Advertisement

Helicases and Their Importance in Abiotic Stresses

  • Zeba I. Seraj
  • Sabrina M. Elias
  • Sudip Biswas
  • Narendra Tuteja
Chapter

Abstract

Helicases are a ubiquitous class of ATP-dependent nucleic acid unwinding enzymes crucial for life processes in all living organisms. There are six classes of helicases based on their conserved amino acid sequences. All eukaryotic RNA helicases belong to the SF1 and SF2 groups. Groups SF3–SF5 are mainly viral and bacterial DNA helicases, while SF6 includes the ubiquitous mini-chromosome maintenance or MCM group of helicases. SF3–SF6 are also characterized as hexameric ring-forming, whereas SF1 and SF2 groups are usually monomeric. The SF2 class is the largest group of helicases, including both DNA and RNA helicases with the widest range of function in replication, transcription, translation, repair, as well as chromatin remodeling. There is no clear sequence-based separation between DNA and RNA helicases. SF2 also includes both RNA and DNA helicases that are involved in biotic and abiotic stresses. While both DNA and RNA helicases play important roles in normal cellular function, the latter are more markedly involved in stress alleviation. This functional divergence was also evident in promoter sequence comparisons of the 113 A. thaliana helicases. Some DNA helicases like those from SF6 (MCM) and SF2 (CHR) are also active under stressed conditions. However, the most prominent stress-activated helicases are those with the conserved amino acid motifs, DEAD/H. Overexpression of DEAD/H helicases in many crops confers a growth advantage in the transgenic plants and has resulted in their protection against major abiotic stresses, such as salinity, drought, and oxidative stresses with minimal loss in yield potential.

Keywords

Ubiquitous ATP-dependent nucleic acid DNA and RNA helicases Hexameric Monomeric Chromatin remodeling Conserved amino acid motifs Transgenic plants Abiotic stresses Yield potential 

Abbreviations

BAT 1

HLA-B-associated transcript 1

BRM

BRAHMA

BZR1

Brassinazole-resistant 1

CBL

Calcineurin B-like

CHR31

Chromatin remodeling31

CHX

Cation/H+ antiporter

CIPK

CBL-interacting protein kinase

DEAD

D-E-A-D (Asp-Glu-Ala-Asp)

DRH

Dicer-related RNA helicase

EDA

Embryo sac development arrest

eIF

Eukaryotic initiation factor

EMBL

European Molecular Biology Laboratory

KEA

K+/H+ antiporter

KEGG

Kyoto encyclopedia of genes and genomes

LOS4

Low osmotic response gene 4

MCM

Mini-chromosome

MEE29

Mutant effect embryo 29

MEGA7

Molecular evolutionary genetics analysis version 7

MER

Oligonucleotide-mer replacement

MINU

Minuscule

NDPK

Nucleoside diphosphate kinase

PIF

Petite integration fequency

PTGS

Posttranscriptional gene silencing

RdDM

RNA-directed DNA methylase

REQ

Recombinant specific

RH

RNA helicase

ROS

Reactive oxygen species

SDE

Silencing defective

SF1-SF6

Superfamily1-superfamily6

SOS

Salt overly sensitive

Swi/snf

Switch/sucrose non-fermented DNA helicase

SYD

SPAYED (stem cell maintainence in SAM and enhances expression of the pluripotency gene WUSCHEL)

ToGR1

Thermotolerant growth required 1

Upf1-like

Up-frameshift-1, triggers nonsense-mediated decay

References

  1. Abdelhaleem M (2004) Do human RNA helicases have a role in cancer? Biochim Biophys Acta (BBA)-Rev Cancer 1704(1):37–46CrossRefGoogle Scholar
  2. Amin M, Elias SM, Hossain A, Ferdousi A, Rahman MS, Tuteja N, Seraj ZI (2012) Over-expression of a DEAD-box helicase, PDH45, confers both seedling and reproductive stage salinity tolerance to rice (Oryza sativa L.). Mol Breed 30:345–354CrossRefGoogle Scholar
  3. Asensi-Fabado M-A, Amtmann A, Perrella G (2017) Plant responses to abiotic stress: the chromatin context of transcriptional regulation. Biochim Biophys Acta (BBA)-Gene Regul Mech 1860(1):106–122CrossRefGoogle Scholar
  4. Augustine SM, Narayan JA, Syamaladevi DP, Appunu C, Chakravarthi M, Ravichandran V, Tuteja N, Subramonian N (2015a) Introduction of Pea DNA Helicase 45 into Sugarcane (Saccharum spp. Hybrid) enhances cell membrane thermostability and upregulation of stress-responsive genes leads to abiotic stress tolerance. Mol Biotechnol 57(5):475–488CrossRefPubMedGoogle Scholar
  5. Augustine SM, Narayan JA, Syamaladevi DP, Appunu C, Chakravarthi M, Ravichandran V, Tuteja N, Subramonian N (2015b) Overexpression of EaDREB2 and pyramiding of EaDREB2 with the pea DNA helicase gene (PDH45) enhance drought and salinity tolerance in sugarcane (Saccharum spp. hybrid). Plant Cell Rep 34(2):247–263CrossRefPubMedGoogle Scholar
  6. Barak S, Singh Yadav N, Khan A (2014) DEAD-box RNA helicases and epigenetic control of abiotic stress-responsive gene expression. Plant Signal Behav 9(12):e977729CrossRefPubMedPubMedCentralGoogle Scholar
  7. Boulé J-B, Zakian VA (2006) Roles of Pif1-like helicases in the maintenance of genomic stability. Nucleic Acids Res 34(15):4147–4153CrossRefPubMedPubMedCentralGoogle Scholar
  8. Brasil JN, Costa CNM, Cabral LM, Ferreira PC, Hemerly AS (2017) The plant cell cycle: pre-replication complex formation and controls. Genet Mol Biol 40(1):276–291CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cellier F, Conéjéro G, Ricaud L, Luu DT, Lepetit M, Gosti F, Casse F (2004) Characterization of AtCHX17, a member of the cation/H+ exchangers, CHX family, from Arabidopsis thaliana suggests a role in K+ homeostasis. Plant J 39(6):834–846CrossRefPubMedGoogle Scholar
  10. Chen C-Y, Liu X, Boris-Lawrie K, Sharma A, Jeang K-T (2013) Cellular RNA helicases and HIV-1: insights from genome-wide, proteomic, and molecular studies. Virus Res 171(2):357–365CrossRefPubMedGoogle Scholar
  11. Dang HQ, Tran NQ, Gill SS, Tuteja R, Tuteja N (2011) A single subunit MCM6 from pea promotes salinity stress tolerance without affecting yield. Plant Mol Biol 76(1–2):19–34CrossRefPubMedGoogle Scholar
  12. de la Paz SM, Costas C, Sequeira-Mendes J, Gutierrez C (2012) Regulating DNA replication in plants. Cold Spring Harb Perspect Biol 4(12):a010140Google Scholar
  13. Deckert J, Pawlak S, Rybaczek D (2009) The nucleus as a ‘headquarters’ and target in plant cell stress reactions. In: Maksymiec W (ed) Compartmentation of responses to stresses in higher plants, true or false, Research Signpost. Transworld Research Network, Trivandrum, pp 61–90Google Scholar
  14. Fairman-Williams ME, Guenther U-P, Jankowsky E (2010) SF1 and SF2 helicases: family matters. Curr Opin Struct Biol 20(3):313–324CrossRefPubMedPubMedCentralGoogle Scholar
  15. Garg B, Gill SS, Biswas DK, Sahoo RK, Kunchge NS, Tuteja R, Tuteja N (2017) Simultaneous Expression of PDH45 with EPSPS Gene Improves Salinity and Herbicide Tolerance in Transgenic Tobacco Plants. Front Plant Sci 8:364PubMedPubMedCentralGoogle Scholar
  16. Georgescu R, Yuan Z, Bai L, Santos RLA, Sun J, Zhang D, Yurieva O, Li H, O’Donnell ME (2017) Structure of eukaryotic CMG helicase at a replication fork and implications to replisome architecture and origin initiation. Proc Natl Acad Sci 114(5):E697–E706CrossRefPubMedGoogle Scholar
  17. Gill SS, Tajrishi M, Madan M, Tuteja N (2013) A DESD-box helicase functions in salinity stress tolerance by improving photosynthesis and antioxidant machinery in rice (Oryza sativa L. cv. PB1). Plant Mol Biol 82(1–2):1–22CrossRefPubMedGoogle Scholar
  18. Guan Q, Wu J, Zhang Y, Jiang C, Liu R, Chai C, Zhu J (2013) A DEAD Box RNA Helicase Is Critical for PremRNA Splicing, Cold-Responsive Gene Regulation, and Cold Tolerance in Arabidopsis. Plant Cell 25:342–356CrossRefPubMedPubMedCentralGoogle Scholar
  19. Guo X, Zhang R, Wang J, Ding S-W, Lu R (2013) Homologous RIG-I–like helicase proteins direct RNAi-mediated antiviral immunity in C. elegans by distinct mechanisms. Proc Natl Acad Sci 110(40):16085–16090CrossRefPubMedGoogle Scholar
  20. Han SK, Wu MF, Cui S, Wagner D (2015) Roles and activities of chromatin remodeling ATPases in plants. Plant J 83(1):62–77CrossRefPubMedGoogle Scholar
  21. Jankowsky E (2011) RNA helicases at work: binding and rearranging. Trends Biochem Sci 36(1):19–29CrossRefPubMedPubMedCentralGoogle Scholar
  22. Jeong H-J, Kim YJ, Kim SH, Kim Y-H, Lee I-J, Kim YK, Shin JS (2011) Nonsense-mediated mRNA decay factors, UPF1 and UPF3, contribute to plant defense. Plant Cell Physiol 52(12):2147–2156CrossRefPubMedGoogle Scholar
  23. Johnson SJ, Jackson RN (2013) Ski2-like RNA helicase structures: common themes and complex assemblies. RNA Biol 10(1):33–43CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kant P, Kant S, Gordon M, Shaked R, Barak S (2007) STRESS RESPONSE SUPPRESSOR1 and STRESS RESPONSE SUPPRESSOR2, two DEAD-box RNA helicases that attenuate Arabidopsis responses to multiple abiotic stresses. Plant Physiol 145(3):814–830CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kim JS, Kim KA, Oh TR, Park CM, Kang H (2008) Functional characterization of DEAD-box RNA helicases in Arabidopsis thaliana under abiotic stress conditions. Plant Cell Physiol 49(10):1563–1571CrossRefPubMedGoogle Scholar
  26. Kim Y-H, Lim S, Yang K-S, Kim CY, Kwon S-Y, Lee H-S, Wang X, Zhou Z, Ma D, Yun D-J (2009) Expression of ArabidopsisNDPK2 increases antioxidant enzyme activities and enhances tolerance to multiple environmental stresses in transgenic sweet potato plants. Mol Breed 24(3):233–244CrossRefGoogle Scholar
  27. Kwon Y-I, Abe K, Endo M, Osakabe K, Ohtsuki N, Nishizawa-Yokoi A, Tagiri A, Saika H, Toki S (2013) DNA replication arrest leads to enhanced homologous recombination and cell death in meristems of rice OsRecQl4 mutants. BMC Plant Biol 13(1):62CrossRefPubMedPubMedCentralGoogle Scholar
  28. Lee KH, Park J, Williams DS, Xiong Y, Hwang I, Kang BH (2013) Defective chloroplast development inhibits maintenance of normal levels of abscisic acid in a mutant of the Arabidopsis RH3 DEAD-box protein during early post-germination growth. Plant J 73(5):720–732CrossRefPubMedGoogle Scholar
  29. Li D, Liu H, Zhang H, Wang X, Song F (2008) OsBIRH1, a DEAD-box RNA helicase with functions in modulating defence responses against pathogen infection and oxidative stress. J Exp Bot 59(8):2133–2146CrossRefPubMedPubMedCentralGoogle Scholar
  30. Liang W, Deutscher MP (2016) REP sequences: mediators of the environmental stress response? RNA Biol 13(2):152–156CrossRefPubMedGoogle Scholar
  31. Liu HH, Liu J, Fan SL, Song MZ, Han XL, Liu F, Shen FF (2008) Molecular cloning and characterization of a salinity stress-induced gene encoding DEAD-box helicase from the halophyte Apocynum venetum. J Exp Bot 59:633–644CrossRefPubMedGoogle Scholar
  32. Luo Y, Liu YB, Dong YX, Gao XQ, Zhang XS (2009) Expression of a putative alfalfa helicase increases tolerance to abiotic stress in Arabidopsis by enhancing the capacities for ROS scavenging and osmotic adjustment. J Plant Physiol 166:385–394CrossRefPubMedGoogle Scholar
  33. Macovei A, Vaid N, Tula S, Tuteja N (2012) A new DEAD-box helicase ATP-binding protein (OsABP) from rice is responsive to abiotic stress. Plant Signal Behav 7(9):1138–1143CrossRefPubMedPubMedCentralGoogle Scholar
  34. Macovei A, Tuteja N (2012) MicroRNAs targeting DEAD-box helicases are involved in salinity stress response in rice (Oryza sativa L.). BMC Plant Biol 12:183. https://doi.org/10.1186/1471-2229-12-183 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Macovei A, Sahoo RK, Fae M, Balestrazzi A, Carbonera D, Tuteja N (2017) Overexpression of PDH45 or SUV3 helicases in rice leads to delayed leaf senescence-associated events. Protoplasma 254:1103–1113CrossRefPubMedGoogle Scholar
  36. Maldonado-Bonilla LD (2014) Composition and function of P bodies in Arabidopsis thaliana. Front Plant Sci 5:201CrossRefPubMedPubMedCentralGoogle Scholar
  37. Manjulatha M, Sreevathsa R, Kumar AM, Sudhakar C, Prasad TG, Tuteja N, Udayakumar M (2014) Overexpression of a pea DNA helicase (PDH45) in peanut (Arachis hypogaea L.) confers improvement of cellular level tolerance and productivity under drought stress. Mol Biotechnol 56:111–125CrossRefPubMedGoogle Scholar
  38. Manova V, Gruszka D (2015) DNA damage and repair in plants–from models to crops. Front Plant Sci 6:885CrossRefPubMedPubMedCentralGoogle Scholar
  39. Meyer K, Koester T, Staiger D (2015) Pre-mRNA splicing in plants: in vivo functions of RNA-binding proteins implicated in the splicing process. Biomol Ther 5(3):1717–1740Google Scholar
  40. Nath M, Yadav S, Sahoo RK, Passricha N, Tuteja R, Tuteja N (2016) PDH45 transgenic rice maintain cell viability through lower accumulation of Na+, ROS and calcium homeostasis in roots under salinity stress. J Plant Physiol 191:1–11CrossRefPubMedGoogle Scholar
  41. Nawaz G, Kang H (2017) Chloroplast-or mitochondria-targeted DEAD-Box RNA helicases play essential roles in organellar RNA metabolism and abiotic stress responses. Front Plant Sci 8:871CrossRefPubMedPubMedCentralGoogle Scholar
  42. Ni DA, Sozzani R, Blanchet S, Domenichini S, Reuzeau C, Cella R, Bergounioux C, Raynaud C (2009) The Arabidopsis MCM2 gene is essential to embryo development and its over-expression alters root meristem function. New Phytol 184(2):311–322CrossRefPubMedGoogle Scholar
  43. Ohtani M, Demura T, Sugiyama M (2013) Arabidopsis root initiation defective1, a DEAH-box RNA helicase involved in pre-mRNA splicing, is essential for plant development. Plant Cell 25(6):2056–2069CrossRefPubMedPubMedCentralGoogle Scholar
  44. Palusa SG, Reddy AS (2010) Extensive coupling of alternative splicing of pre-mRNAs of serine/arginine (SR) genes with nonsense-mediated decay. New Phytol 185(1):83–89CrossRefPubMedGoogle Scholar
  45. Pascuan C, Frare R, Alleva K, Ayub ND, Soto G (2016) mRNA biogenesis-related helicase eIF4AIII from Arabidopsis thaliana is an important factor for abiotic stress adaptation. Plant Cell Rep 35(5):1205–1208CrossRefPubMedGoogle Scholar
  46. Pham XH, Reddy MK, Ehtesham NZ, Matta B, Tuteja N (2000) A DNA helicase from Pisum sativum is homologous to translation initiation factor and stimulates topoisomerase I activity. Plant J 24(2):219–229CrossRefPubMedGoogle Scholar
  47. Rajkowitsch L, Chen D, Stampfl S, Semrad K, Waldsich C, Mayer O, Jantsch MF, Konrat R, Bläsi U, Schroeder R (2007) RNA chaperones, RNA annealers and RNA helicases. RNA Biol 4(3):118–130CrossRefPubMedGoogle Scholar
  48. Rao TSRB, Naresh JV, Reddy PS, Reddy MK, Mallikarjuna G (2017) Expression of Pennisetum glaucum Eukaryotic Translational Initiation Factor 4A (PgeIF4A) confers improved drought, salinity, and oxidative stress tolerance in groundnut. Front Plant Sci 8:453CrossRefGoogle Scholar
  49. Riehs-Kearnan N, Gloggnitzer J, Dekrout B, Jonak C, Riha K (2012) Aberrant growth and lethality of Arabidopsis deficient in nonsense-mediated RNA decay factors is caused by autoimmune-like response. Nucleic Acids Res 40(12):5615–5624CrossRefPubMedPubMedCentralGoogle Scholar
  50. Rizvi I, Choudhury NR, Tuteja N (2016) Arabidopsis thaliana MCM3 single subunit of MCM2–7 complex functions as 3′ to 5′ DNA helicase. Protoplasma 253(2):467–475CrossRefPubMedGoogle Scholar
  51. Sahoo RK, Tuteja N (2013) Effect of salinity tolerant PDH45 transgenic rice on physicochemical properties, enzymatic activities and microbial communities of rhizosphere soils. Plant Signal Behav 8:e24950CrossRefPubMedPubMedCentralGoogle Scholar
  52. Sahoo RK, Ansari MW, Tuteja R, Tuteja N (2014) OsSUV3 transgenic rice maintains higher endogenous levels of plant hormones that mitigates adverse effects of salinity and sustains crop productivity. Rice 7(1):17CrossRefPubMedPubMedCentralGoogle Scholar
  53. Sanan-Mishra N, Pham XH, Sopory SK, Tuteja N (2005) Pea DNA helicase 45 overexpression in tobacco confers high salinity tolerance without affecting yield. Proc Natl Acad Sci U S A 102:509–514CrossRefPubMedPubMedCentralGoogle Scholar
  54. Sewelam N, Kazan K, Schenk PM (2016) Global plant stress signaling: reactive oxygen species at the cross-road. Front Plant Sci 7:187CrossRefPubMedPubMedCentralGoogle Scholar
  55. Shaul O (2015) Unique aspects of plant nonsense-mediated mRNA decay. Trends Plant Sci 20(11):767–779CrossRefPubMedGoogle Scholar
  56. Shen G, Kuppu S, Venkataramani S, Wang J, Yan J, Qiu X, Zhang H (2010) ANKYRIN REPEAT-CONTAINING PROTEIN 2A is an essential molecular chaperone for peroxisomal membrane-bound ASCORBATE PEROXIDASE3 in Arabidopsis. Plant Cell 22(3):811–831CrossRefPubMedPubMedCentralGoogle Scholar
  57. Shin R, Schachtman DP (2004) Hydrogen peroxide mediates plant root cell response to nutrient deprivation. Proc Natl Acad Sci U S A 101(23):8827–8832CrossRefPubMedPubMedCentralGoogle Scholar
  58. Singleton MR, Dillingham MS, Wigley DB (2007) Structure and mechanism of helicases and nucleic acid translocases. Annu Rev Biochem 76:23–50CrossRefPubMedGoogle Scholar
  59. Shivakumara TN, Sreevathsa R, Dash PK, Sheshshayee MS, Papolu PK, Rao U, Tuteja N, Udayakumar M (2017) Overexpression of Pea DNA Helicase 45 (PDH45) imparts tolerance to multiple abiotic stresses in chili (Capsicum annuum L.). Sci Rep 7:2760CrossRefPubMedPubMedCentralGoogle Scholar
  60. Sun J, Fernandez-Cid A, Riera A, Tognetti S, Yuan Z, Stillman B, Speck C, Li H (2014) Structural and mechanistic insights into Mcm2–7 double-hexamer assembly and function. Genes Dev 28(20):2291–2303CrossRefPubMedPubMedCentralGoogle Scholar
  61. Tang L, Nogales E, Ciferri C (2010) Structure and function of SWI/SNF chromatin remodeling complexes and mechanistic implications for transcription. Prog Biophys Mol Biol 102(2):122–128CrossRefPubMedPubMedCentralGoogle Scholar
  62. Tsugeki R, Tanaka-Sato N, Maruyama N, Terada S, Kojima M, Sakakibara H, Okada K (2015) CLUMSY VEIN, the Arabidopsis DEAH-box Prp16 ortholog, is required for auxin-mediated development. Plant J 81(2):183–197CrossRefPubMedGoogle Scholar
  63. Tuteja N (2003) Plant DNA helicases: the long unwinding road. J Exp Bot 54(391):2201–2214CrossRefPubMedGoogle Scholar
  64. Tuteja N, Tran NQ, Dang HQ, Tuteja R (2011) Plant MCM proteins: role in DNA replication and beyond. Plant Mol Biol 77(6):537–545CrossRefPubMedGoogle Scholar
  65. Tuteja N, Singh S, Tuteja R (2012) Helicases in improving abiotic stress tolerance in crop plants. Improv Crop Resist Abiotic Stress 1 & 2:435–449CrossRefGoogle Scholar
  66. Tuteja N, Sahoo RK, Garg B, Tuteja R (2013) OsSUV3 dual helicase functions in salinity stress tolerance by maintaining photosynthesis and antioxidant machinery in rice (Oryza sativa L. cv. IR64). Plant J 76(1):115–127PubMedGoogle Scholar
  67. Tuteja N, Banu MSA, Huda KMK, Gill SS, Jain P, Pham XH, Tuteja R (2014) Pea p68, a DEAD-box helicase, provides salinity stress tolerance in transgenic tobacco by reducing oxidative stress and improving photosynthesis machinery. PLoS One 9(5):e98287CrossRefPubMedPubMedCentralGoogle Scholar
  68. Tuteja N, Tarique M, Trivedi DK, Sahoo RK, Tuteja R (2015) Stress-induced Oryza sativa BAT1 dual helicase exhibits unique bipolar translocation. Protoplasma 252:1563–1574CrossRefPubMedGoogle Scholar
  69. Umate P, Tuteja R (2010) Architectures of the unique domains associated with the DEAD-box helicase motif. Cell Cycle 9(20):4228–4235CrossRefPubMedGoogle Scholar
  70. Umate P, Tuteja R, Tuteja N (2010) Genome-wide analysis of helicase gene family from rice and Arabidopsis: a comparison with yeast and human. Plant Mol Biol 73(4):449–465CrossRefPubMedGoogle Scholar
  71. Warde-Farley D, Donaldson SL, Comes O, Zuberi K, Badrawi R, Chao P, Franz M, Grouios C, Kazi F, Lopes CT (2010) The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res 38(suppl_2):W214–W220CrossRefPubMedPubMedCentralGoogle Scholar
  72. Xu RR, Qi SD, Lu LT, Chen CT, Wu CA, Zheng CC (2011) A DExD/H box RNA helicase is important for K+ deprivation responses and tolerance in Arabidopsis thaliana. FEBS J 278(13):2296–2306CrossRefPubMedGoogle Scholar
  73. Yamaguchi T, Aharon GS, Sottosanto JB, Blumwald E (2005) Vacuolar Na+/H+ antiporter cation selectivity is regulated by calmodulin from within the vacuole in a Ca2+-and pH-dependent manner. Proc Natl Acad Sci U S A 102(44):16107–16112CrossRefPubMedPubMedCentralGoogle Scholar
  74. You J, Chan Z (2015) ROS regulation during abiotic stress responses in crop plants. Front Plant Sci 6:1092CrossRefPubMedPubMedCentralGoogle Scholar
  75. Zhu M, Chen G, Dong T, Wang L, Zhang J, Zhao Z, Hu Z (2015) SlDEAD31, a putative DEAD-Box RNA helicase gene, regulates salt and drought tolerance and stress-related genes in tomato. PLoS One 10(8):e0133849CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Zeba I. Seraj
    • 1
  • Sabrina M. Elias
    • 1
  • Sudip Biswas
    • 1
  • Narendra Tuteja
    • 2
  1. 1.Department of Biochemistry and Molecular BiologyDhaka UniversityDhakaBangladesh
  2. 2.Amity Institute of Microbial TechnologyAmity UniversityNoidaIndia

Personalised recommendations