogle Scholar
  113. Rui A, Qi-Jun C, Mao-Feng C, Ping-Li L, Zhao S, Zhi-Xiang Q, Jia C, Xue-Chen W (2007) AtNHX8, a member of the monovalent cation:proton antiporter-1 family in Arabidopsis thaliana, encodes a putative Li+/H+ antiporter. Plant J 49(4):718–728Google Scholar
  114. Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K (2000) Overexpression of a single Ca2+ dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J 23:319–327PubMedCrossRefPubMedCentralGoogle Scholar
  115. Sakamoto A, Murata A, Murata N (1998) Metabolic engineering of rice leading to biosynthesis of glycine betaine and tolerance to salt and cold. Plant Mol Biol 38:1011–1019CrossRefPubMedGoogle Scholar
  116. Sanders D (2000) Plant biology: the salty tale of Arabidopsis. Curr Biol 10(13):R486–R488PubMedCrossRefGoogle Scholar
  117. Sanders D, Pelloux J, Brownlee C, Harper JF (2002) Calcium at the crossroads of signaling. Plant Cell 14:401–417CrossRefGoogle Scholar
  118. Schachtman DP, Schroeder JI (1994) Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants. Nature 370:655–658PubMedCrossRefGoogle Scholar
  119. Schilling RK, Marschner P, Shavrukov Y, Berger B, Tester M, Roy SJ, Plett DC (2013) Expression of the Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) improves the shoot biomass of transgenic barley and increases grain yield in a saline field. Plant Biotechnol J 12:378–386PubMedCrossRefPubMedCentralGoogle Scholar
  120. Serrano R, Mulet JM, Rios G, Marquez JA, de Larrinoa IF, Leube MP, Mendizabal I, Pascual-Ahuir A, Proft M, Ros R, Montesinos C (1999) A glimpse of the mechanisms of ion homeostasis during salt stress. J Exp Bot 50:1023–1036CrossRefGoogle Scholar
  121. Shabala S, Cuin TA (2008) Potassium transport and plant salt tolerance. Physiol Plantarum 133:651–669CrossRefGoogle Scholar
  122. Shabala S, Pottosin I (2014) Regulation of potassium transport in plants under hostile conditions: implications for abiotic and biotic stress tolerance. Physiol Plant 151(3):257–279PubMedCrossRefPubMedCentralGoogle Scholar
  123. Shen G, Wei J, Qiu X, Hu R, Kuppu S, Auld D, Blumwald E, Gaxiola R, Payton P, Zhang H (2014) Co-overexpression of AVP1 and AtNHX1 in cotton further improves drought and salt tolerance in transgenic cotton plants. Plant Mol Biol Rep 33:167–177CrossRefGoogle Scholar
  124. Sheveleva E, Chmara W, Bohnert HJ, Jensen RG (1997) Increased salt and drought tolerance by D-Ononitol production in transgenic Nicotiana tabacum. Plant Physiol 115:1211–1219PubMedPubMedCentralCrossRefGoogle Scholar
  125. Shi W, Liu D, Hao L, Wu CA, Guo X, Li H (2014) GhWRKY39, a member of the WRKY transcription factor family in cotton, has a positive role in disease resistance and salt stress tolerance. Plant Cell Tissue Organ Cult 118:17–32CrossRefGoogle Scholar
  126. Shinozaki K, Yamaguchi-Shinozakiy K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant 6(5):410–417CrossRefGoogle Scholar
  127. Shriram V, Kumar V, Devarumath RM, Khare TS, Wani SH (2016) MicroRNAs as potential targets for abiotic stress tolerance in plants. Front Plant Sci 7Google Scholar
  128. Singh A, Singh VK, Singh SP, Pandian RTP, Ellur RK, Singh D, et al. (2012) Molecular breeding for the development of multiple disease resistance in Basmati rice. AoB Plants 2012 ls029Google Scholar
  129. Smith CA, Melino VJ, Sweetman C, Soole KL (2009) Manipulation of alternative oxidase can influence salt tolerance in Arabidopsis thaliana. Physiol Plant 137:459–447PubMedCrossRefPubMedCentralGoogle Scholar
  130. Song X, Yu X, Hori C, Demura T, Ohtani M, Zhuge Q (2016) Heterologous overexpression of poplar SnRK2 genes enhanced salt stress tolerance in Arabidopsis thaliana. Front Plant Sci 7:612PubMedPubMedCentralGoogle Scholar
  131. Sperling O, Lazarovitch N, Schwartz A, Shapira O (2014) Effects of high salinity irrigation on growth, gas-exchange, and photoprotection in date palms (Phoenix dactylifera L., cv. Medjool). Environ and Exp Bot. 99:100–109CrossRefGoogle Scholar
  132. Su J, Wu R (2004) Stress-inducible synthesis of proline in transgenic rice confers faster growth under stress conditions than that with constitutive synthesis. Plant Sci 166:941–948CrossRefGoogle Scholar
  133. Székely G, Abrahám E, Cséplo A, Rigó G, Zsigmond L, Csiszár J, Ayaydin F, Strizhov N, Jásik J, Schmelzer E, Koncz C, Szabados L (2008) Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. Plant J 53:11–28PubMedCrossRefPubMedCentralGoogle Scholar
  134. Tarczynski MC, Jensen RG, Bohnert HJ (1992) Expression of a bacterial mtlD gene in transgenic tobacco leads to production and accumulation of mannitol. Proc Natl Acad Sci U S A 89:2600–2604PubMedPubMedCentralCrossRefGoogle Scholar
  135. Thomas JC, Sepahi M, Arendall B, Bohnert HJ (1995) Enhancement of seed germination in high salinity by engineering mannitol expression in Arabidopsis thaliana. Plant Cell Environ 18(7):801–806CrossRefGoogle Scholar
  136. Thomson MJ, Ocampo M, Egdane J, Rahman MA, Sajise AG, Adorada DL et al (2010) Characterizing the Saltol quantitative trait locus for salinity tolerance in rice. Rice 3:148–160CrossRefGoogle Scholar
  137. Tsutsumi K, Yamada N, Cha-Um S, Tanaka Y, Takabe T (2015) Differential accumulation of glycine betaine and choline monooxygenase in bladder hairs and lamina leaves of Atriplex gmelini, under high salinity. J Plant Physiol 176:101–107PubMedCrossRefPubMedCentralGoogle Scholar
  138. Turan S, Katrina C, Kumar S (2012) Salinity tolerance in plants: breeding and genetic engineering. Aust J Crop Sci 6(9):1337–1348Google Scholar
  139. Türkan I, Demiral T (2009) Recent developments in understanding salinity tolerance. Environ Exp Bot 67:2–9CrossRefGoogle Scholar
  140. Ubbens JR, Stavness I (2017) Deep plant phenomics: a deep learning platform for complex plant phenotyping tasks. Front Plant Sci 8:1190. CrossRefPubMedPubMedCentralGoogle Scholar
  141. van de Wiel CCM, Schaart JG, Lotz LAP, Smulders MJM (2017) New traits in crops produced by genome editing techniques based on deletions. Plant Biotechnol Rep 11(1):1–8PubMedPubMedCentralCrossRefGoogle Scholar
  142. Varshney RK, Bansal KC, Aggarwal PK, Datta SK, Craufurd PQ (2011) Agricultural biotechnology for crop improvement in a variable climate: hope or hype? Trends Plant Sci 16:363–371PubMedCrossRefPubMedCentralGoogle Scholar
  143. Wang B, Lüttge U, Ratajczak R (2001) Effects of salt treatment and osmotic stress on V-ATPase and V-PPase in leaves of the halophyte Suaeda salsa. J Exp Bot 52(365):2355–2365PubMedPubMedCentralCrossRefGoogle Scholar
  144. Wang Y, Gao C, Liang Y, Wang C, Yang C, Liu G (2010) A novel bZIP gene from Tamarix hispida mediates physiological responses to salt stress in tobacco plants. J Plant Physiol 167:222–230PubMedCrossRefPubMedCentralGoogle Scholar
  145. Wang C, Deng P, Chen L, Wang X, Ma H, Hu W, Yao N, Feng Y, Chai R, Yang G, He G (2013) A wheat WRKY transcription factor TaWRKY10 confers tolerance to multiple abiotic stresses in transgenic tobacco. PLoS One 8(6):e65120PubMedPubMedCentralCrossRefGoogle Scholar
  146. Wang RK, Cao ZH, Hao YJ (2014) Overexpression of a R2R3MYB gene MdSIMYB1 increases tolerance to multiple stresses in transgenic tobacco and apples. Physiol Plant 150:76–87PubMedCrossRefPubMedCentralGoogle Scholar
  147. Wang H, Wang H, Shao H, Tang X (2016) Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology. Front Plant Sci 7:67. CrossRefPubMedPubMedCentralGoogle Scholar
  148. Xing Y, Chen W-H, Jia W, Zhang J (2015) Mitogen-activated protein kinase kinase 5 (MKK5)-mediated signalling cascade regulates expression of iron superoxide dismutase gene in Arabidopsis under salinity stress. J Exp Bot 66(19):5971–5981PubMedPubMedCentralCrossRefGoogle Scholar
  149. Xiong L, Yang Y (2003) Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid–inducible mitogen-activated protein kinase. Plant Cell 15:745–759PubMedPubMedCentralCrossRefGoogle Scholar
  150. Xu D, Duan X, Wang B, Hong B, Ho THD, Wu R (1996) Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110:249–257PubMedPubMedCentralCrossRefGoogle Scholar
  151. Xu G, Cui Y, Li M, Wang M, Yu Y, Zhang B, Huang L, Xia X (2013) OsMSR2, a novel rice calmodulin-like gene, confers enhanced salt tolerance in rice (Oryza sativa L.). AJCS 7(3):368–373Google Scholar
  152. Xue ZY, Zhi DY, Xue GP, Zhang H, Zhao YX, Xia GM (2004) Enhanced salt tolerance of transgenic wheat (Triticum aestivum L.) expressing a vacuolar Na+/H+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+. Plant Sci 167:849–859CrossRefGoogle Scholar
  153. Yamaguchi T, Blumwald E (2005) Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci 10:615–620PubMedPubMedCentralCrossRefGoogle Scholar
  154. Yang J, Zhang J, Liu K, Wang Z, Liu L (2007) Involvement of polyamines in the drought resistance of rice. J Exp Bot 58(6):1545–1555PubMedCrossRefPubMedCentralGoogle Scholar
  155. Yang Q, Chen ZZ, Zhoua XF, Yina HB, Lia X, Xina XF, Honga XH, Zhu JK, Gong Z (2009) Over-expression of SOS (salt overly sensitive) genes increases salt tolerance in transgenic Arabidopsis. Mol Plant 2:22–31CrossRefPubMedGoogle Scholar
  156. Yang A, Dai X, Zhang WH (2012) AR2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. J Exp Bot 63:2541–2556PubMedPubMedCentralCrossRefGoogle Scholar
  157. Yang C, Wang R, Gou L, Si Y, Guan Q (2017) Overexpression of Populus trichocarpa mitogen-activated protein Kinase Kinase4 enhances salt tolerance in tobacco. Int J Mol Sci 18:2090PubMedCentralCrossRefGoogle Scholar
  158. Yusuf MA, Kumar D, Rajwanshi R, Strasser RJ, Govindjee MTM, Sarin NB (2010) Overexpression of γ-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: physiological and chlorophyll a fluorescence measurements. Biochim Biophys Acta 1797:1428–1438PubMedCrossRefPubMedCentralGoogle Scholar
  159. Zhai Y, Wang Y, Li Y, Lei T, Yan F, Su L, Li X, Zhao Y, Sun X, Li J, Wang Q (2013) Isolation and molecular characterization of GmERF7, a soybean ethylene-response factor that increases salt stress tolerance in tobacco. Gene 513:174–183PubMedCrossRefPubMedCentralGoogle Scholar
  160. Zhang B (2015) MicroRNA: a new target for improving plant tolerance to abiotic stress. J Exp Bot 66:1749–1761PubMedPubMedCentralCrossRefGoogle Scholar
  161. Zhang HX, Blumwald E (2001) Transgenic salt tolerant tomato plants accumulate salt in the foliage but not in the fruits. Nat Biotechnol 19:765–768PubMedPubMedCentralCrossRefGoogle Scholar
  162. Zhang S, Klessig DF (2001) MAPK cascades in plant defense signaling. TRENDS Plant Sci 6:520–527PubMedCrossRefPubMedCentralGoogle Scholar
  163. Zhang B, Wang Q (2016) MicroRNA, a new target for engineering new crop cultivars. Bioengineered 7(1):7–10PubMedPubMedCentralCrossRefGoogle Scholar
  164. Zhang HX, Hodson JN, Williams JP, Blumwald E (2001) Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proc Natl Acad Sci U S A 98:12832–12836PubMedPubMedCentralCrossRefGoogle Scholar
  165. Zhang L, Xi D, Li S, Gao Z, Zhao S, Shi J, Wu C, Guo X (2011) A cotton group C MAP kinase gene, GhMPK2, positively regulates salt and drought tolerance in tobacco. Plant Mol Biol 77:17–31PubMedCrossRefPubMedCentralGoogle Scholar
  166. Zhang X, Liu X, Wu L, Yu G, Wang X, Ma H (2015) The SsDREB transcription factor from the succulent halophyte Suaeda salsa enhances abiotic stress tolerance in transgenic tobacco. Int J Genomics 2015:875497PubMedPubMedCentralGoogle Scholar
  167. Zhang X, Shabala S, Koutoulis A, Shabala L, Zhou M (2017) Meta-analysis of major QTL for abiotic stress tolerance in barley and implications for barley breeding. Planta 245(2):283–295PubMedCrossRefPubMedCentralGoogle Scholar
  168. Zhao YL, Wang HM, Shao BX, Chen W, Guo ZJ, Gong HY, Sang XH, Wang JJ, Ye WW (2016) SSR-based association mapping of salt tolerance in cotton (Gossypium hirsutum L.). Genet Mol Res 15(2):gmr.15027370Google Scholar
  169. Zheng X, Chen B, Lu G, Han B (2009) Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochem Biophys Res Commun 379:985–989PubMedCrossRefPubMedCentralGoogle Scholar
  170. Zhou QY, Tian AG, Zou HF, Xie ZM, Lei G, Huang J, Wang CM, Wang HW, Zhang JS, Chen SY (2008) Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnol J 6:486–503PubMedCrossRefPubMedCentralGoogle Scholar
  171. Zhou M, Li D, Li Z, Hu Q, Yang C, Zhu L, Luo H (2013) Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic creeping bentgrass. Plant Physiol 161:1375–1391PubMedPubMedCentralCrossRefGoogle Scholar
  172. Zhu N, Cheng S, Liu X, Du H, Dai M, Zhou DX, Yang W, Zhao Y (2015) The R2R3-type MYB gene OsMYB91 has a function in coordinating plant growth and salt stress tolerance in rice. Plant Sci 236:146–156PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • P. Suprasanna
    • 1
  • S. A. Ghuge
    • 2
  • V. Y. Patade
    • 3
  • S. J. Mirajkar
    • 4
  • G. C. Nikalje
    • 5
  1. 1.Nuclear Agriculture and Biotechnology DivisionBhabha Atomic Research Centre (BARC)MumbaiIndia
  2. 2.Division of Biochemical SciencesNational Chemical Laboratory (NCL)PuneIndia
  3. 3.Defence Research & Development Organisation (DRDO)Defence Institute of Bio-Energy Research (DIBER) Field StationPithoragarhIndia
  4. 4.Division of Vegetable ScienceICAR-Indian Agricultural Research Institute (IARI)Pusa CampusIndia
  5. 5.Department of BotanyR.K. Talreja College of Arts, Science and CommerceUlhasnagarIndia

Personalised recommendations